ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Direct Bandgap Group IV Epitaxy on Si for Laser Applications

View Author Information
Peter Grünberg Institute 9 (PGI-9) and JARA-Fundamentals of Future Information Technologies (JARA-FIT), Forschungszentrum Juelich, 52425 Juelich, Germany
Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
§ CEA, LETI, MINATEC Campus, F-38054, Grenoble, France
University of Grenoble Alpes, F-38000 Grenoble, France
National Institute of Material Physics, 077125 Magurele, Romania
*(N.v.d.D.) E-mail: [email protected]
*(D.B.) E-mail: [email protected]
Cite this: Chem. Mater. 2015, 27, 13, 4693–4702
Publication Date (Web):June 19, 2015
https://doi.org/10.1021/acs.chemmater.5b01327
Copyright © 2015 American Chemical Society

    Article Views

    1763

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (7 MB)

    Abstract

    Abstract Image

    The recent observation of a fundamental direct bandgap for GeSn group IV alloys and the demonstration of low temperature lasing provide new perspectives on the fabrication of Si photonic circuits. This work addresses the progress in GeSn alloy epitaxy aiming at room temperature GeSn lasing. Chemical vapor deposition of direct bandgap GeSn alloys with a high Γ- to L-valley energy separation and large thicknesses for efficient optical mode confinement is presented and discussed. Up to 1 μm thick GeSn layers with Sn contents up to 14 at. % were grown on thick relaxed Ge buffers, using Ge2H6 and SnCl4 precursors. Strong strain relaxation (up to 81%) at 12.5 at. % Sn concentration, translating into an increased separation between Γ- and L-valleys of about 60 meV, have been obtained without crystalline structure degradation, as revealed by Rutherford backscattering spectroscopy/ion channeling and transmission electron microscopy. Room temperature reflectance and photoluminescence measurements were performed to probe the optical properties of these alloys. The emission/absorption limit of GeSn alloys can be extended up to 3.5 μm (0.35 eV), making those alloys ideal candidates for optoelectronics in the mid-infrared region. Theoretical net gain calculations indicate that large room temperature laser gains should be reachable even without additional doping.

    Cited By

    This article is cited by 113 publications.

    1. Omar Concepción, Nicolaj B. Søgaard, Jin-Hee Bae, Yuji Yamamoto, Andreas T. Tiedemann, Zoran Ikonic, Giovanni Capellini, Qing-Tai Zhao, Detlev Grützmacher, Dan Buca. Isothermal Heteroepitaxy of Ge1–xSnx Structures for Electronic and Photonic Applications. ACS Applied Electronic Materials 2023, 5 (4) , 2268-2275. https://doi.org/10.1021/acsaelm.3c00112
    2. Mantu K. Hudait, Felipe Murphy-Armando, Dzianis Saladukha, Michael B. Clavel, Patrick S. Goley, Deepam Maurya, Shuvodip Bhattacharya, Tomasz J. Ochalski. Design, Theoretical, and Experimental Investigation of Tensile-Strained Germanium Quantum-Well Laser Structure. ACS Applied Electronic Materials 2021, 3 (10) , 4535-4547. https://doi.org/10.1021/acsaelm.1c00660
    3. Davide Spirito, Nils von den Driesch, Costanza Lucia Manganelli, Marvin Hartwig Zoellner, Agnieszka Anna Corley-Wiciak, Zoran Ikonic, Toma Stoica, Detlev Grützmacher, Dan Buca, Giovanni Capellini. Thermoelectric Efficiency of Epitaxial GeSn Alloys for Integrated Si-Based Applications: Assessing the Lattice Thermal Conductivity by Raman Thermometry. ACS Applied Energy Materials 2021, 4 (7) , 7385-7392. https://doi.org/10.1021/acsaem.1c01576
    4. Enrico Talamas Simola, Vivien Kiyek, Andrea Ballabio, Viktoria Schlykow, Jacopo Frigerio, Carlo Zucchetti, Andrea De Iacovo, Lorenzo Colace, Yuji Yamamoto, Giovanni Capellini, Detlev Grützmacher, Dan Buca, Giovanni Isella. CMOS-Compatible Bias-Tunable Dual-Band Detector Based on GeSn/Ge/Si Coupled Photodiodes. ACS Photonics 2021, 8 (7) , 2166-2173. https://doi.org/10.1021/acsphotonics.1c00617
    5. Léonor Groell, Anis Attiaoui, Simone Assali, Oussama Moutanabbir. Combined Iodine- and Sulfur-Based Treatments for an Effective Passivation of GeSn Surface. The Journal of Physical Chemistry C 2021, 125 (17) , 9516-9525. https://doi.org/10.1021/acs.jpcc.1c01902
    6. Shaoteng Wu, Lin Zhang, Bongkwon Son, Qimiao Chen, Hao Zhou, Chuan Seng Tan. Insights into the Origins of Guided Microtrenches and Microholes/rings from Sn Segregation in Germanium–Tin Epilayers. The Journal of Physical Chemistry C 2020, 124 (37) , 20035-20045. https://doi.org/10.1021/acs.jpcc.0c03820
    7. Diego de Matteis, Marta De Luca, Elham M. T. Fadaly, Marcel A. Verheijen, Miquel López-Suárez, Riccardo Rurali, Erik P. A. M. Bakkers, Ilaria Zardo. Probing Lattice Dynamics and Electronic Resonances in Hexagonal Ge and SixGe1–x Alloys in Nanowires by Raman Spectroscopy. ACS Nano 2020, 14 (6) , 6845-6856. https://doi.org/10.1021/acsnano.0c00762
    8. Sven Barth, Michael S. Seifner, Stephen Maldonado. Metastable Group IV Allotropes and Solid Solutions: Nanoparticles and Nanowires. Chemistry of Materials 2020, 32 (7) , 2703-2741. https://doi.org/10.1021/acs.chemmater.9b04471
    9. Simone Assali, Roberto Bergamaschini, Emilio Scalise, Marcel A. Verheijen, Marco Albani, Alain Dijkstra, Ang Li, Sebastian Koelling, Erik P. A. M. Bakkers, Francesco Montalenti, Leo Miglio. Kinetic Control of Morphology and Composition in Ge/GeSn Core/Shell Nanowires. ACS Nano 2020, 14 (2) , 2445-2455. https://doi.org/10.1021/acsnano.9b09929
    10. Bo-Jun Huang, Chen-Yang Chang, Yun-Da Hsieh, Richard A. Soref, Greg Sun, Hung-Hsiang Cheng, Guo-En Chang. Electrically Injected GeSn Vertical-Cavity Surface Emitters on Silicon-on-Insulator Platforms. ACS Photonics 2019, 6 (8) , 1931-1938. https://doi.org/10.1021/acsphotonics.8b01678
    11. Michael S. Seifner, Alain Dijkstra, Johannes Bernardi, Andreas Steiger-Thirsfeld, Masiar Sistani, Alois Lugstein, Jos E. M. Haverkort, Sven Barth. Epitaxial Ge0.81Sn0.19 Nanowires for Nanoscale Mid-Infrared Emitters. ACS Nano 2019, 13 (7) , 8047-8054. https://doi.org/10.1021/acsnano.9b02843
    12. Daniela Stange, Nils von den Driesch, Thomas Zabel, Francesco Armand-Pilon, Denis Rainko, Bahareh Marzban, Peter Zaumseil, Jean-Michel Hartmann, Zoran Ikonic, Giovanni Capellini, Siegfried Mantl, Hans Sigg, Jeremy Witzens, Detlev Grützmacher, Dan Buca. GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers. ACS Photonics 2018, 5 (11) , 4628-4636. https://doi.org/10.1021/acsphotonics.8b01116
    13. Saurabh Acharya, Luyao Ma, Stephen Maldonado. Critical Factors in the Growth of Hyperdoped Germanium Microwires by Electrochemical Liquid–Liquid–Solid Method. ACS Applied Nano Materials 2018, 1 (10) , 5553-5561. https://doi.org/10.1021/acsanm.8b01068
    14. Stephan Wirths, Benedikt F. Mayer, Heinz Schmid, Marilyne Sousa, Johannes Gooth, Heike Riel, Kirsten E. Moselund. Room-Temperature Lasing from Monolithically Integrated GaAs Microdisks on Silicon. ACS Nano 2018, 12 (3) , 2169-2175. https://doi.org/10.1021/acsnano.7b07911
    15. Michael S. Seifner, Sergi Hernandez, Johannes Bernardi, Albert Romano-Rodriguez, and Sven Barth . Pushing the Composition Limit of Anisotropic Ge1–xSnx Nanostructures and Determination of Their Thermal Stability. Chemistry of Materials 2017, 29 (22) , 9802-9813. https://doi.org/10.1021/acs.chemmater.7b03969
    16. C. Schulte-Braucks, K. Narimani, S. Glass, N. von den Driesch, J. M. Hartmann, Z. Ikonic, V. V. Afanas’ev, Q. T. Zhao, S. Mantl, and D. Buca . Correlation of Bandgap Reduction with Inversion Response in (Si)GeSn/High-k/Metal Stacks. ACS Applied Materials & Interfaces 2017, 9 (10) , 9102-9109. https://doi.org/10.1021/acsami.6b15279
    17. S. Assali, A. Dijkstra, A. Li, S. Koelling, M. A. Verheijen, L. Gagliano, N. von den Driesch, D. Buca, P. M. Koenraad, J. E. M. Haverkort, and E. P. A. M. Bakkers . Growth and Optical Properties of Direct Band Gap Ge/Ge0.87Sn0.13 Core/Shell Nanowire Arrays. Nano Letters 2017, 17 (3) , 1538-1544. https://doi.org/10.1021/acs.nanolett.6b04627
    18. Elisabeth Pratidhina, Sunghyun Kim, and K. J. Chang . Design of Dipole-Allowed Direct Band Gaps in Ge/Sn Core–Shell Nanowires. The Journal of Physical Chemistry C 2016, 120 (49) , 28169-28175. https://doi.org/10.1021/acs.jpcc.6b08779
    19. Jihai Zhang, Tao Zhou, Liang Wen, and Aiming Zhang . Fabricating Metallic Circuit Patterns on Polymer Substrates through Laser and Selective Metallization. ACS Applied Materials & Interfaces 2016, 8 (49) , 33999-34007. https://doi.org/10.1021/acsami.6b11305
    20. Daniela Stange , Stephan Wirths , Richard Geiger , Christian Schulte-Braucks , Bahareh Marzban , Nils von den Driesch , Gregor Mussler , Thomas Zabel , Toma Stoica , Jean-Michel Hartmann , Siegfried Mantl , Zoran Ikonic , Detlev Grützmacher , Hans Sigg , Jeremy Witzens , and Dan Buca . Optically Pumped GeSn Microdisk Lasers on Si. ACS Photonics 2016, 3 (7) , 1279-1285. https://doi.org/10.1021/acsphotonics.6b00258
    21. C. Schulte-Braucks, N. von den Driesch, S. Glass, A. T. Tiedemann, U. Breuer, A. Besmehn, J.-M. Hartmann, Z. Ikonic, Q. T. Zhao, S. Mantl, and D. Buca . Low Temperature Deposition of High-k/Metal Gate Stacks on High-Sn Content (Si)GeSn-Alloys. ACS Applied Materials & Interfaces 2016, 8 (20) , 13133-13139. https://doi.org/10.1021/acsami.6b02425
    22. D. Stange, S. Wirths, N. von den Driesch, G. Mussler, T. Stoica, Z. Ikonic, J. M. Hartmann, S. Mantl, D. Grützmacher, and D. Buca . Optical Transitions in Direct-Bandgap Ge1–xSnx Alloys. ACS Photonics 2015, 2 (11) , 1539-1545. https://doi.org/10.1021/acsphotonics.5b00372
    23. Sengunthar Karthikeyan, Rutwik Joshi, Jing Zhao, Robert J. Bodnar, Brenden A. Magill, Yannick Pleimling, Giti A. Khodaparast, Mantu K. Hudait. Lattice matched GeSn/InAlAs heterostructure: role of Sn in energy band alignment, atomic layer diffusion and photoluminescence. Journal of Materials Chemistry C 2023, 11 (28) , 9472-9485. https://doi.org/10.1039/D3TC01018J
    24. Guangyang Lin, Kun Qian, Haokun Ding, Jinhui Qian, Jianfang Xu, Jianyuan Wang, Shaoying Ke, Wei Huang, Songyan Chen, Cheng Li. Effective strain relaxation of GeSn single crystal with Sn content of 16.5% on Ge grown by high-temperature sputtering. Applied Surface Science 2023, 623 , 157086. https://doi.org/10.1016/j.apsusc.2023.157086
    25. guangyang Lin, Jinhui Qian, Haokun Ding, Songsong Wu, Cheng Li, Jianyuan Wang, Jianfang Xu, Wei Huang, Songyan Chen. Harvesting strong photoluminescence of physical vapor deposited GeSn with record high deposition temperature. Journal of Physics D: Applied Physics 2023, https://doi.org/10.1088/1361-6463/acd4cb
    26. D. Grützmacher, O. Concepción, Q.-T. Zhao, D. Buca. Si–Ge–Sn alloys grown by chemical vapour deposition: a versatile material for photonics, electronics, and thermoelectrics. Applied Physics A 2023, 129 (3) https://doi.org/10.1007/s00339-023-06478-4
    27. Guangyang Lin, Yuying An, Haokun Ding, Haochen Zhao, Jianyuan Wang, Songyan Chen, Cheng Li, Ryan Hickey, James Kolodzey, Yuping Zeng. Scalable fabrication of self-assembled GeSn vertical nanowires for nanophotonic applications. Nanophotonics 2023, 12 (2) , 219-228. https://doi.org/10.1515/nanoph-2022-0489
    28. Xiaomeng Wang, Dongfeng Qi, Wenju Zhou, Haotian Deng, Yuhan Liu, Shiyong Shangguan, Jianguo Zhang, Hongyu Zheng, Xueyun Liu. Effect of Laser Pulse Width and Intensity Distribution on the Crystallographic Characteristics of GeSn Film. Coatings 2023, 13 (2) , 453. https://doi.org/10.3390/coatings13020453
    29. Kun Qian, Yuying An, Hongjie Cai, Kaisen Yang, Jinhui Qian, Haokun Ding, Guangyang Lin, Jianyuan Wang, Jianfang Xu, Wei Huang, Songyan Chen, Cheng Li. The transition of growth behaviors of moderate Sn fraction Ge1-xSnx (8 % < x < 15 %) epilayers with low temperature molecular beam epitaxy. Journal of Crystal Growth 2023, 601 , 126954. https://doi.org/10.1016/j.jcrysgro.2022.126954
    30. Chi Xu, Ting Hu, Aixin Zhang, Dhruve A. Ringwala, José Menéndez, John Kouvetakis. Synthesis of short-wave infrared Ge1− y Sn y semiconductors directly on Si(100) via ultralow temperature molecular routes for monolithic integration applications. Journal of Vacuum Science & Technology A 2022, 40 (6) https://doi.org/10.1116/6.0002052
    31. S. Assali, A. Attiaoui, S. Koelling, M. R. M. Atalla, A. Kumar, J. Nicolas, F. A. Chowdhury, C. Lemieux-Leduc, O. Moutanabbir. Micrometer-thick, atomically random Si0.06Ge0.90Sn0.04 for silicon-integrated infrared optoelectronics. Journal of Applied Physics 2022, 132 (19) https://doi.org/10.1063/5.0120505
    32. Dan Buca, Andjelika Bjelajac, Davide Spirito, Omar Concepción, Maksym Gromovyi, Emilie Sakat, Xavier Lafosse, Laurence Ferlazzo, Nils von den Driesch, Zoran Ikonic, Detlev Grützmacher, Giovanni Capellini, Moustafa El Kurdi. Room Temperature Lasing in GeSn Microdisks Enabled by Strain Engineering. Advanced Optical Materials 2022, 10 (22) https://doi.org/10.1002/adom.202201024
    33. Mantu K. Hudait, Michael Meeker, Jheng-Sin Liu, Michael B. Clavel, Shuvodip Bhattacharya, Giti A. Khodaparast. Temperature and doping-dependent interplay between the direct and indirect optical response in buffer-mediated epitaxial germanium. Optical Materials 2022, 131 , 112633. https://doi.org/10.1016/j.optmat.2022.112633
    34. Guangyang Lin, Kun Qian, Hongjie Cai, Haochen Zhao, Jianfang Xu, Songyan Chen, Cheng Li, Ryan Hickey, James Kolodzey, Yuping Zeng. Enhanced photoluminescence of GeSn by strain relaxation and spontaneous carrier confinement through rapid thermal annealing. Journal of Alloys and Compounds 2022, 915 , 165453. https://doi.org/10.1016/j.jallcom.2022.165453
    35. Thierry de Vrijer, Bilal Bouazzata, Arno H.M. Smets. Spectroscopic review of hydrogenated, carbonated and oxygenated group IV alloys. Vibrational Spectroscopy 2022, 121 , 103387. https://doi.org/10.1016/j.vibspec.2022.103387
    36. Thierry de Vrijer, Koos Roodenburg, Federica Saitta, Thijs Blackstone, Gianluca Limodio, Arno H.M. Smets. PECVD Processing of low bandgap-energy amorphous hydrogenated germanium-tin (a-GeSn:H) films for opto-electronic applications. Applied Materials Today 2022, 27 , 101450. https://doi.org/10.1016/j.apmt.2022.101450
    37. Fengshuo Wan, Chi Xu, Xiaoyu Wang, Guoyin Xu, Buwen Cheng, Chunlai Xue. Study of strain evolution mechanism in Ge1−xSnx materials grown by low temperature molecular beam epitaxy. Journal of Crystal Growth 2022, 577 , 126399. https://doi.org/10.1016/j.jcrysgro.2021.126399
    38. V.G. Shengurov, V.Yu. Chalkov, S.A. Denisov, V.N. Trushin, A.V. Zaitsev, A.V. Nezhdanov, D.A. Pavlov, D.O. Filatov. Growth defects in GeSn/Ge/Si(001) epitaxial layers grown by hot wire chemical vapor deposition of Ge with co-evaporation of Sn. Journal of Crystal Growth 2022, 578 , 126421. https://doi.org/10.1016/j.jcrysgro.2021.126421
    39. Joshua Grant, Grey Abernathy, Oluwatobi Olorunsola, Solomon Ojo, Sylvester Amoah, Emmanuel Wanglia, Samir K. Saha, Abbas Sabbar, Wei Du, Murtadha Alher, Bao-Hua Li, Shui-Qing Yu. Growth of Pseudomorphic GeSn at Low Pressure with Sn Composition of 16.7%. Materials 2021, 14 (24) , 7637. https://doi.org/10.3390/ma14247637
    40. Binbin Wang, Emilie Sakat, Etienne Herth, Maksym Gromovyi, Andjelika Bjelajac, Julien Chaste, Gilles Patriarche, Philippe Boucaud, Frédéric Boeuf, Nicolas Pauc, Vincent Calvo, Jérémie Chrétien, Marvin Frauenrath, Alexei Chelnokov, Vincent Reboud, Jean-Michel Hartmann, Moustafa El Kurdi. GeSnOI mid-infrared laser technology. Light: Science & Applications 2021, 10 (1) https://doi.org/10.1038/s41377-021-00675-7
    41. Chi Xu, Ting Hu, Dhruve A. Ringwala, José Menéndez, John Kouvetakis. Gas source molecular epitaxy of Ge1−ySny materials and devices using high order Ge4H10 and Ge5H12 hydrides. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2021, 39 (6) https://doi.org/10.1116/6.0001253
    42. Yuanhao Miao, Guilei Wang, Zhenzhen Kong, Buqing Xu, Xuewei Zhao, Xue Luo, Hongxiao Lin, Yan Dong, Bin Lu, Linpeng Dong, Jiuren Zhou, Jinbiao Liu, Henry H. Radamson. Review of Si-Based GeSn CVD Growth and Optoelectronic Applications. Nanomaterials 2021, 11 (10) , 2556. https://doi.org/10.3390/nano11102556
    43. Qimiao Chen, Shaoteng Wu, Lin Zhang, Weijun Fan, Chuan Seng Tan. Simulation of High-Efficiency Resonant-Cavity-Enhanced GeSn Single-Photon Avalanche Photodiodes for Sensing and Optical Quantum Applications. IEEE Sensors Journal 2021, 21 (13) , 14789-14798. https://doi.org/10.1109/JSEN.2021.3074407
    44. Alban Gassenq, Etienne Cleyet-Merle, Hoshang Sahib, Bruno Baguenard, Ali Belarouci, Régis Orobtchouk, Frederic Lerouge, Stephan Guy, Antonio Pereira. Rare-earth doped micro-emitters made by lift-off processing in pulsed laser deposited layers on Si substrate. Optics Express 2021, 29 (5) , 7321. https://doi.org/10.1364/OE.416450
    45. S. Assali, A. Dijkstra, A. Attiaoui, É. Bouthillier, J.E.M. Haverkort, O. Moutanabbir. Midinfrared Emission and Absorption in Strained and Relaxed Direct-Band-Gap Ge 1 − x Sn x Semiconductors. Physical Review Applied 2021, 15 (2) https://doi.org/10.1103/PhysRevApplied.15.024031
    46. A. Attiaoui, É. Bouthillier, G. Daligou, A. Kumar, S. Assali, O. Moutanabbir. Extended Short-Wave Infrared Absorption in Group-IV Nanowire Arrays. Physical Review Applied 2021, 15 (1) https://doi.org/10.1103/PhysRevApplied.15.014034
    47. V. Reboud, D. Buca, H. Sigg, J. M. Hartmann, Z. Ikonic, N. Pauc, V. Calvo, P. Rodriguez, A. Chelnokov. Lasing in Group-IV Materials. 2021, 105-195. https://doi.org/10.1007/978-3-030-68222-4_3
    48. Mahmoud R. M. Atalla, Simone Assali, Anis Attiaoui, Cédric Lemieux‐Leduc, Aashish Kumar, Salim Abdi, Oussama Moutanabbir. All‐Group IV Transferable Membrane Mid‐Infrared Photodetectors. Advanced Functional Materials 2021, 31 (3) https://doi.org/10.1002/adfm.202006329
    49. Hui Jia, Pamela Jurczak, Junjie Yang, Mingchu Tang, Keshuang Li, Huiwen Deng, Manyu Dang, Siming Chen, Huiyun Liu. Impact of ex-situ annealing on strain and composition of MBE grown GeSn. Journal of Physics D: Applied Physics 2020, 53 (48) , 485104. https://doi.org/10.1088/1361-6463/abae94
    50. Hadi Hijazi, Mohammed Zeghouane, Franck Bassani, Pascal Gentile, Bassem Salem, Vladimir G Dubrovskii. Impact of droplet composition on the nucleation rate and morphology of vapor-liquid-solid GeSn nanowires. Nanotechnology 2020, 31 (40) , 405602. https://doi.org/10.1088/1361-6528/ab99f6
    51. Jignesh Vanjaria, Arul Chakkaravarthi Arjunan, Thomas Salagaj, Gary S. Tompa, Haokai Yang, Todd Houghton, Hongbin Yu. Growth of SiGeSn Thin Films Using Simplified PECVD Reactor towards NIR Sensor Devices. ECS Journal of Solid State Science and Technology 2020, 9 (7) , 074001. https://doi.org/10.1149/2162-8777/abaeb2
    52. Liyao Zhang, Yuxin Song, Nils von den Driesch, Zhenpu Zhang, Dan Buca, Detlev Grützmacher, Shumin Wang. Structural Property Study for GeSn Thin Films. Materials 2020, 13 (16) , 3645. https://doi.org/10.3390/ma13163645
    53. Anas Elbaz, Dan Buca, Nils von den Driesch, Konstantinos Pantzas, Gilles Patriarche, Nicolas Zerounian, Etienne Herth, Xavier Checoury, Sébastien Sauvage, Isabelle Sagnes, Antonino Foti, Razvigor Ossikovski, Jean-Michel Hartmann, Frédéric Boeuf, Zoran Ikonic, Philippe Boucaud, Detlev Grützmacher, Moustafa El Kurdi. Ultra-low-threshold continuous-wave and pulsed lasing in tensile-strained GeSn alloys. Nature Photonics 2020, 14 (6) , 375-382. https://doi.org/10.1038/s41566-020-0601-5
    54. Brian Julsgaard, Nils von den Driesch, Peter Tidemand-Lichtenberg, Christian Pedersen, Zoran Ikonic, Dan Buca. Carrier lifetime of GeSn measured by spectrally resolved picosecond photoluminescence spectroscopy. Photonics Research 2020, 8 (6) , 788. https://doi.org/10.1364/PRJ.385096
    55. Jignesh Vanjaria, Arul Chakkaravarthi Arjunan, Thomas Salagaj, Gary S. Tompa, Hongbin Yu. PECVD Growth of Composition Graded SiGeSn Thin Films as Novel Approach to Limit Tin Segregation. ECS Journal of Solid State Science and Technology 2020, 9 (3) , 034009. https://doi.org/10.1149/2162-8777/ab80af
    56. Nils von den Driesch, Stephan Wirths, Rene Troitsch, Gregor Mussler, Uwe Breuer, Oussama Moutanabbir, Detlev Grützmacher, Dan Buca. Thermally activated diffusion and lattice relaxation in (Si)GeSn materials. Physical Review Materials 2020, 4 (3) https://doi.org/10.1103/PhysRevMaterials.4.033604
    57. A V Zaitsev, M Yu Kuz’min, S A Denisov, V G Shengurov, V Yu Chalkov, A V Kudrin, M V Ved’, D O Filatov. Structure and surface morphology of GeSn/Si(001) layers grown by HW CVD with co-evaporation of Sn. Journal of Physics: Conference Series 2020, 1482 (1) , 012016. https://doi.org/10.1088/1742-6596/1482/1/012016
    58. Denis Rainko, Zoran Ikonic, Anas Elbaz, Nils von den Driesch, Daniela Stange, Etienne Herth, Philippe Boucaud, Moustafa El Kurdi, Detlev Grützmacher, Dan Buca. Impact of tensile strain on low Sn content GeSn lasing. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-018-36837-8
    59. Herbert S. Mączko, Robert Kudrawiec, Marta Gladysiewicz. Strain engineering of transverse electric and transverse magnetic mode of material gain in GeSn/SiGeSn quantum wells. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-40146-z
    60. S.V. Kondratenko, Yu.V. Hyrka, Yu.I. Mazur, A.V. Kuchuk, W. Dou, H. Tran, J. Margetis, J. Tolle, S.-Q. Yu, G.J. Salamo. Photovoltage spectroscopy of direct and indirect bandgaps of strained Ge1-Sn thin films on a Ge/Si(001) substrate. Acta Materialia 2019, 171 , 40-47. https://doi.org/10.1016/j.actamat.2019.04.004
    61. Nils von den Driesch, Daniela Stange, Denis Rainko, Uwe Breuer, Giovanni Capellini, Jean-Michel Hartmann, Hans Sigg, Siegfried Mantl, Detlev Grützmacher, Dan Buca. Epitaxy of Si-Ge-Sn-based heterostructures for CMOS-integratable light emitters. Solid-State Electronics 2019, 155 , 139-143. https://doi.org/10.1016/j.sse.2019.03.013
    62. A.C. Meng, M.R. Braun, Y. Wang, C.S. Fenrich, M. Xue, D.R. Diercks, B.P. Gorman, M.-I. Richard, A.F. Marshall, W. Cai, J.S. Harris, P.C. McIntyre. Coupling of coherent misfit strain and composition distributions in core–shell Ge/Ge1-xSnx nanowire light emitters. Materials Today Nano 2019, 5 , 100026. https://doi.org/10.1016/j.mtnano.2019.01.001
    63. Yusuke Miki, Wakana Takeuchi, Osamu Nakatsuka, Shigeaki Zaima. Influence of Sn precursors on Ge 1− x Sn x growth using metal-organic chemical vapor deposition. Japanese Journal of Applied Physics 2019, 58 (SA) , SAAD07. https://doi.org/10.7567/1347-4065/aaec1a
    64. S. Assali, J. Nicolas, O. Moutanabbir. Enhanced Sn incorporation in GeSn epitaxial semiconductors via strain relaxation. Journal of Applied Physics 2019, 125 (2) , 025304. https://doi.org/10.1063/1.5050273
    65. Rami Khazaka, Emmanuel Nolot, Joris Aubin, Jean-Michel Hartmann. Growth and characterization of SiGeSn pseudomorphic layers on 200 mm Ge virtual substrates. Semiconductor Science and Technology 2018, 33 (12) , 124011. https://doi.org/10.1088/1361-6641/aaea32
    66. Vyacheslav Timofeev, Alexandr Nikiforov, Artur Tuktamyshev, Vladimir Mashanov, Michail Yesin, Aleksey Bloshkin. Morphology, Structure, and Optical Properties of Semiconductor Films with GeSiSn Nanoislands and Strained Layers. Nanoscale Research Letters 2018, 13 (1) https://doi.org/10.1186/s11671-017-2429-6
    67. Krista R. Khiangte, Jaswant S. Rathore, Vaibhav Sharma, Apurba Laha, Suddhasatta Mahapatra. Engineering strain relaxation of GeSn epilayers on Ge/Si(001) substrates. Solid State Communications 2018, 284-286 , 88-92. https://doi.org/10.1016/j.ssc.2018.09.012
    68. Wei Dou, Mourad Benamara, Aboozar Mosleh, Joe Margetis, Perry Grant, Yiyin Zhou, Sattar Al-Kabi, Wei Du, John Tolle, Baohua Li, Mansour Mortazavi, Shui-Qing Yu. Investigation of GeSn Strain Relaxation and Spontaneous Composition Gradient for Low-Defect and High-Sn Alloy Growth. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-24018-6
    69. Denis Rainko, Zoran Ikonic, Nenad Vukmirović, Daniela Stange, Nils von den Driesch, Detlev Grützmacher, Dan Buca. Investigation of carrier confinement in direct bandgap GeSn/SiGeSn 2D and 0D heterostructures. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-33820-1
    70. S. Gupta, Y. Shimura, O. Richard, B. Douhard, E. Simoen, H. Bender, O. Nakatsuka, S. Zaima, R. Loo, M. Heyns. Defect evaluation in strain-relaxed Ge0.947Sn0.053 grown on (001) Si. Applied Physics Letters 2018, 113 (19) https://doi.org/10.1063/1.5048683
    71. Roger Loo, Yosuke Shimura, Shinichi Ike, Anurag Vohra, Toma Stoica, Daniela Stange, Dan Buca, David Kohen, Joe Margetis, John Tolle. Epitaxial GeSn: impact of process conditions on material quality. Semiconductor Science and Technology 2018, 33 (11) , 114010. https://doi.org/10.1088/1361-6641/aae2f9
    72. Simone Assali, Anis Attiaoui, Samik Mukherjee, Jérôme Nicolas, Oussama Moutanabbir. TEOS layers for low temperature processing of group IV optoelectronic devices. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2018, 36 (6) https://doi.org/10.1116/1.5047909
    73. Wei Dou, Yiyin Zhou, Joe Margetis, Seyed Amir Ghetmiri, Sattar Al-Kabi, Wei Du, Jifeng Liu, Greg Sun, Richard A. Soref, John Tolle, Baohua Li, Mansour Mortazavi, Shui-Qing Yu. Optically pumped lasing at 3  μm from compositionally graded GeSn with tin up to 223%. Optics Letters 2018, 43 (19) , 4558. https://doi.org/10.1364/OL.43.004558
    74. Wei Dou, Bader Alharthi, Perry C. Grant, Joshua M. Grant, Aboozar Mosleh, Huong Tran, Wei Du, Mansour Mortazavi, Baohua Li, Hameed Naseem, Shui-Qing Yu. Crystalline GeSn growth by plasma enhanced chemical vapor deposition. Optical Materials Express 2018, 8 (10) , 3220. https://doi.org/10.1364/OME.8.003220
    75. Hakimah Alahmad, Aboozar Mosleh, Murtadha Alher, Seyedeh Fahimeh Banihashemian, Seyed Amir Ghetmiri, Sattar Al-Kabi, Wei Du, Bauhoa Li, Shui-Qing Yu, Hameed A. Naseem. GePb Alloy Growth Using Layer Inversion Method. Journal of Electronic Materials 2018, 47 (7) , 3733-3740. https://doi.org/10.1007/s11664-018-6233-6
    76. P. Zaumseil, Y. Hou, M. A. Schubert, N. von den Driesch, D. Stange, D. Rainko, M. Virgilio, D. Buca, G. Capellini. The thermal stability of epitaxial GeSn layers. APL Materials 2018, 6 (7) , 076108. https://doi.org/10.1063/1.5036728
    77. S. Assali, J. Nicolas, S. Mukherjee, A. Dijkstra, O. Moutanabbir. Atomically uniform Sn-rich GeSn semiconductors with 3.0–3.5  μ m room-temperature optical emission. Applied Physics Letters 2018, 112 (25) https://doi.org/10.1063/1.5038644
    78. Nils von den Driesch, Daniela Stange, Denis Rainko, Ivan Povstugar, Peter Zaumseil, Giovanni Capellini, Thomas Schröder, Thibaud Denneulin, Zoran Ikonic, Jean‐Michel Hartmann, Hans Sigg, Siegfried Mantl, Detlev Grützmacher, Dan Buca. Advanced GeSn/SiGeSn Group IV Heterostructure Lasers. Advanced Science 2018, 5 (6) https://doi.org/10.1002/advs.201700955
    79. V A Timofeev, A I Nikiforov, A R Tuktamyshev, V I Mashanov, I D Loshkarev, A A Bloshkin, A K Gutakovskii. Pseudomorphic GeSiSn, SiSn and Ge layers in strained heterostructures. Nanotechnology 2018, 29 (15) , 154002. https://doi.org/10.1088/1361-6528/aaac45
    80. Hiroki Ohsawa, Hiroki Utsumi, Akito Hara. Performance of four-terminal low-temperature polycrystalline-silicon thin-film transistors and their application in CMOS inverters on glass substrates. Japanese Journal of Applied Physics 2018, 57 (3S1) , 03DB01. https://doi.org/10.7567/JJAP.57.03DB01
    81. Samik Mukherjee, Simone Assali, Oussama Moutanabbir. Group IV Nanowires for Carbon-Free Energy Conversion. 2018, 151-229. https://doi.org/10.1016/bs.semsem.2018.02.003
    82. Marco Albani, Simone Assali, Marcel A. Verheijen, Sebastian Koelling, Roberto Bergamaschini, Fabio Pezzoli, Erik P. A. M. Bakkers, Leo Miglio. Critical strain for Sn incorporation into spontaneously graded Ge/GeSn core/shell nanowires. Nanoscale 2018, 10 (15) , 7250-7256. https://doi.org/10.1039/C7NR09568F
    83. Hyun-Jun Jo, Jong Su Kim, Mee-Yi Ryu, Yung Kee Yeo, John Kouvetakis. Investigation of hydrogen inductively coupled plasma treatment effect for Ge0.938Sn0.062/Ge/Si film using photoreflectance spectroscopy. Thin Solid Films 2018, 645 , 345-350. https://doi.org/10.1016/j.tsf.2017.10.059
    84. Thibault Haffner, Mohammed Zeghouane, Franck Bassani, Pascal Gentile, Alban Gassenq, Fares Chouchane, Nicolas Pauc, Eugenie Martinez, Eric Robin, Sylvain David, Thierry Baron, Bassem Salem. Growth of Ge 1− x Sn x Nanowires by Chemical Vapor Deposition via Vapor–Liquid–Solid Mechanism Using GeH 4 and SnCl 4. physica status solidi (a) 2018, 215 (1) https://doi.org/10.1002/pssa.201700743
    85. Xiaohuai Wang, Chengzhao Chen, Shengqi Feng, Xinyuan Wei, Yun Li. A hybrid functional first-principles study on the band structure of non-strained Ge 1− x Sn x alloys. Chinese Physics B 2017, 26 (12) , 127402. https://doi.org/10.1088/1674-1056/26/12/127402
    86. Joe Margetis, Aboozar Mosleh, Seyed Amir Ghetmiri, Sattar Al-Kabi, Wei Dou, Wei Du, Nupur Bhargava, Shui-Qing Yu, Harald Profijt, David Kohen, Roger Loo, Anurag Vohra, John Tolle. Fundamentals of Ge 1−x Sn x and Si y Ge 1−x-y Sn x RPCVD epitaxy. Materials Science in Semiconductor Processing 2017, 70 , 38-43. https://doi.org/10.1016/j.mssp.2016.12.024
    87. Perry C. Grant, Wei Dou, Bader Alharthi, Joshua M. Grant, Aboozar Mosleh, Wei Du, Baohua Li, Mansour Mortazavi, Hameed A. Naseem, Shui-Qing Yu. Comparison study of the low temperature growth of dilute GeSn and Ge. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 2017, 35 (6) https://doi.org/10.1116/1.4990773
    88. Lu Zhang, Hai-Yang Hong, Yi-Sen Wang, Cheng Li, Guang-Yang Lin, Song-Yan Chen, Wei Huang, Jian-Yuan Wang. Formation of high-Sn content polycrystalline GeSn films by pulsed laser annealing on co-sputtered amorphous GeSn on Ge substrate. Chinese Physics B 2017, 26 (11) , 116802. https://doi.org/10.1088/1674-1056/26/11/116802
    89. Christian Schulte-Braucks, Rahul Pandey, Redwan Noor Sajjad, Mike Barth, Ram Krishna Ghosh, Ben Grisafe, Pankaj Sharma, Nils von den Driesch, Anurag Vohra, Gilbert Bruce Rayner, Roger Loo, Siegfried Mantl, Dan Buca, Chih-Chieh Yeh, Cheng-Hsien Wu, Wilman Tsai, Dimitri A. Antoniadis, Suman Datta. Fabrication, Characterization, and Analysis of Ge/GeSn Heterojunction p-Type Tunnel Transistors. IEEE Transactions on Electron Devices 2017, 64 (10) , 4354-4362. https://doi.org/10.1109/TED.2017.2742957
    90. J. Aubin, J.M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, V. Calvo. Impact of thickness on the structural properties of high tin content GeSn layers. Journal of Crystal Growth 2017, 473 , 20-27. https://doi.org/10.1016/j.jcrysgro.2017.05.006
    91. J Aubin, J M Hartmann, A Gassenq, J L Rouviere, E Robin, V Delaye, D Cooper, N Mollard, V Reboud, V Calvo. Growth and structural properties of step-graded, high Sn content GeSn layers on Ge. Semiconductor Science and Technology 2017, 32 (9) , 094006. https://doi.org/10.1088/1361-6641/aa8084
    92. D. Stange, N. von den Driesch, T. Zabel, F. Armand-Pilon, B. Marzban, D. Rainko, J.-M. Hartmann, G. Capellini, T. Schroeder, H. Sigg, J. Witzens, D. Grutzmacher, D. Buca. Reduced threshold microdisk lasers from GeSn/SiGeSn heterostructures. 2017, 15-16. https://doi.org/10.1109/GROUP4.2017.8082173
    93. Vyacheslav A. Timofeev, Alexandr I. Nikiforov, Artur R. Tuktamyshev, Aleksey A. Bloshkin, Vladimir I. Mashanov, Sergey A. Teys, Ivan D. Loshkarev, Natalia A. Baidakova. Elastically strained GeSiSn layers and GeSiSn islands in multilayered periodical structures. Modern Electronic Materials 2017, 3 (2) , 86-90. https://doi.org/10.1016/j.moem.2017.09.006
    94. Christian Schulte-Braucks, Emily Hofmann, Stefan Glass, Nils von den Driesch, Gregor Mussler, Uwe Breuer, Jean-Michel Hartmann, Peter Zaumseil, Thomas Schröder, Qing-Tai Zhao, Siegfried Mantl, Dan Buca. Schottky barrier tuning via dopant segregation in NiGeSn-GeSn contacts. Journal of Applied Physics 2017, 121 (20) https://doi.org/10.1063/1.4984117
    95. J. Margetis, A. Mosleh, S. Al-Kabi, S.A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H.A. Naseem, S.-Q. Yu, J. Tolle. Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas. Journal of Crystal Growth 2017, 463 , 128-133. https://doi.org/10.1016/j.jcrysgro.2017.01.041
    96. Nils von den Driesch, Daniela Stange, Stephan Wirths, Denis Rainko, Ivan Povstugar, Aleksei Savenko, Uwe Breuer, Richard Geiger, Hans Sigg, Zoran Ikonic, Jean‐Michel Hartmann, Detlev Grützmacher, Siegfried Mantl, Dan Buca. SiGeSn Ternaries for Efficient Group IV Heterostructure Light Emitters. Small 2017, 13 (16) https://doi.org/10.1002/smll.201603321
    97. A. Gassenq, L. Milord, J. Aubin, N. Pauc, K. Guilloy, J. Rothman, D. Rouchon, A. Chelnokov, J. M. Hartmann, V. Reboud, V. Calvo. Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content. Applied Physics Letters 2017, 110 (11) https://doi.org/10.1063/1.4978512
    98. C. Schulte-Braucks, S. Glass, E. Hofmann, D. Stange, N. von den Driesch, J.M. Hartmann, Z. Ikonic, Q.T. Zhao, D. Buca, S. Mantl. Process modules for GeSn nanoelectronics with high Sn-contents. Solid-State Electronics 2017, 128 , 54-59. https://doi.org/10.1016/j.sse.2016.10.024
    99. H. S. Mączko, R. Kudrawiec, M. Gladysiewicz. Material gain engineering in GeSn/Ge quantum wells integrated with an Si platform. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep34082
    100. Lichuan Jin, Dainan Zhang, Huaiwu Zhang, Jue Fang, Yulong Liao, Tingchuan Zhou, Cheng Liu, Zhiyong Zhong, Vincent G. Harris. Large area Germanium Tin nanometer optical film coatings on highly flexible aluminum substrates. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep34030
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect