Discovery of Energy Storage Molecular Materials Using Quantum Chemistry-Guided Multiobjective Bayesian OptimizationClick to copy article linkArticle link copied!
- Garvit AgarwalGarvit AgarwalJoint Center for Energy Storage Research (JCESR), Lemont, Illinois 60439, United StatesMaterials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United StatesMore by Garvit Agarwal
- Hieu A. DoanHieu A. DoanJoint Center for Energy Storage Research (JCESR), Lemont, Illinois 60439, United StatesMaterials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United StatesMore by Hieu A. Doan
- Lily A. RobertsonLily A. RobertsonJoint Center for Energy Storage Research (JCESR), Lemont, Illinois 60439, United StatesChemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United StatesMore by Lily A. Robertson
- Lu ZhangLu ZhangJoint Center for Energy Storage Research (JCESR), Lemont, Illinois 60439, United StatesChemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United StatesMore by Lu Zhang
- Rajeev S. Assary*Rajeev S. Assary*Email: [email protected]. Phone: 630-252-3536.Joint Center for Energy Storage Research (JCESR), Lemont, Illinois 60439, United StatesMaterials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United StatesMore by Rajeev S. Assary
Abstract

Redox flow batteries (RFBs) are a promising technology for stationary energy storage applications due to their flexible design, scalability, and low cost. In RFBs, energy is carried in flowable redox-active materials (redoxmers) which are stored externally and pumped to the cell during operation. Further improvements in the energy density of RFBs necessitates redoxmer designs with wider redox potential windows and higher solubility. Additionally, designing redoxmers with a fluorescence-enabled self-reporting functionality allows monitoring of the state of health of RFBs. To accelerate the discovery of redoxmers with desired properties, state-of-the-art machine learning (ML) methods, such as multiobjective Bayesian optimization (MBO), are useful. Here, we first employed density functional theory calculations to generate a database of reduction potentials, solvation free energies, and absorption wavelengths for 1400 redoxmer molecules based on a 2,1,3-benzothiadiazole (BzNSN) core structure. From the computed properties, we identified 22 Pareto-optimal molecules that represent best trade-off among all of the desired properties. We further utilized these data to develop and benchmark an MBO approach to identify candidates quickly and efficiently with multiple targeted properties. With MBO, optimal candidates from the 1400-molecule data set can be identified at least 15 times more efficiently compared to the brute force or random selection approach. Importantly, we utilized this approach for discovering promising redoxmers from an unseen database of 1 million BzNSN-based molecules, where we discovered 16 new Pareto-optimal molecules with significant improvements in properties over the initial 1400 molecules. We anticipate that this active learning technique is general and can be utilized for the discovery of any class of functional materials that satisfies multiple desired property criteria.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 43 publications.
- Zhan Si, Deguang Liu, Wan Nie, Jingjing Hu, Chen Wang, Tingting Jiang, Haizhu Yu, Yao Fu. Data-Based Prediction of Redox Potentials via Introducing Chemical Features into the Transformer Architecture. Journal of Chemical Information and Modeling 2024, 64
(22)
, 8453-8463. https://doi.org/10.1021/acs.jcim.4c01299
- Damien K. J. Lee, Teck Leong Tan, Man-Fai Ng. Machine Learning-Assisted Bayesian Optimization for the Discovery of Effective Additives for Dendrite Suppression in Lithium Metal Batteries. ACS Applied Materials & Interfaces 2024, 16
(46)
, 64364-64376. https://doi.org/10.1021/acsami.4c16611
- Jaehyun Park, Farshud Sorourifar, Madhav R. Muthyala, Abigail M. Houser, Madison Tuttle, Joel A. Paulson, Shiyu Zhang. Zero-Shot Discovery of High-Performance, Low-Cost Organic Battery Materials Using Machine Learning. Journal of the American Chemical Society 2024, 146
(45)
, 31230-31239. https://doi.org/10.1021/jacs.4c11663
- Wenbin Xu, Elias Diesen, Tianwei He, Karsten Reuter, Johannes T. Margraf. Discovering High Entropy Alloy Electrocatalysts in Vast Composition Spaces with Multiobjective Optimization. Journal of the American Chemical Society 2024, 146
(11)
, 7698-7707. https://doi.org/10.1021/jacs.3c14486
- Akash Jain, Ilya A. Shkrob, Hieu A. Doan, Keir Adams, Jeffrey S. Moore, Rajeev S. Assary. Active Learning Guided Computational Discovery of Plant-Based Redoxmers for Organic Nonaqueous Redox Flow Batteries. ACS Applied Materials & Interfaces 2023, 15
(50)
, 58309-58319. https://doi.org/10.1021/acsami.3c11741
- Konstantin Karandashev, Jan Weinreich, Stefan Heinen, Daniel Jose Arismendi Arrieta, Guido Falk von Rudorff, Kersti Hermansson, O. Anatole von Lilienfeld. Evolutionary Monte Carlo of QM Properties in Chemical Space: Electrolyte Design. Journal of Chemical Theory and Computation 2023, 19
(23)
, 8861-8870. https://doi.org/10.1021/acs.jctc.3c00822
- Leyuan Zhang, Guihua Yu. Recent Developments in Materials and Chemistries for Redox Flow Batteries. ACS Materials Letters 2023, 5
(11)
, 3007-3009. https://doi.org/10.1021/acsmaterialslett.3c01191
- Rostislav Fedorov, Ganna Gryn’ova. Unlocking the Potential: Predicting Redox Behavior of Organic Molecules, from Linear Fits to Neural Networks. Journal of Chemical Theory and Computation 2023, 19
(15)
, 4796-4814. https://doi.org/10.1021/acs.jctc.3c00355
- Madison R. Tuttle, Emma M. Brackman, Farshud Sorourifar, Joel Paulson, Shiyu Zhang. Predicting the Solubility of Organic Energy Storage Materials Based on Functional Group Identity and Substitution Pattern. The Journal of Physical Chemistry Letters 2023, 14
(5)
, 1318-1325. https://doi.org/10.1021/acs.jpclett.3c00182
- Rui Liu, Gang Ma, Fanhui Kong, Zhitao Ai, Kun Xiong, Wei Zhou, Xiaomao Wang, Xiaolin Chang. Pareto-guided active learning for accelerating surrogate-assisted multi-objective optimization of arch dam shape. Engineering Structures 2025, 326 , 119541. https://doi.org/10.1016/j.engstruct.2024.119541
- Jiaqiang Yang, Xiaofei Zhang, Xiaofeng Zhang, Bingbo Niu, Feifeng Wu, Ning Luo, Jilin He, Chengduo Wang, Bin Shan, Qingkui Li. Stable adsorption configuration searching in hetero-catalysis based on similar distribution and active learning. Journal of Catalysis 2025, 443 , 115971. https://doi.org/10.1016/j.jcat.2025.115971
- Muthuraja Velpandian, Suddhasatwa Basu. Unlocking new horizons, challenges of integrating machine learning to energy conversion and storage research. Indian Chemical Engineer 2025, 2 , 1-18. https://doi.org/10.1080/00194506.2024.2444394
- Xin Li, Chan-Hung Shek, Peter K. Liaw, Guangcun Shan. Machine learning studies for magnetic compositionally complex alloys: A critical review. Progress in Materials Science 2024, 146 , 101332. https://doi.org/10.1016/j.pmatsci.2024.101332
- Juran Noh, Hieu A. Doan, Heather Job, Lily A. Robertson, Lu Zhang, Rajeev S. Assary, Karl Mueller, Vijayakumar Murugesan, Yangang Liang. An integrated high-throughput robotic platform and active learning approach for accelerated discovery of optimal electrolyte formulations. Nature Communications 2024, 15
(1)
https://doi.org/10.1038/s41467-024-47070-5
- Jiayi Du, Jun Guo, Wei Liu, Ziwei Li, Gang Huang, Xinbo Zhang. A universal strategy of multi-objective active learning to accelerate the discovery of organic electrode molecules. Science China Chemistry 2024, 67
(11)
, 3681-3687. https://doi.org/10.1007/s11426-024-2163-1
- Shuai Yang, Jianjun Liu, Fan Jin, Ying Lu. Integration of artificial intelligence and big data in materials science: New paradigms and scientific discoveries. Chinese Science Bulletin 2024, 69
(32)
, 4730-4747. https://doi.org/10.1360/TB-2024-0404
- Yifan Wu, Aron Walsh, Alex M. Ganose. Race to the bottom: Bayesian optimisation for chemical problems. Digital Discovery 2024, 3
(6)
, 1086-1100. https://doi.org/10.1039/D3DD00234A
- Byung Do Lee, Jiyoon Shin, Seonghwan Kim, Min Young Cho, Young-Kook Lee, Myoungho Pyo, Woon Bae Park, Kee-Sun Sohn. Discovering virtual antiperovskites as solid-state electrolytes through active learning. Energy Storage Materials 2024, 70 , 103535. https://doi.org/10.1016/j.ensm.2024.103535
- Chen Liao, Bingning Wang, Hieu Doan, Seoung-Bum Son, Daniel Abraham, Stephen Trask, Andrew Jansen, Kang Xu. Data-driven Design of Electrolyte Additives for High-Performance 5 V LiNi0.5Mn1.5O4 Cathodes. 2024https://doi.org/10.21203/rs.3.rs-4420883/v1
- Xiang Huang, Shenghong Ju. Tutorial: AI-assisted exploration and active design of polymers with high intrinsic thermal conductivity. Journal of Applied Physics 2024, 135
(17)
https://doi.org/10.1063/5.0201522
- Ethan Halpren, Xue Yao, Zhi Wen Chen, Chandra Veer Singh. Machine learning assisted design of BCC high entropy alloys for room temperature hydrogen storage. Acta Materialia 2024, 270 , 119841. https://doi.org/10.1016/j.actamat.2024.119841
- Xiang Huang, C.Y. Zhao, Hong Wang, Shenghong Ju. AI-assisted inverse design of sequence-ordered high intrinsic thermal conductivity polymers. Materials Today Physics 2024, 44 , 101438. https://doi.org/10.1016/j.mtphys.2024.101438
- Jenna C. Fromer, David E. Graff, Connor W. Coley. Pareto optimization to accelerate multi-objective virtual screening. Digital Discovery 2024, 3
(3)
, 467-481. https://doi.org/10.1039/D3DD00227F
- Aashutosh Mistry, Ian D. Johnson, Jordi Cabana, Brian J. Ingram, Venkat Srinivasan. How machine learning can extend electroanalytical measurements beyond analytical interpretation. Physical Chemistry Chemical Physics 2024, 26
(3)
, 2153-2167. https://doi.org/10.1039/D3CP04628A
- Lionel Colliandre, Christophe Muller. Bayesian Optimization in Drug Discovery. 2024, 101-136. https://doi.org/10.1007/978-1-0716-3449-3_5
- D.G. Gulevich, I.R. Nabiev, P.S. Samokhvalov. Machine learning–assisted colloidal synthesis: A review. Materials Today Chemistry 2024, 35 , 101837. https://doi.org/10.1016/j.mtchem.2023.101837
- Sanat Vibhas Modak, Wanggang Shen, Siddhant Singh, Dylan Herrera, Fairooz Oudeif, Bryan R. Goldsmith, Xun Huan, David G. Kwabi. Understanding capacity fade in organic redox-flow batteries by combining spectroscopy with statistical inference techniques. Nature Communications 2023, 14
(1)
https://doi.org/10.1038/s41467-023-39257-z
- Xiang Huang, Shengluo Ma, C. Y. Zhao, Hong Wang, Shenghong Ju. Exploring high thermal conductivity polymers via interpretable machine learning with physical descriptors. npj Computational Materials 2023, 9
(1)
https://doi.org/10.1038/s41524-023-01154-w
- Yifeng Tang, Jeremiah Y. Kim, Carman K. M. IP, Azadeh Bahmani, Qing Chen, Matthew G. Rosenberger, Aaron P. Esser-Kahn, Andrew L. Ferguson. Data-driven discovery of innate immunomodulators
via
machine learning-guided high throughput screening. Chemical Science 2023, 14
(44)
, 12747-12766. https://doi.org/10.1039/D3SC03613H
- Xiang Huang, Shengluo Ma, Yunwen Wu, Chaoying Wan, C. Y. Zhao, Hong Wang, Shenghong Ju. High-throughput screening of amorphous polymers with high intrinsic thermal conductivity
via
automated physical feature engineering. Journal of Materials Chemistry A 2023, 11
(38)
, 20539-20548. https://doi.org/10.1039/D3TA03370H
- Fengqing Chen, Zhen Guo, Jinhe Wang, Runhai Ouyang, Dianpu Ma, Pei Gao, Fei Pan, Peng Ding. Accelerated feasible screening of flame-retardant polymeric composites using data-driven multi-objective optimization. Computational Materials Science 2023, 230 , 112479. https://doi.org/10.1016/j.commatsci.2023.112479
- Tao Huan, Huaxu Yu, Puja Biswas, Elizabeth Rideout, Yankai Cao. Bayesian optimization of separation gradients to maximize the performance of untargeted LC-MS. 2023https://doi.org/10.21203/rs.3.rs-3338667/v1
- Xinyao Xu, Wenlin Zhao, Liquan Wang, Jiaping Lin, Lei Du. Efficient exploration of compositional space for high-performance copolymers
via
Bayesian optimization. Chemical Science 2023, 14
(37)
, 10203-10211. https://doi.org/10.1039/D3SC03174H
- Huaxu Yu, Puja Biswas, Elizabeth Rideout, Yankai Cao, Tao Huan. Bayesian optimization of separation gradients to maximize the performance of untargeted LC-MS. 2023https://doi.org/10.1101/2023.09.08.556930
- Akash Jain, Ilya A. Shkrob, Hieu A. Doan, Lily A. Robertson, Lu Zhang, Rajeev S. Assary. In silico
discovery of a new class of anolyte redoxmers for non-aqueous redox flow batteries. Digital Discovery 2023, 2
(4)
, 1197-1208. https://doi.org/10.1039/D3DD00050H
- Andrea Hamza, Flóra B. Németh, Ádám Madarász, Anton Nechaev, Petri M. Pihko, Pekka Peljo, Imre Pápai. N‐Alkylated Pyridoxal Derivatives as Negative Electrolyte Materials for Aqueous Organic Flow Batteries: Computational Screening**. Chemistry – A European Journal 2023, 29
(44)
https://doi.org/10.1002/chem.202300996
- Jia Yu, Marc Duquesnoy, Chaoyue Liu, Alejandro A. Franco. Optimization of the microstructure of carbon felt electrodes by applying the lattice Boltzmann method and Bayesian optimizer. Journal of Power Sources 2023, 575 , 233182. https://doi.org/10.1016/j.jpowsour.2023.233182
- Lily A. Robertson, Mohammad Afsar Uddin, Ilya A. Shkrob, Jeffrey S. Moore, Lu Zhang. Liquid Redoxmers for Nonaqueous Redox Flow Batteries. ChemSusChem 2023, 16
(14)
https://doi.org/10.1002/cssc.202300043
- Yifeng Tang, Jeremiah Y. Kim, Carman KM IP, Azadeh Bahmani, Qing Chen, Matthew G. Rosenberger, Aaron P. Esser-Kahn, Andrew L. Ferguson. Data-driven discovery of innate immunomodulators via machine learning-guided high throughput screening. 2023https://doi.org/10.1101/2023.06.26.546393
- Gary Tom, Riley J. Hickman, Aniket Zinzuwadia, Afshan Mohajeri, Benjamin Sanchez-Lengeling, Alán Aspuru-Guzik. Calibration and generalizability of probabilistic models on low-data chemical datasets with DIONYSUS. Digital Discovery 2023, 2
(3)
, 759-774. https://doi.org/10.1039/D2DD00146B
- Sterling G. Baird, Jason R. Hall, Taylor D. Sparks. Compactness matters: Improving Bayesian optimization efficiency of materials formulations through invariant search spaces. Computational Materials Science 2023, 224 , 112134. https://doi.org/10.1016/j.commatsci.2023.112134
- Minki Kim, Yesol Kim, Min Young Ha, Euichul Shin, Seung Jae Kwak, Minhee Park, Il‐Doo Kim, Woo‐Bin Jung, Won Bo Lee, YongJoo Kim, Hee‐Tae Jung. Exploring Optimal Water Splitting Bifunctional Alloy Catalyst by Pareto Active Learning. Advanced Materials 2023, 35
(17)
https://doi.org/10.1002/adma.202211497
- Jenna C. Fromer, Connor W. Coley. Computer-aided multi-objective optimization in small molecule discovery. Patterns 2023, 4
(2)
, 100678. https://doi.org/10.1016/j.patter.2023.100678
- Praneeth S Ramesh, Tarak K Patra. Polymer sequence design
via
molecular simulation-based active learning. Soft Matter 2023, 19
(2)
, 282-294. https://doi.org/10.1039/D2SM01193J
- Raymundo Arróyave, Danial Khatamsaz, Brent Vela, Richard Couperthwaite, Abhilash Molkeri, Prashant Singh, Duane D. Johnson, Xiaoning Qian, Ankit Srivastava, Douglas Allaire. A perspective on Bayesian methods applied to materials discovery and design. MRS Communications 2022, 12
(6)
, 1037-1049. https://doi.org/10.1557/s43579-022-00288-0
- Ruo-Lin Liu, Qiang Zhao, Xian-Jun He, Xin-Yi Yuan, Wei-Tao Wu, Ming-Yu Wu. Airfoil optimization based on multi-objective bayesian. Journal of Mechanical Science and Technology 2022, 36
(11)
, 5561-5573. https://doi.org/10.1007/s12206-022-1020-y
- Riley J. Hickman, Matteo Aldeghi, Florian Häse, Alán Aspuru-Guzik. Bayesian optimization with known experimental and design constraints for chemistry applications. Digital Discovery 2022, 1
(5)
, 732-744. https://doi.org/10.1039/D2DD00028H
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.