Physically Informed Machine Learning Prediction of Electronic Density of StatesClick to copy article linkArticle link copied!
- Victor Fung*Victor Fung*Email: [email protected]Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesMore by Victor Fung
- P. GaneshP. GaneshCenter for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesMore by P. Ganesh
- Bobby G. SumpterBobby G. SumpterCenter for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesMore by Bobby G. Sumpter
Abstract
The electronic structure of a material, such as its density of states (DOS), provides key insights into its physical and functional properties and serves as a valuable source of high-quality features for many materials screening and discovery workflows. However, the computational cost of calculating the DOS, most commonly with density functional theory (DFT), becomes prohibitive for meeting high-fidelity or high-throughput requirements, necessitating a cheaper but sufficiently accurate surrogate. To fulfill this demand, we develop a general machine learning method based on graph neural networks for predicting the DOS purely from atomic positions, six orders of magnitude faster than DFT. This approach can effectively use large materials databases and be applied generally across the entire periodic table to materials classes of arbitrary compositional and structural diversity. We furthermore devise a highly adaptable scheme for physically informed learning which encourages the DOS prediction to favor physically reasonable solutions defined by any set of desired constraints. This functionality provides a means for ensuring that the predicted DOS is reliable enough to be used as an input to downstream materials screening workflows to predict more complex functional properties, which rely on accurate physical features.
Cited By
This article is cited by 42 publications.
- David S. Rivera
Rocabado, Mika Aizawa, Takayoshi Ishimoto. Universal Predictive Power: Introducing the Electronic Structure Decomposition Approach for CO Adsorption and Activation on Al2O3-Supported Ru Nanoparticles. ACS Applied Materials & Interfaces 2024, 16
(33)
, 44305-44318. https://doi.org/10.1021/acsami.4c09308
- Izumi Takahara, Fumihiko Uesugi, Koji Kimoto, Kiyou Shibata, Teruyasu Mizoguchi. Toward the Atomic-Level Analysis of Ground-State Electronic Structures of Solid Materials via Prediction from Core-Loss Spectra: A Computational Study in Si. The Journal of Physical Chemistry C 2024, 128
(32)
, 13500-13507. https://doi.org/10.1021/acs.jpcc.4c02818
- Shokirbek Shermukhamedov, Dilorom Mamurjonova, Thana Maihom, Michael Probst. Structure to Property: Chemical Element Embeddings for Predicting Electronic Properties of Crystals. Journal of Chemical Information and Modeling 2024, 64
(15)
, 5762-5770. https://doi.org/10.1021/acs.jcim.3c01990
- Akram Ibrahim, Can Ataca. Prediction of Frequency-Dependent Optical Spectrum for Solid Materials: A Multioutput and Multifidelity Machine Learning Approach. ACS Applied Materials & Interfaces 2024, 16
(31)
, 41145-41156. https://doi.org/10.1021/acsami.4c07328
- Tristan Maxson, Ademola Soyemi, Benjamin W. J. Chen, Tibor Szilvási. Enhancing the Quality and Reliability of Machine Learning Interatomic Potentials through Better Reporting Practices. The Journal of Physical Chemistry C 2024, 128
(16)
, 6524-6537. https://doi.org/10.1021/acs.jpcc.4c00028
- Christian Venturella, Christopher Hillenbrand, Jiachen Li, Tianyu Zhu. Machine Learning Many-Body Green’s Functions for Molecular Excitation Spectra. Journal of Chemical Theory and Computation 2024, 20
(1)
, 143-154. https://doi.org/10.1021/acs.jctc.3c01146
- Linke Yu, Fengyu Li, Jingsong Huang, Bobby G. Sumpter, William E. Mustain, Zhongfang Chen. Double-Atom Catalysts Featuring Inverse Sandwich Structure for CO2 Reduction Reaction: A Synergetic First-Principles and Machine Learning Investigation. ACS Catalysis 2023, 13
(14)
, 9616-9628. https://doi.org/10.1021/acscatal.3c01584
- Wenbo Sun, Guozheng Fan, Tammo van der Heide, Adam McSloy, Thomas Frauenheim, Bálint Aradi. Machine Learning Enhanced DFTB Method for Periodic Systems: Learning from Electronic Density of States. Journal of Chemical Theory and Computation 2023, 19
(13)
, 3877-3888. https://doi.org/10.1021/acs.jctc.3c00152
- Daniel Vizoso, Ghatu Subhash, Krishna Rajan, Rémi Dingreville. Connecting Vibrational Spectroscopy to Atomic Structure via Supervised Manifold Learning: Beyond Peak Analysis. Chemistry of Materials 2023, 35
(3)
, 1186-1200. https://doi.org/10.1021/acs.chemmater.2c03207
- Xin Chen, Zicheng Wan, Sisi Lao, Ziqi Tian. Enhanced Simulation of Complicated MXene Materials with Graph Convolutional Neural Networks. ChemPhysChem 2025, 4 https://doi.org/10.1002/cphc.202400749
- Karthik Balasubramanian, Sukriti Manna, Subramanian KRS Sankaranarayanan. Data driven insights into the characteristics of wide bandgap semiconductors in 2D materials. Computational Materials Science 2025, 246 , 113476. https://doi.org/10.1016/j.commatsci.2024.113476
- Alireza Valizadeh, Ryoji Sahara, Maaouia Souissi. Alloys innovation through machine learning: a statistical literature review. Science and Technology of Advanced Materials: Methods 2024, 4
(1)
https://doi.org/10.1080/27660400.2024.2326305
- Chao Liang, Yilimiranmu Rouzhahong, Shunwei Yao, Junhao Liang, Chunlin Yu, Biao Wang, Huashan Li. A Cluster‐Based Deep Learning Model Perceiving Series Correlation for Accurate Prediction of Phonon Spectrum. Advanced Science 2024, 11
(46)
https://doi.org/10.1002/advs.202406183
- Po-Yen Chen, Kiyou Shibata, Katsumi Hagita, Tomohiro Miyata, Teruyasu Mizoguchi. Predicting ELNES/XANES spectra by machine learning with an atomic coordinate-independent descriptor and its application to ground-state electronic structures. Micron 2024, 187 , 103723. https://doi.org/10.1016/j.micron.2024.103723
- Di Liu, Jiayin Zhang, Boyu Chen, Zhiyuan Bai, Junqiang Ren, Lingxia Li, Xuefeng Lu. First-principles simulation of electronic properties of MoB/Si3N4 superlattices via machine learning. Materials Today Communications 2024, 41 , 110613. https://doi.org/10.1016/j.mtcomm.2024.110613
- Mohammad Alghadeer, Nufida D. Aisyah, Mahmoud Hezam, Saad M. Alqahtani, Ahmer A. B. Baloch, Fahhad H. Alharbi. Machine learning prediction of materials properties from chemical composition: Status and prospects. Chemical Physics Reviews 2024, 5
(4)
https://doi.org/10.1063/5.0235541
- Qiyuan Wu, Han Jia, Wenchao Tang, Tukaram D Dongale, Hongling Cai, Xiaoshan Wu. Optimization of the memristor fabrication based on graph convolutional network. Physica Scripta 2024, 99
(12)
, 125948. https://doi.org/10.1088/1402-4896/ad8d15
- Malte Grunert, Max Großmann, Erich Runge. Deep learning of spectra: Predicting the dielectric function of semiconductors. Physical Review Materials 2024, 8
(12)
https://doi.org/10.1103/PhysRevMaterials.8.L122201
- Christopher Broyles, William Charles, Sheng Ran. Structure-driven prediction of magnetic order in uranium compounds. Physical Review Materials 2024, 8
(11)
https://doi.org/10.1103/PhysRevMaterials.8.114405
- M. P. Egorov, V. P. Ananikov, E. G. Baskir, S. E. Boganov, V. I. Bogdan, A. N. Vereshchagin, V. A. Vil’, I. L. Dalinger, A. D. Dilman, O. L. Eliseev, S. G. Zlotin, E. A. Knyazeva, V. M. Kogan, L. O. Kononov, M. M. Krayushkin, V. B. Krylov, L. M. Kustov, V. V. Levin, B. V. Lichitsky, M. G. Medvedev, N. E. Nifantiev, O. A. Rakitin, A. M. Sakharov, I. V. Svitanko, G. A. Smirnov, A. Yu. Stakheev, M. A. Syroeshkin, A. O. Terent’ev, Yu. V. Tomilov, E. V. Tretyakov, I. V. Trushkov, L. L. Fershtat, V. A. Chaliy, V. Z. Shirinian. Current trends in organic chemistry: contribution of the N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences. Russian Chemical Bulletin 2024, 73
(9)
, 2423-2532. https://doi.org/10.1007/s11172-024-4366-8
- Yuanyuan Yuan, Junqiang Ren, Hongtao Xue, Junchen Li, Fuling Tang, Xin Guo, Xuefeng Lu. Electronic Properties of CrB/Co
2
CO
2
Superlattices by Multiple Descriptor‐Based Machine Learning Combined with First‐Principles. Small Methods 2024, 8
(8)
https://doi.org/10.1002/smtd.202301415
- Jinyang Guo, Yousof Haghshenas, Yiran Jiao, Priyank Kumar, Boris I. Yakobson, Ajit Roy, Yan Jiao, Klaus Regenauer‐Lieb, David Nguyen, Zhenhai Xia. Rational Design of Earth‐Abundant Catalysts toward Sustainability. Advanced Materials 2024, 10 https://doi.org/10.1002/adma.202407102
- Junfeng Zhao, Lixin Tang, Yong Shuai. Exploring a Small Molecule Property Prediction Model with Optimal Comprehensive Performance through Multi-Objective Optimization Algorithms. 2024, 707-710. https://doi.org/10.1145/3638530.3654410
- Yue Ma, Shaoxiong Han, Yan Sun, Zhenming Cui, Pengyu Liu, Xiaomin Wang, Yongzhen Wang. Improving ionic conductivity of garnet solid-state electrolytes using Gradient boosting regression optimized machine learning. Journal of Power Sources 2024, 604 , 234492. https://doi.org/10.1016/j.jpowsour.2024.234492
- Ayman Maqsood, Chen Chen, T. Jesper Jacobsson. The Future of Material Scientists in an Age of Artificial Intelligence. Advanced Science 2024, 11
(19)
https://doi.org/10.1002/advs.202401401
- Yunlai Zhu, Jishun Zhang, Zihan Qu, Shuo Jiang, Yu Liu, Zuheng Wu, Fei Yang, Wei Hu, Zuyu Xu, Yuehua Dai. Accelerating stability of ABX3 perovskites analysis with machine learning. Ceramics International 2024, 50
(4)
, 6250-6258. https://doi.org/10.1016/j.ceramint.2023.11.349
- Ernest C. Agwamba, Kelechi Chukwuemeka, Hitler Louis, Gideon A. Okon, Devalsam I. Eni, Amanda-Lee E. Manicum. Silicon Carbide and Its Germanium Dopant Nanocluster Derivatives as Sensors for Chloropicrin: Perception from Density Functional Theory and Monte-Carlo MD Simulation. Silicon 2024, 16
(2)
, 625-646. https://doi.org/10.1007/s12633-023-02712-z
- Gerardo Valadez Huerta, Kaoru Hisama, Yusuke Nanba, Michihisa Koyama. Machine Learning-Based Approaches in Nanoparticle Catalysis. 2024, 594-619. https://doi.org/10.1016/B978-0-12-821978-2.00082-9
- Xiang-Wen Deng, Li-Yuan Wu, Rui Zhao, Jia-Ou Wang, Li-Na Zhao, , , . Application and prospect of machine learning in photoelectron spectroscopy. Acta Physica Sinica 2024, 73
(21)
, 210701. https://doi.org/10.7498/aps.73.20240957
- Yunpeng Zhao, Shansong Wang, Qingtian Zeng, Weijian Ni, Hua Duan, Nengfu Xie, Fengjin Xiao. Informed-Learning-Guided Visual Question Answering Model of Crop Disease. Plant Phenomics 2024, 6 https://doi.org/10.34133/plantphenomics.0277
- Eshwar S Ramanathan, Chandra Chowdhury. Structural and Electronic Properties of Two‐Dimensional Materials: A Machine‐Learning‐Guided Prediction. ChemPhysChem 2023, 24
(21)
https://doi.org/10.1002/cphc.202300308
- Gengzhu Zhou, Zili Zhang, Renyao Feng, Wenjie Zhao, Shenyou Peng, Jia Li, Feifei Fan, Qihong Fang. Chemical Composition Optimization of Biocompatible Non-Equiatomic High-Entropy Alloys Using Machine Learning and First-Principles Calculations. Symmetry 2023, 15
(11)
, 2029. https://doi.org/10.3390/sym15112029
- Xu Fang, Zhengxin Chen, Qian Ma, Jiang Wu, Jia Lin, Jiawei Li, Wenhao Li, Chaofan Liu, Hongtao Shen, Linhong You. A2BB’X6/ABX3-type High-performance perovskites screening based on ensemble learning and high throughput screening. Solar Energy 2023, 262 , 111795. https://doi.org/10.1016/j.solener.2023.111795
- Hitler Louis, Innocent Benjamin, Anthony C. Iloanya, Chioma B. Ubah, Anthony E. Essien, Gideon A. Okon, Adedapo S. Adeyinka. Functionalized (–HCO, –OH, –NH2) Iridium-doped graphene (Ir@Gp) nanomaterials for enhanced delivery of Piroxicam: Insights from quantum chemical calculations. Journal of Molecular Liquids 2023, 383 , 122068. https://doi.org/10.1016/j.molliq.2023.122068
- Trevor David Rhone, Romakanta Bhattarai, Haralambos Gavras, Bethany Lusch, Misha Salim, Marios Mattheakis, Daniel T. Larson, Yoshiharu Krockenberger, Efthimios Kaxiras. Artificial Intelligence Guided Studies of van der Waals Magnets. Advanced Theory and Simulations 2023, 6
(6)
https://doi.org/10.1002/adts.202300019
- Zhihao Huang, Hanxige Chen, Songbo Ye, Guotan Liu, Han Chen, Yudong Fu, Yibo Sun, Mufu Yan. Discovery of novel low modulus Nb–Ti–Zr biomedical alloys via combined machine learning and first principles approach. Materials Chemistry and Physics 2023, 299 , 127537. https://doi.org/10.1016/j.matchemphys.2023.127537
- Hongwei Chen, Zi-Xiang Hu. Structure of the impurity band in heavily doped nonmagnetic semiconductors. Physical Review B 2023, 107
(13)
https://doi.org/10.1103/PhysRevB.107.134204
- Yongtao Liu, Anna N. Morozovska, Eugene A. Eliseev, Kyle P. Kelley, Rama Vasudevan, Maxim Ziatdinov, Sergei V. Kalinin. Autonomous scanning probe microscopy with hypothesis learning: Exploring the physics of domain switching in ferroelectric materials. Patterns 2023, 4
(3)
, 100704. https://doi.org/10.1016/j.patter.2023.100704
- Mukesh Singh, Alok Shukla, Brahmananda Chakraborty. Highly efficient hydrogen storage of a Sc decorated biphenylene monolayer near ambient temperature:
ab initio
simulations. Sustainable Energy & Fuels 2023, 7
(4)
, 996-1010. https://doi.org/10.1039/D2SE01351G
- Rui Ding, Yawen Chen, Zhiyan Rui, Kang Hua, Yongkang Wu, Xiaoke Li, Xiao Duan, Jia Li, Xuebin Wang, Jianguo Liu. Machine learning utilized for the development of proton exchange membrane electrolyzers. Journal of Power Sources 2023, 556 , 232389. https://doi.org/10.1016/j.jpowsour.2022.232389
- Haruki Hirai, Takumi Iizawa, Tomoyuki Tamura, Masayuki Karasuyama, Ryo Kobayashi, Takakazu Hirose. Machine-learning-based prediction of first-principles XANES spectra for amorphous materials. Physical Review Materials 2022, 6
(11)
https://doi.org/10.1103/PhysRevMaterials.6.115601
- Zhihao Huang, Yu-dong Fu, Guotan Liu, Han Chen, Kang Wang, Yibo Sun. Supplementary Data of ‘Discovering Novel Low Young's Modulus Nb–Ti–Zr Biomedical Alloys Via Combined Machine Learning and First Principles Approach’. SSRN Electronic Journal 2022, 54 https://doi.org/10.2139/ssrn.4200038
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.