ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Polymorph Engineering of TiO2: Demonstrating How Absolute Reference Potentials Are Determined by Local Coordination

View Author Information
Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
§ Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
Cite this: Chem. Mater. 2015, 27, 11, 3844–3851
Publication Date (Web):May 1, 2015
https://doi.org/10.1021/acs.chemmater.5b00230
Copyright © 2015 American Chemical Society

    Article Views

    2452

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    We report that the valence and conduction band energies of TiO2 can be tuned over a 4 eV range by varying the local coordination environments of Ti and O. We examine the electronic structure of eight known polymorphs and align their ionization potential and electron affinity relative to an absolute energy reference, using an accurate multiscale quantum-chemical approach. For applications in photocatalysis, we identify the optimal combination of phases to enhance activity in the visible spectrum. The results provide a coherent explanation for a wide range of phenomena, including the performance of TiO2 as an anode material for Li-ion batteries, allow us to pinpoint hollandite TiO2 as a new candidate transparent conducting oxide, and serve as a guide to improving the efficiency of photo-electrochemical water splitting through polymorph engineering of TiO2.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 112 publications.

    1. Ming-Yu Yang, Xin-Ping Wu. Level-Shifted Embedded Cluster Method for Modeling the Chemistry of Metal Oxides. Journal of Chemical Theory and Computation 2024, 20 (3) , 1386-1397. https://doi.org/10.1021/acs.jctc.3c01123
    2. Benjamin X. Shi, Andrea Zen, Venkat Kapil, Péter R. Nagy, Andreas Grüneis, Angelos Michaelides. Many-Body Methods for Surface Chemistry Come of Age: Achieving Consensus with Experiments. Journal of the American Chemical Society 2023, 145 (46) , 25372-25381. https://doi.org/10.1021/jacs.3c09616
    3. Yasuhide Mochizuki, Ha-Jun Sung, Tomoya Gake, Fumiyasu Oba. Chemical Trends of Surface Reconstruction and Band Positions of Nonmetallic Perovskite Oxides from First Principles. Chemistry of Materials 2023, 35 (5) , 2047-2057. https://doi.org/10.1021/acs.chemmater.2c03615
    4. Kaede Makiuchi, Fumio Kawamura, Junjun Jia, Yelim Song, Shunichiro Yata, Hitoshi Tampo, Hidenobu Murata, Naoomi Yamada. Pressure-Induced Transition from Wurtzite and Epitaxial Stabilization for Thin Films of Rocksalt MgSnN2. Chemistry of Materials 2023, 35 (5) , 2095-2106. https://doi.org/10.1021/acs.chemmater.2c03671
    5. Yong-Seok Choi, Sara I. R. Costa, Nuria Tapia-Ruiz, David O. Scanlon. Intrinsic Defects and Their Role in the Phase Transition of Na-Ion Anode Na2Ti3O7. ACS Applied Energy Materials 2023, 6 (1) , 484-495. https://doi.org/10.1021/acsaem.2c03466
    6. Leo Diehl, Douglas H. Fabini, Nella M. Vargas-Barbosa, Alberto Jiménez-Solano, Theresa Block, Viola Duppel, Igor Moudrakovski, Kathrin Küster, Rainer Pöttgen, Bettina V. Lotsch. Interplay between Valence Band Tuning and Redox Stability in SnTiO3: Implications for Directed Design of Photocatalysts. Chemistry of Materials 2021, 33 (8) , 2824-2836. https://doi.org/10.1021/acs.chemmater.0c04886
    7. Georg Schusteritsch, Ryo Ishikawa, Abdul Razak Elmaslmane, Kazutoshi Inoue, Keith P. McKenna, Yuichi Ikuhara, Chris J. Pickard. Anataselike Grain Boundary Structure in Rutile Titanium Dioxide. Nano Letters 2021, 21 (7) , 2745-2751. https://doi.org/10.1021/acs.nanolett.0c04564
    8. Vera Mansfeldova, Magda Zlamalova, Hana Tarabkova, Pavel Janda, Mykhailo Vorokhta, Lesia Piliai, Ladislav Kavan. Work Function of TiO2 (Anatase, Rutile, and Brookite) Single Crystals: Effects of the Environment. The Journal of Physical Chemistry C 2021, 125 (3) , 1902-1912. https://doi.org/10.1021/acs.jpcc.0c10519
    9. Yufeng Wang, Ken-ichi Saitow. Mechanochemical Synthesis of Red-Light-Active Green TiO2 Photocatalysts with Disorder: Defect-Rich, with Polymorphs, and No Metal Loading. Chemistry of Materials 2020, 32 (21) , 9190-9200. https://doi.org/10.1021/acs.chemmater.0c02676
    10. Meenakshisundaram Sankar, Qian He, Rebecca V. Engel, Mala A. Sainna, Andrew J. Logsdail, Alberto Roldan, David J. Willock, Nishtha Agarwal, Christopher J. Kiely, Graham J. Hutchings. Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. Chemical Reviews 2020, 120 (8) , 3890-3938. https://doi.org/10.1021/acs.chemrev.9b00662
    11. Abdullah M. Alotaibi, Benjamin A. D. Williamson, Sanjayan Sathasivam, Andreas Kafizas, Mahdi Alqahtani, Carlos Sotelo-Vazquez, John Buckeridge, Jiang Wu, Sean P. Nair, David O. Scanlon, Ivan P. Parkin. Enhanced Photocatalytic and Antibacterial Ability of Cu-Doped Anatase TiO2 Thin Films: Theory and Experiment. ACS Applied Materials & Interfaces 2020, 12 (13) , 15348-15361. https://doi.org/10.1021/acsami.9b22056
    12. Rashmi, Sri Sivakumar, Raj Ganesh S. Pala. Coherency and Lattice Misfit Strain Critically Constrains Electron–Hole Separation in Isomaterial and Heteromaterial Type-II Heterostructures. The Journal of Physical Chemistry C 2019, 123 (47) , 28620-28630. https://doi.org/10.1021/acs.jpcc.9b08451
    13. Benjamin A. D. Williamson, John Buckeridge, Nicholas P. Chadwick, Sanjayan Sathasivam, Claire J. Carmalt, Ivan P. Parkin, David O. Scanlon. Dispelling the Myth of Passivated Codoping in TiO2. Chemistry of Materials 2019, 31 (7) , 2577-2589. https://doi.org/10.1021/acs.chemmater.9b00257
    14. Andrew J. Logsdail, Christopher A. Downing, Thomas W. Keal, Paul Sherwood, Alexey A. Sokol, C. Richard A. Catlow. Hybrid-DFT Modeling of Lattice and Surface Vacancies in MnO. The Journal of Physical Chemistry C 2019, 123 (13) , 8133-8144. https://doi.org/10.1021/acs.jpcc.8b07846
    15. You Lu, Matthew R. Farrow, Pierre Fayon, Andrew J. Logsdail, Alexey A. Sokol, C. Richard A. Catlow, Paul Sherwood, Thomas W. Keal. Open-Source, Python-Based Redevelopment of the ChemShell Multiscale QM/MM Environment. Journal of Chemical Theory and Computation 2019, 15 (2) , 1317-1328. https://doi.org/10.1021/acs.jctc.8b01036
    16. A. R. Elmaslmane, M. B. Watkins, K. P. McKenna. First-Principles Modeling of Polaron Formation in TiO2 Polymorphs. Journal of Chemical Theory and Computation 2018, 14 (7) , 3740-3751. https://doi.org/10.1021/acs.jctc.8b00199
    17. Abdullah M. Alotaibi, Sanjayan Sathasivam, Benjamin A. D. Williamson, Andreas Kafizas, Carlos Sotelo-Vazquez, Alaric Taylor, David O. Scanlon, and Ivan P. Parkin . Chemical Vapor Deposition of Photocatalytically Active Pure Brookite TiO2 Thin Films. Chemistry of Materials 2018, 30 (4) , 1353-1361. https://doi.org/10.1021/acs.chemmater.7b04944
    18. Woosun Jang, Jongmin Yun, Taehun Lee, Yonghyuk Lee, and Aloysius Soon . Disentangling the Effects of Inter- and Intra-octahedral Distortions on the Electronic Structure in Binary Metal Trioxides. The Journal of Physical Chemistry C 2018, 122 (6) , 3558-3566. https://doi.org/10.1021/acs.jpcc.7b11295
    19. Miguel Quesada-Gonzalez, Benjamin A. D. Williamson, Carlos Sotelo-Vazquez, Andreas Kafizas, Nicolas D. Boscher, Raul Quesada-Cabrera, David O. Scanlon, Claire J. Carmalt, and Ivan P. Parkin . Deeper Understanding of Interstitial Boron-Doped Anatase Thin Films as A Multifunctional Layer Through Theory and Experiment. The Journal of Physical Chemistry C 2018, 122 (1) , 714-726. https://doi.org/10.1021/acs.jpcc.7b11142
    20. Daichi Kato, Kenta Hongo, Ryo Maezono, Masanobu Higashi, Hironobu Kunioku, Masayoshi Yabuuchi, Hajime Suzuki, Hiroyuki Okajima, Chengchao Zhong, Kousuke Nakano, Ryu Abe, and Hiroshi Kageyama . Valence Band Engineering of Layered Bismuth Oxyhalides toward Stable Visible-Light Water Splitting: Madelung Site Potential Analysis. Journal of the American Chemical Society 2017, 139 (51) , 18725-18731. https://doi.org/10.1021/jacs.7b11497
    21. Yusuke Chiba, Miwa Saito, Takeshi Hagiwara, Hiroshi Takatsu, Hiroshi Kageyama, and Teruki Motohashi . High-Temperature Electrochemical Crystal Growth of Hollandite-Type CsxTi8O16 with Controlled Electronic Properties. Crystal Growth & Design 2017, 17 (11) , 5691-5696. https://doi.org/10.1021/acs.cgd.7b00587
    22. Eero Holmström, Simiam Ghan, Hitoshi Asakawa, Yasuhiro Fujita, Takeshi Fukuma, Sunao Kamimura, Teruhisa Ohno, and Adam S. Foster . Hydration Structure of Brookite TiO2 (210). The Journal of Physical Chemistry C 2017, 121 (38) , 20790-20801. https://doi.org/10.1021/acs.jpcc.7b05524
    23. Ángel Morales-García, Rosendo Valero, and Francesc Illas . Performance of the G0W0 Method in Predicting the Electronic Gap of TiO2 Nanoparticles. Journal of Chemical Theory and Computation 2017, 13 (8) , 3746-3753. https://doi.org/10.1021/acs.jctc.7b00308
    24. Enrico Berardo, Ferdinand Kaplan, Kiran Bhaskaran-Nair, William A. Shelton, Michiel J. van Setten, Karol Kowalski, and Martijn A. Zwijnenburg . Benchmarking the Fundamental Electronic Properties of small TiO2 Nanoclusters by GW and Coupled Cluster Theory Calculations. Journal of Chemical Theory and Computation 2017, 13 (8) , 3814-3828. https://doi.org/10.1021/acs.jctc.7b00538
    25. Christopher N. Savory, Alex M. Ganose, and David O. Scanlon . Exploring the PbS–Bi2S3 Series for Next Generation Energy Conversion Materials. Chemistry of Materials 2017, 29 (12) , 5156-5167. https://doi.org/10.1021/acs.chemmater.7b00628
    26. Xuemei Zhou, Ning Liu, and Patrik Schmuki . Photocatalysis with TiO2 Nanotubes: “Colorful” Reactivity and Designing Site-Specific Photocatalytic Centers into TiO2 Nanotubes. ACS Catalysis 2017, 7 (5) , 3210-3235. https://doi.org/10.1021/acscatal.6b03709
    27. Oriol Lamiel-Garcia, Kyoung Chul Ko, Jin Yong Lee, Stefan T. Bromley, and Francesc Illas . When Anatase Nanoparticles Become Bulklike: Properties of Realistic TiO2 Nanoparticles in the 1–6 nm Size Range from All Electron Relativistic Density Functional Theory Based Calculations. Journal of Chemical Theory and Computation 2017, 13 (4) , 1785-1793. https://doi.org/10.1021/acs.jctc.7b00085
    28. Benjamin A. D. Williamson, John Buckeridge, Jennilee Brown, Simon Ansbro, Robert G. Palgrave, and David O. Scanlon . Engineering Valence Band Dispersion for High Mobility p-Type Semiconductors. Chemistry of Materials 2017, 29 (6) , 2402-2413. https://doi.org/10.1021/acs.chemmater.6b03306
    29. Pierre Guiglion, Adriano Monti, and Martijn A. Zwijnenburg . Validating a Density Functional Theory Approach for Predicting the Redox Potentials Associated with Charge Carriers and Excitons in Polymeric Photocatalysts. The Journal of Physical Chemistry C 2017, 121 (3) , 1498-1506. https://doi.org/10.1021/acs.jpcc.6b11133
    30. Andrew J. Martinolich and James R. Neilson . Toward Reaction-by-Design: Achieving Kinetic Control of Solid State Chemistry with Metathesis. Chemistry of Materials 2017, 29 (2) , 479-489. https://doi.org/10.1021/acs.chemmater.6b04861
    31. Volker L. Deringer and Gábor Csányi . Many-Body Dispersion Correction Effects on Bulk and Surface Properties of Rutile and Anatase TiO2. The Journal of Physical Chemistry C 2016, 120 (38) , 21552-21560. https://doi.org/10.1021/acs.jpcc.6b07141
    32. Daeheum Cho, Kyoung Chul Ko, Oriol Lamiel-García, Stefan T. Bromley, Jin Yong Lee, and Francesc Illas . Effect of Size and Structure on the Ground-State and Excited-State Electronic Structure of TiO2 Nanoparticles. Journal of Chemical Theory and Computation 2016, 12 (8) , 3751-3763. https://doi.org/10.1021/acs.jctc.6b00519
    33. Ibbi Y. Ahmet, Michael S. Hill, Andrew L. Johnson, and Laurence M. Peter . Polymorph-Selective Deposition of High Purity SnS Thin Films from a Single Source Precursor. Chemistry of Materials 2015, 27 (22) , 7680-7688. https://doi.org/10.1021/acs.chemmater.5b03220
    34. Sanliang Ling and Ben Slater . Unusually Large Band Gap Changes in Breathing Metal–Organic Framework Materials. The Journal of Physical Chemistry C 2015, 119 (29) , 16667-16677. https://doi.org/10.1021/acs.jpcc.5b04050
    35. Ladislav Kavan. Electrochemistry and band structure of semiconductors (TiO2, SnO2, ZnO): Avoiding pitfalls and textbook errors. Journal of Solid State Electrochemistry 2024, 28 (3-4) , 829-845. https://doi.org/10.1007/s10008-023-05770-w
    36. Miguel Recio-Poo, Ángel Morales-García, Francesc Illas, Stefan T. Bromley. Tuning electronic levels in photoactive hydroxylated titania nanosystems: combining the ligand dipole effect and quantum confinement. Nanoscale 2024, 29 https://doi.org/10.1039/D3NR06189B
    37. Cecilia I.N. Morgade, Ana B. Schvval, Griselda García, Gabriela F. Cabeza. Band edges positions prediction of the of Ag nanocluster-decorated titania surfaces and their relationship to NO and NO2 interaction from first-principles calculations. Journal of Molecular Graphics and Modelling 2023, 124 , 108531. https://doi.org/10.1016/j.jmgm.2023.108531
    38. Reza Behjatmanesh-Ardakani. Periodic hybrid-DFT study on the N-doped TiO2 (001) nanotubes as solar water splitting catalysts: A comparison with the rutile and anatase bulk phases. International Journal of Hydrogen Energy 2023, 48 (91) , 35584-35598. https://doi.org/10.1016/j.ijhydene.2023.05.352
    39. Xingfan Zhang, Taifeng Liu, Lei Zhu, Jingcheng Guan, You Lu, Thomas W. Keal, John Buckeridge, C. Richard A. Catlow, Alexey A. Sokol. Bulk and Surface Contributions to Ionisation Potentials of Metal Oxides. Angewandte Chemie 2023, 135 (40) https://doi.org/10.1002/ange.202308411
    40. Xingfan Zhang, Taifeng Liu, Lei Zhu, Jingcheng Guan, You Lu, Thomas W. Keal, John Buckeridge, C. Richard A. Catlow, Alexey A. Sokol. Bulk and Surface Contributions to Ionisation Potentials of Metal Oxides. Angewandte Chemie International Edition 2023, 62 (40) https://doi.org/10.1002/anie.202308411
    41. Md. Torikul Islam, Md. Nahid Parvez Roni, Md. Yunus Ali, Md. Robiul Islam, Md. Shamim Hossan, M. Habibur Rahman, A. A. S. Mostofa Zahid, Md. Nur E Alam, Md. Abu Hanif, M. Shaheer Akhtar. Selectivity of Sol-Gel and Hydrothermal TiO2 Nanoparticles towards Photocatalytic Degradation of Cationic and Anionic Dyes. Molecules 2023, 28 (19) , 6834. https://doi.org/10.3390/molecules28196834
    42. Takuya Nishio, Hidenobu Murata, Yasuaki Tokudome, Atsushi Nakahira. Synthesis and characterization of Ti1−2x(FeNb)xO2 solid solutions for visible-light-active photocatalyst. Journal of the Ceramic Society of Japan 2023, 131 (10) , 712-716. https://doi.org/10.2109/jcersj2.23013
    43. Solmaz Feizpoor, Shima Rahim Pouran, Aziz Habibi-Yangjeh. Recent progress on photocatalytic evolution of hydrogen gas over TiO2-x-based emerging nanostructures. Materials Science in Semiconductor Processing 2023, 162 , 107444. https://doi.org/10.1016/j.mssp.2023.107444
    44. Ioan-Alexandru Baragau, John Buckeridge, Kiem G. Nguyen, Tobias Heil, Muhammad Tariq Sajjad, Stuart A. J. Thomson, Alistair Rennie, David J. Morgan, Nicholas P. Power, Sabina Alexandra Nicolae, Maria-Magdalena Titirici, Steve Dunn, Suela Kellici. Outstanding visible light photocatalysis using nano-TiO 2 hybrids with nitrogen-doped carbon quantum dots and/or reduced graphene oxide. Journal of Materials Chemistry A 2023, 11 (18) , 9791-9806. https://doi.org/10.1039/D2TA09586F
    45. Paulina Rudzińska, Jakub Wawrzyniak, Katarzyna Grochowska, Jakub Karczewski, Jacek Ryl, Katarzyna Siuzdak. Enhancing photoelectrochemical properties of titania nanotubes via rapid thermal annealing in hydrogen atmosphere. Materials Science and Engineering: B 2023, 290 , 116324. https://doi.org/10.1016/j.mseb.2023.116324
    46. Nicola Blangetti, Francesca S. Freyria, Maria Chiara Calviello, Nicoletta Ditaranto, Salvatore Guastella, Barbara Bonelli. Photocatalytic Degradation of Paracetamol under Simulated Sunlight by Four TiO2 Commercial Powders: An Insight into the Performance of Two Sub-Micrometric Anatase and Rutile Powders and a Nanometric Brookite Powder. Catalysts 2023, 13 (2) , 434. https://doi.org/10.3390/catal13020434
    47. Andreas Herklotz, Frank Herklotz, Florina Stefania Rus. Phase-Pure Epitaxial b-Axis-Oriented Bronze TiO2 Films. Applied Sciences 2023, 13 (1) , 209. https://doi.org/10.3390/app13010209
    48. Chaiyawat Kaewmeechai, Yongyut Laosiritaworn, Atchara Punya Jaroenjittichai. Band alignment of Cs2BX6 double halide perovskites and TiO2 using electron affinity rule. Results in Physics 2022, 42 , 106015. https://doi.org/10.1016/j.rinp.2022.106015
    49. Massomeh Ghorbanloo, Amr A. Nada, Heba H. El-Maghrabi, Maged F. Bekheet, Wiebke Riedel, Bezzerga Djamel, Roman Viter, Stéphanie Roualdes, Fathi S. Soliman, Yasser M. Moustafa, Philippe Miele, Mikhael Bechelany. Superior efficiency of BN/Ce2O3/TiO2 nanofibers for photocatalytic hydrogen generation reactions. Applied Surface Science 2022, 594 , 153438. https://doi.org/10.1016/j.apsusc.2022.153438
    50. Stephanie F. Linnell, Eun Jeong Kim, Yong-Seok Choi, Moritz Hirsbrunner, Saki Imada, Atin Pramanik, Aida Fuente Cuesta, David N. Miller, Edoardo Fusco, Bela E. Bode, John T. S. Irvine, Laurent C. Duda, David O. Scanlon, A. Robert Armstrong. Enhanced oxygen redox reversibility and capacity retention of titanium-substituted Na 4/7 [□ 1/7 Ti 1/7 Mn 5/7 ]O 2 in sodium-ion batteries. Journal of Materials Chemistry A 2022, 10 (18) , 9941-9953. https://doi.org/10.1039/D2TA01485H
    51. M. Szkoda, Z. Zarach, M. Nadolska, G. Trykowski, K. Trzciński. SnO2 nanoparticles embedded onto MoS2 nanoflakes - An efficient catalyst for photodegradation of methylene blue and photoreduction of hexavalent chromium. Electrochimica Acta 2022, 414 , 140173. https://doi.org/10.1016/j.electacta.2022.140173
    52. Siripond Phromma, Tuksadon Wutikhun, Panita Kasamechonchung, Suchinda Sattayaporn, Tippabust Eksangsri, Chaweewan Sapcharoenkun. Effects of Ag modified TiO2 on local structure investigated by XAFS and photocatalytic activity under visible light. Materials Research Bulletin 2022, 148 , 111668. https://doi.org/10.1016/j.materresbull.2021.111668
    53. Cindy Soares, Begoña Silván, Yong-Seok Choi, Veronica Celorrio, Valerie R. Seymour, Giannantonio Cibin, John M. Griffin, David O. Scanlon, Nuria Tapia-Ruiz. Na 2.4 Al 0.4 Mn 2.6 O 7 anionic redox cathode material for sodium-ion batteries – a combined experimental and theoretical approach to elucidate its charge storage mechanism. Journal of Materials Chemistry A 2022, 10 (13) , 7341-7356. https://doi.org/10.1039/D1TA05137G
    54. Benjamin X. Shi, Venkat Kapil, Andrea Zen, Ji Chen, Ali Alavi, Angelos Michaelides. General embedded cluster protocol for accurate modeling of oxygen vacancies in metal-oxides. The Journal of Chemical Physics 2022, 156 (12) https://doi.org/10.1063/5.0087031
    55. Maela Manzoli, Francesca S. Freyria, Nicola Blangetti, Barbara Bonelli. Brookite, a sometimes under evaluated TiO 2 polymorph. RSC Advances 2022, 12 (6) , 3322-3334. https://doi.org/10.1039/D1RA09057G
    56. Chaiyawat Kaewmeechai, Yongyut Laosiritaworn, Atchara Punya Jaroenjittichai. Band Alignment of Cs2bx6 Double Halide Perovskites and Tio2 Using Electron Affinity Rule. SSRN Electronic Journal 2022, 10 https://doi.org/10.2139/ssrn.4129111
    57. Kiran P. Shejale, R. Krishnapriya, Harshala Patil, Devika Laishram, Pratyush Rawal, Rakesh K. Sharma. Recent advances in ultra-low temperature (sub-zero to 100 °C) synthesis, mechanism and applications of titania (TiO 2 ) nanoparticles. Materials Advances 2021, 2 (23) , 7502-7529. https://doi.org/10.1039/D1MA00942G
    58. Stephen Abela, Clayton Farrugia, Ryan Xuereb, Frederick Lia, Edwin Zammit, Alex Rizzo, Paul Refalo, Maurice Grech. Photocatalytic Activity of Titanium Dioxide Nanotubes Following Long-Term Aging. Nanomaterials 2021, 11 (11) , 2823. https://doi.org/10.3390/nano11112823
    59. Vasu Prasad Prasadam, Ali Margot Huerta Flores, Naoufal Bahlawane. CNT–TiO 2 core–shell structure: synthesis and photoelectrochemical characterization. RSC Advances 2021, 11 (52) , 33169-33178. https://doi.org/10.1039/D1RA05723E
    60. Clayton Farrugia, Alessandro Di Mauro, Frederick Lia, Edwin Zammit, Alex Rizzo, Vittorio Privitera, Giuliana Impellizzeri, Maria Antonietta Buccheri, Giancarlo Rappazzo, Maurice Grech, Paul Refalo, Stephen Abela. Suitability of Different Titanium Dioxide Nanotube Morphologies for Photocatalytic Water Treatment. Nanomaterials 2021, 11 (3) , 708. https://doi.org/10.3390/nano11030708
    61. Neerja Dharmale, Saurabh Chaudhury, Debashish Dash. Investigating the naturally occurring forms of TiO 2 on electronic and optical properties using OLCAO-MGGA-TBO9: a hybrid DFT study. Modelling and Simulation in Materials Science and Engineering 2021, 29 (2) , 025001. https://doi.org/10.1088/1361-651X/abb6de
    62. Sara I. R. Costa, Yong‐Seok Choi, Alistair J. Fielding, Andrew J. Naylor, John M. Griffin, Zdeněk Sofer, David O. Scanlon, Nuria Tapia‐Ruiz. Surface Engineering Strategy Using Urea To Improve the Rate Performance of Na 2 Ti 3 O 7 in Na‐Ion Batteries. Chemistry – A European Journal 2021, 27 (11) , 3875-3886. https://doi.org/10.1002/chem.202003129
    63. Khuzaimah Arifin, Rozan Mohamad Yunus, Lorna Jeffery Minggu, Mohammad B. Kassim. Improvement of TiO2 nanotubes for photoelectrochemical water splitting: Review. International Journal of Hydrogen Energy 2021, 46 (7) , 4998-5024. https://doi.org/10.1016/j.ijhydene.2020.11.063
    64. P. Mikrut, M. Kobielusz, P. Indyka, W. Macyk. Photocatalytic activity of TiO2 polymorph B revisited: physical, redox, spectroscopic, and photochemical properties of TiO2(B)/anatase series of titanium dioxide materials. Materials Today Sustainability 2020, 10 , 100052. https://doi.org/10.1016/j.mtsust.2020.100052
    65. Yuko Matsukawa, Shingo Hirata, Miki Inada, Naoya Enomoto, Junichi Hojo, Katsuro Hayashi. Kinetic effects of polymorphs and surface areas on adsorption and photocatalytic decomposition of acetaldehyde on titania. Chemical Engineering Journal 2020, 397 , 125422. https://doi.org/10.1016/j.cej.2020.125422
    66. D.M. Tobaldi, L. Lajaunie, D. Dvoranová, V. Brezová, B. Figueiredo, M.P. Seabra, J.J. Calvino, J.A. Labrincha. Cooperative and fully reversible color switching activation in hybrid graphene decorated nanocages and copper-TiO2 nanoparticles. Materials Today Energy 2020, 17 , 100460. https://doi.org/10.1016/j.mtener.2020.100460
    67. Daniel W Davies, Benjamin J Morgan, David O Scanlon, Aron Walsh. Low-cost descriptors of electrostatic and electronic contributions to anion redox activity in batteries. IOP SciNotes 2020, 1 (2) , 024805. https://doi.org/10.1088/2633-1357/ab9750
    68. Francesca S. Freyria, Nicola Blangetti, Serena Esposito, Roberto Nasi, Marco Armandi, Vincenzo Annelio, Barbara Bonelli. Effects of the Brookite Phase on the Properties of Different Nanostructured TiO 2 Phases Photocatalytically Active Towards the Degradation of N‐Phenylurea. ChemistryOpen 2020, 9 (9) , 903-912. https://doi.org/10.1002/open.202000127
    69. B. Xia, J. Cheng, M. Arengo, N. Rajput, Y. Janssen, J. R. Neilson, K. A. Persson, J. W. Simonson. Trigonal polymorph of Li 2 Mn O 3 . Physical Review Materials 2020, 4 (8) https://doi.org/10.1103/PhysRevMaterials.4.085401
    70. Neerja Dharmale, S. Chaudhury, Chandan K Pandey, Rupesh Mahamune. Determination of Structural, Electronic, Optical and Mechanical Properties of Brookite TiO 2 Using Various Exchange-Correlation. 2020, 164-170. https://doi.org/10.1109/VLSIDCS47293.2020.9179928
    71. Vincenzo Esposito, Ivano E. Castelli. Metastability at Defective Metal Oxide Interfaces and Nanoconfined Structures. Advanced Materials Interfaces 2020, 7 (13) https://doi.org/10.1002/admi.201902090
    72. Eric. W. Burns, Daniele Pergolesi, Thomas J. Schmidt, Thomas Lippert, Venkateswarlu Daramalla. Systematic Material Study Reveals TiNb 2 O 7 as a Model Wide‐Bandgap Photoanode Material for Solar Water Splitting. Chemistry – A European Journal 2020, 26 (31) , 7065-7073. https://doi.org/10.1002/chem.201905444
    73. Ana B. Schvval, M. Julia Jiménez, Silvia Fuente, Gabriela F. Cabeza, Cecilia I. N. Morgade. Theoretical study of the modification of the oxide-reducing capacity of titania from selected dopant elements. Journal of Computational Electronics 2020, 19 (2) , 493-506. https://doi.org/10.1007/s10825-020-01454-0
    74. Siripond Phromma, Tuksadon Wutikhun, Panita Kasamechonchung, Tippabust Eksangsri, Chaweewan Sapcharoenkun. Effect of Calcination Temperature on Photocatalytic Activity of Synthesized TiO2 Nanoparticles via Wet Ball Milling Sol-Gel Method. Applied Sciences 2020, 10 (3) , 993. https://doi.org/10.3390/app10030993
    75. Yuki Sasahara, Koki Kanatani, Hiroaki Asoma, Masayuki Matsuhisa, Kazunori Nishio, Ryota Shimizu, Norimasa Nishiyama, Taro Hitosugi. Ultrahigh-pressure fabrication of single-phase α-PbO2-type TiO2 epitaxial thin films. AIP Advances 2020, 10 (2) https://doi.org/10.1063/1.5129422
    76. D.M. Tobaldi, L. Lajaunie, N. Rozman, A.P.F. Caetano, M.P. Seabra, A. Sever Škapin, R. Arenal, J.A. Labrincha. Impact of the absolute rutile fraction on TiO2 visible-light absorption and visible-light-promoted photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry 2019, 382 , 111940. https://doi.org/10.1016/j.jphotochem.2019.111940
    77. Daichi Kato, Ryu Abe, Hiroshi Kageyama. Extended layer-by-layer Madelung potential analysis of layered oxyhalide photocatalysts and other layered systems. Journal of Materials Chemistry A 2019, 7 (34) , 19846-19851. https://doi.org/10.1039/C9TA05201A
    78. Zijuan Xie, Yu Sui, John Buckeridge, C Richard A Catlow, Thomas W Keal, Paul Sherwood, Aron Walsh, Matthew R Farrow, David O Scanlon, Scott M Woodley, Alexey A Sokol. Donor and acceptor characteristics of native point defects in GaN. Journal of Physics D: Applied Physics 2019, 52 (33) , 335104. https://doi.org/10.1088/1361-6463/ab2033
    79. Abulkosim Nasriddinov, Marina Rumyantseva, Artem Marikutsa, Alexander Gaskov, Jae-Hyoung Lee, Jae-Hun Kim, Jin-Young Kim, Sang Sub Kim, Hyoun Woo Kim. Sub-ppm Formaldehyde Detection by n-n TiO2@SnO2 Nanocomposites. Sensors 2019, 19 (14) , 3182. https://doi.org/10.3390/s19143182
    80. Yusuke Chiba, Daisuke Koizumi, Miwa Saito, Teruki Motohashi. Structural design of alkali-metal titanates: electrochemical growth of K x Ti 8 O 16 , Na 2+x Ti 6 O 13 , and Li 2+x Ti 3 O 7 single crystals with one-dimensional tunnel structures. CrystEngComm 2019, 21 (20) , 3223-3231. https://doi.org/10.1039/C9CE00362B
    81. Ladislav Kavan. Conduction band engineering in semiconducting oxides (TiO2, SnO2): Applications in perovskite photovoltaics and beyond. Catalysis Today 2019, 328 , 50-56. https://doi.org/10.1016/j.cattod.2018.10.065
    82. Xiaoguang Liang, Ruoting Dong, Johnny C. Ho. Self‐Assembly of Colloidal Spheres toward Fabrication of Hierarchical and Periodic Nanostructures for Technological Applications. Advanced Materials Technologies 2019, 4 (3) https://doi.org/10.1002/admt.201800541
    83. Ken-ichi Saitow, Yufeng Wang, Shintaro Takahashi. Mechano-synthesized orange TiO2 shows significant photocatalysis under visible light. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-33772-6
    84. Keith T. Butler, Daniel W. Davies, Aron Walsh. Computational Design of Photovoltaic Materials. 2018, 176-197. https://doi.org/10.1039/9781788010122-00176
    85. Ji Sang Park, Sunghyun Kim, Zijuan Xie, Aron Walsh. Point defect engineering in thin-film solar cells. Nature Reviews Materials 2018, 3 (7) , 194-210. https://doi.org/10.1038/s41578-018-0026-7
    86. J. Buckeridge, C. R. A. Catlow, M. R. Farrow, A. J. Logsdail, D. O. Scanlon, T. W. Keal, P. Sherwood, S. M. Woodley, A. A. Sokol, A. Walsh. Deep vs shallow nature of oxygen vacancies and consequent n -type carrier concentrations in transparent conducting oxides. Physical Review Materials 2018, 2 (5) https://doi.org/10.1103/PhysRevMaterials.2.054604
    87. Kamila Kočí, Ivana Troppová, Martin Reli, Lenka Matějová, Miroslava Edelmannová, Helena Drobná, Lada Dubnová, Anna Rokicińska, Piotr Kuśtrowski, Libor Čapek. Nd/TiO2 Anatase-Brookite Photocatalysts for Photocatalytic Decomposition of Methanol. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00044
    88. James E. S. Haggerty, Laura T. Schelhas, Daniil A. Kitchaev, John S. Mangum, Lauren M. Garten, Wenhao Sun, Kevin H. Stone, John D. Perkins, Michael F. Toney, Gerbrand Ceder, David S. Ginley, Brian P. Gorman, Janet Tate. High-fraction brookite films from amorphous precursors. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-15364-y
    89. Matteo Monai, Tiziano Montini, Paolo Fornasiero. Brookite: Nothing New under the Sun?. Catalysts 2017, 7 (10) , 304. https://doi.org/10.3390/catal7100304
    90. C. Richard A. Catlow, John Buckeridge, Matthew R. Farrow, Andrew J. Logsdail, Alexey A. Sokol. Quantum Mechanical/Molecular Mechanical ( QM / MM ) Approaches. 2017, 647-680. https://doi.org/10.1002/9783527691036.hsscvol5012
    91. Carlos Sotelo‐Vazquez, Raul Quesada‐Cabrera, Min Ling, David O. Scanlon, Andreas Kafizas, Pardeep Kumar Thakur, Tien‐Lin Lee, Alaric Taylor, Graeme W. Watson, Robert G. Palgrave, James R. Durrant, Christopher S. Blackman, Ivan P. Parkin. Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO 3 /TiO 2 Heterojunction Films: A Computational and Experimental Study. Advanced Functional Materials 2017, 27 (18) https://doi.org/10.1002/adfm.201605413
    92. Matthew R. Farrow, John Buckeridge, Tomas Lazauskas, David Mora-Fonz, David O. Scanlon, C. Richard A. Catlow, Scott M. Woodley, Alexey A. Sokol. Heterostructures of GaN with SiC and ZnO enhance carrier stability and separation in framework semiconductors. physica status solidi (a) 2017, 214 (4) , 1600440. https://doi.org/10.1002/pssa.201600440
    93. Zijuan Xie, Yu Sui, John Buckeridge, C. Richard A. Catlow, Thomas W. Keal, Paul Sherwood, Aron Walsh, David O. Scanlon, Scott M. Woodley, Alexey A. Sokol. Demonstration of the donor characteristics of Si and O defects in GaN using hybrid QM/MM. physica status solidi (a) 2017, 214 (4) , 1600445. https://doi.org/10.1002/pssa.201600445
    94. Lars Blumenthal, Juhan Matthias Kahk, Ravishankar Sundararaman, Paul Tangney, Johannes Lischner. Energy level alignment at semiconductor–water interfaces from atomistic and continuum solvation models. RSC Advances 2017, 7 (69) , 43660-43670. https://doi.org/10.1039/C7RA08357B
    95. Jessica K. Bristow, Keith T. Butler, Katrine L. Svane, Julian D. Gale, Aron Walsh. Chemical bonding at the metal–organic framework/metal oxide interface: simulated epitaxial growth of MOF-5 on rutile TiO 2. Journal of Materials Chemistry A 2017, 5 (13) , 6226-6232. https://doi.org/10.1039/C7TA00356K
    96. Sebastian C. Dixon, Sanjayan Sathasivam, Benjamin A. D. Williamson, David O. Scanlon, Claire J. Carmalt, Ivan P. Parkin. Transparent conducting n-type ZnO:Sc – synthesis, optoelectronic properties and theoretical insight. Journal of Materials Chemistry C 2017, 5 (30) , 7585-7597. https://doi.org/10.1039/C7TC02389H
    97. Peter Deák, Jolla Kullgren, Bálint Aradi, Thomas Frauenheim, Ladislaw Kavan. Water splitting and the band edge positions of TiO2. Electrochimica Acta 2016, 199 , 27-34. https://doi.org/10.1016/j.electacta.2016.03.122
    98. Yun Wang, Jie Zhao, Tianfu Wang, Yingxuan Li, Xiyou Li, Jiao Yin, Chuanyi Wang. CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: Surface species and their reactivity. Journal of Catalysis 2016, 337 , 293-302. https://doi.org/10.1016/j.jcat.2015.12.030
    99. J. Buckeridge, D. Jevdokimovs, C. R. A. Catlow, A. A. Sokol. Bulk electronic, elastic, structural, and dielectric properties of the Weyl semimetal TaAs. Physical Review B 2016, 93 (12) https://doi.org/10.1103/PhysRevB.93.125205
    100. Wenhui Wang, Jingya Dong, Xiaozhou Ye, Yang Li, Yurong Ma, Limin Qi. Heterostructured TiO 2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting. Small 2016, 12 (11) , 1469-1478. https://doi.org/10.1002/smll.201503553
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect