ACS Publications. Most Trusted. Most Cited. Most Read
Interplay of Orbital and Relativistic Effects in Bismuth Oxyhalides: BiOF, BiOCl, BiOBr, and BiOI
My Activity
  • Open Access
Communication

Interplay of Orbital and Relativistic Effects in Bismuth Oxyhalides: BiOF, BiOCl, BiOBr, and BiOI
Click to copy article linkArticle link copied!

View Author Information
Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
§ Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
*(D.O.S.) E-mail: [email protected]
Open PDFSupporting Information (1)

Chemistry of Materials

Cite this: Chem. Mater. 2016, 28, 7, 1980–1984
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.chemmater.6b00349
Published March 10, 2016

Copyright © 2016 American Chemical Society. This publication is licensed under CC-BY.

Copyright © 2016 American Chemical Society

The optoelectronic properties of bismuth oxyhalides have led to their utility in applications such as pigments in the cosmetics industry, (1, 2) pharmaceuticals, (3, 4) phosphors, (5) gas sensors, (6) and catalysis. (7, 8) Over the past decade, interest in this family of materials has rapidly increased, fuelled by reports of their excellent photocatalytic activity. (9-16) They have been studied as stand-alone photocatalysts, (9, 10, 17) quaternary alloys, (18, 19) and interfaced with other photocatalytically active materials. (20-22) To date, however, an understanding of the chemical trends underpinning these successes is lacking.
The BiOX series, shown in Figure 1, crystallize in the tetragonal Matlockite structure, (23, 24) which can be considered the simplest form of the Sillén-type structure and is commonly expressed as [M2O2][Xm]. (25) The crystal lattice consists of fluorite-like [M2O2] layers sandwiched between double halide [Xm] layers, to form [X–Bi–O–Bi–X] sheets, stacked in the [001] direction, with the structure held together by nonbonding van der Waals interactions along the [001] direction. It has been proposed that this structure type imparts an internal static electric field between the [M2O2]2+ and double [X] slab along the [001] direction, which aids efficient separation of the photogenerated electron–hole pairs. (9, 10, 26, 27)

Figure 1

Figure 1. Crystal structure of the BiOX systems (space group P4/nmm, D4h symmetry) with stoichiometric X–Bi–O–Bi–X bilayers stacked along the c axis.

In this communication, we investigate the BiOX (X = F, Cl, Br, and I) series using hybrid density functional theory with explicit treatment of spin–orbit coupling effects and dispersion interactions. First, we resolve the band gap trends, where values between 3.5–3.6 eV, 2.9–3.4 eV, 2.3–2.9 eV, and 1.8–2.1 eV for BiOF, BiOCl, BiOBr, and BiOI, had been reported. (9, 11, 12, 28-32) We separate the roles of relativistic and chemical effects in determining the magnitude of the gaps and also the absolute band energies, which provides guidance for designing tailored photocatalysts.
First-principles calculations were performed in the framework of density functional theory (DFT). Special attention was paid to electron–electron interactions (using the screened hybrid HSE06 functional), (33, 34) relativistic effects (using scalar relativistic PAW pseudopotentials (35, 36) and spin–orbit coupling, SOC), and dispersion interactions (the DFT-D3 correction (37, 38)). All solid-state calculations were performed in a plane-wave basis set using the code VASP. (39, 40)
Complete structural optimizations (forces < 0.01 eV Å–1) were performed at a series of volumes in order to calculate the equilibrium lattice parameters. Convergence with respect to k-point sampling and plane wave energy was checked, with a cutoff of 520 eV and a k-point density of 0.04 k Å found to be sufficient. To align the electronic band energies to the vacuum level, a surface–slab model (15 Å vacuum spacing) was constructed and the corresponding electrostatic potential averaged along the c-direction, using the MacroDensity package. (41-43) The (100) surface was chosen as it is a nonpolar termination that results in minimal bond cleavage and does not produce undesirable surface states.
The predicted lattice parameters for the BiOX series are shown in Table 1. The results are in good agreement with previous experimental measurements (within 1%), (11, 23, 24) taking into account that the experimental data is mostly for room temperature. The inclusion of the nonlocal dispersion correction was vital for achieving an accurate equilibrium geometry, especially as we descend down the halide group, as shown in Table S1 of the Supporting Information. Without this interaction, the error in the c parameter can grow to as much as 1 Å.
Table 1. Calculated Structural and Electronic Properties of the BiOX Seriesa
materialacEgIPEA
BiOF3.72 (−1.0%)6.20 (−0.5%)4.188.233.87
BiOCl3.87 (−0.5%)7.42 (+0.9%)3.377.944.35
BiOBr3.90 (−0.5%)8.14 (−0.5%)2.827.554.65
BiOI3.98 (−0.3%)9.15 (0.0%)2.007.035.03
a

All lattice vectors are given in Å (% error with respect to room temperature diffraction measurements in parentheses), with the band gap, ionisation potential (IP), and electron affinity (EA) in eV.

Similar to the hybrid halide perovskites (44-46) and topological insulators (47, 48) which are also composed of atoms with high atomic number, it is expected that relativistic effects should play a large role in determining the electronic structure of these materials. The band structures of the BiOX series with and without the explicit treatment of SOC are plotted in Figure 2a–d. The inclusion of SOC was found to result in a net band gap reduction independent of chemical composition, with the conduction band minimum (CBM) of BiOF, BiOCl, BiOBr, and BiOI lowered by 0.39, 0.24, 0.24, and 0.22 eV, respectively. The valence band maximum (VBM) is less affected by SOC effects, with only BiOI experiencing a significant upward shift of 0.11 eV, due to larger relativistic effect on I states as group 17 is descended. As such, the effect of SOC is insufficient in explaining the trend in band gap across the series.

Figure 2

Figure 2. Scalar relativistic (dashed lines) and fully relativistic (black lines) electronic band structures of the BiOX series with the hybrid HSE06 functional. The highest occupied state (including spin–orbit coupling) is set to 0 eV.

Instead, analysis of the total and partial (ion decomposed) density of states for the BiOX series, shown in Figure 3, is instructive in explaining the trend in optical response seen in experiment. For BiOF, the top of the valence band is dominated by O 2p states, with the F 2p states found at higher binding energies. As the halide anion changes upon moving down group 17, the contribution of the halide p states to the VBM increases, ultimately dominating the VBM in BiOI. In all cases, the conduction band is dominated by Bi p states. It is therefore clear that the valence band composition dictates the band gap reduction down the series, in line with the binding energy of the halide p orbitals. The Bi 6s states are mainly found at the bottom of the valence band but additionally provide a small contribution toward the top of the valence band. Consistent with the revised lone pair theory, (49-51) the orbital overlap * of Bi 6s* with the O 2p and halide p states is not sufficient to warrant a structural distortion, meaning the Bi is perfectly octahedral in the Matlockite structure.

Figure 3

Figure 3. Fully relativistic (HSE06+SOC) electronic density of states (DOS), including projections onto ion-centered atomic orbitals (PEDOS). The highest occupied state is set to 0 eV.

From the band structures shown in Figure 2 it can be seen that the fundamental band gaps across the BiOX series are indirect. The CBM of BiOF, BiOCl, and BiOBr appears at the Z point, with the VBM positioned between Z → R. For BiOI, the CBM is situated between Γ → R, and the VBM is again situated between Z → R. The fundamental indirect band gaps are 4.18, 3.37, 2.82, and 2.00 eV for BiOF, BiOCl, BiOBr, and BiOI, respectively, which, in all cases except BiOF, are in excellent agreement with experimental measurements. (12) The calculated hole effective masses are relatively large; however, they are considerably smaller in BiOCl and BiOBr (0.8 me and 0.7 me) than in BiOF and BiOI (12.5 me and 1.9 me). The dispersion of the conduction band is noticeably less along Z → Γ (in the [001] direction) compared to Z → R ([010]), which is to be expected as Z → Γ spans across the [X–Bi–O–Bi–X] sheets, whereas Z → R is in the plane of the layers. This is reflected in the electron effective masses of BiOF, BiOCl, and BiOBr, which are significantly lower in the Z → Γ direction (0.5 me, 0.3 me, and 0.3 me, respectively) than along Z → R (1.0 me, 2.4 me, and 0.6 me, respectively).
To understand the effect of varying the halide ion on the fundamental band alignments of the BiOX series, we have plotted the valence band alignment of these materials using the slab model, (52) with the results shown in Figure 4. As expected based on the relative energy levels of the halide p-orbitals, the ionization potential (IP) of the BiOX series gets smaller as we descend down group 17. The Bi-based conduction band is also lowered on descending group 17, which can be rationalized due to the Bi p states experiencing a different Madelung potential as the ionic radius of the halide increases on moving down the group.

Figure 4

Figure 4. Calculated valence band alignment of the BiOX series (HSE including spin–orbit coupling). The vacuum level was aligned to the (001) surface in a slab calculation with a vacuum thickness of 15 Å. The electrostatic potentials were aligned and checked using the package MacroDensity. (53)

The alignment helps to explain some of the puzzling experimental observations in the literature. The BiOX series have been reported to display p-type conductivity (15) but unusually to also exhibit n-type behavior. (54) Our calculated electron affinity (EA) for BiOI of 5.2 eV is consistent with the EAs exhibited by many excellent n-type materials. (55-57) The larger EA of BiOI also results in a reduced overpotential for O2/oxygen anion splitting and can explain why BiOI is not as active for the degradation of rhodamine B than BiOBr and BiOCl. (12, 58) In addition alloys between BiOCl/BiOBr (59) and BiOBr/BiOI (60) have been demonstrated to outperform the individual materials, and this can be rationalized by the ability to tailor the band edges in order to obtain an enhanced electronic alignment in the alloys.
We have demonstrated the key role of the halide anion in determining the electronic structure and properties of the bismuth oxyhalide series. The range of functionality will be further extended by also changing the chalcogenide anion, as suggested by recent reports of topological electronic states and relativistic band splitting in the bismuth tellurihalides. As such, this extended family of compounds merits further investigation.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.6b00349.

  • Comparison of lattice parameters and bond lengths calculated with and without Grimme’s D3 dispersion correction (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • David O. Scanlon - Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United KingdomDiamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom Email: [email protected]
  • Authors
    • Alex M. Ganose - Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United KingdomDiamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
    • Madeleine Cuff - Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
    • Keith T. Butler - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
    • Aron Walsh - Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United KingdomGlobal E3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749, Korea
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

This work made use of the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk), via our membership of the UK’s HEC Materials Chemistry Consortium, which is funded by EPSRC (EP/L000202) and the UCL Legion HPC Facility (Legion@UCL). The work at UCL was supported by EPSRC (EP/N01572X/1). The work at Bath was supported by the ERC (Grant no. 277757) and the EPSRC (Grant no. EP/K016288/1, EP/L017792/1, and EP/M009580/1). D.O.S. acknowledges support from the SUPERSOLAR Solar Energy Hub (EP/J017361/1) for the provision of a flexible funding call award. A.M.G. acknowledges Diamond Light Source for the cosponsorship of a studentship on the EPSRC Centre for Doctoral Training in Molecular Modelling and Materials Science (EP/L015862/1). A.W. and D.O.S. acknowledge membership of the Materials Design Network.

References

Click to copy section linkSection link copied!

This article references 60 other publications.

  1. 1
    Auer, G.; Griebler, W.; Jahn, B. In Industrial Inorganic Pigments; Buxbaum, G., Pfaff, G., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2005; pp 129 130.
  2. 2
    Pfaff, G.; Reynders, P. Angle-Dependent Optical Effects Deriving from Submicron Structures of Films and Pigments Chem. Rev. 1999, 99, 1963 1982 DOI: 10.1021/cr970075u
  3. 3
    Rotmensch, J.; Whitlock, J.; Dietz, M.; Hines, J.; Reba, R.; Horwitz, E.; Harper, P. Development of 212-BiOCl as a new therapeutic modality against microscopic carcinoma Abstr. Pap. Am. Chem. Soc. 1998, U926 U926
  4. 4
    Briand, G. G.; Burford, N. Bismuth Compounds and Preparations with Biological or Medicinal Relevance Chem. Rev. 1999, 99, 2601 2658 DOI: 10.1021/cr980425s
  5. 5
    Rabatin, J. G. Bismuth Activated Rare Earth Oxybromide Phosphors and X-Ray Image Converters Utilizing Said Phosphors. U.S. Patent 4,068,129, 1978.
  6. 6
    Michel, C. R.; Contreras, N. L. L.; Martínez-Preciado, A. H. Gas Sensing Properties of Nanostructured Bismuth Oxychloride Sens. Actuators, B 2011, 160, 271 277 DOI: 10.1016/j.snb.2011.07.047
  7. 7
    Kijima, N.; Matano, K.; Saito, M.; Oikawa, T.; Konishi, T.; Yasuda, H.; Sato, T.; Yoshimura, Y. Oxidative Catalytic Cracking of N-Butane to Lower Alkenes over Layered BiOCl Catalyst Appl. Catal., A 2001, 206, 237 244 DOI: 10.1016/S0926-860X(00)00598-6
  8. 8
    Ghosh, R.; Maiti, S.; Chakraborty, A. Facile Catalyzed Acylation of Heteroatoms Using BiCl3 Generated in situ From the Procatalyst BiOCl and Acetyl Chloride Tetrahedron Lett. 2004, 45, 6775 6778 DOI: 10.1016/j.tetlet.2004.07.044
  9. 9
    Zhang, K.-L.; Liu, C.-M.; Huang, F.-Q.; Zheng, C.; Wang, W.-D. Study of the Electronic Structure and Photocatalytic Activity of the BiOCl Photocatalyst Appl. Catal., B 2006, 68, 125 129 DOI: 10.1016/j.apcatb.2006.08.002
  10. 10
    Zhang, J.; Shi, F.; Lin, J.; Chen, D.; Gao, J.; Huang, Z.; Ding, X.; Tang, C. Self-Assembled 3-D Architectures of BiOBr as a Visible Light-Driven Photocatalyst Chem. Mater. 2008, 20, 2937 2941 DOI: 10.1021/cm7031898
  11. 11
    Zhang, X.; Ai, Z.; Jia, F.; Zhang, L. Generalized One-Pot Synthesis, Characterization,and Photocatalytic Activity of Hierarchical BiOX (x= Cl, Br, I) Nanoplate Microspheres J. Phys. Chem. C 2008, 112, 747 753 DOI: 10.1021/jp077471t
  12. 12
    An, H.; Du, Y.; Wang, T.; Wang, C.; Hao, W.; Zhang, J. Photocatalytic Properties of BiOX (X= Cl, Br, and I) Rare Met. 2008, 27, 243 250 DOI: 10.1016/S1001-0521(08)60123-0
  13. 13
    Chai, S. Y.; Kim, Y. J.; Jung, M. H.; Chakraborty, A. K.; Jung, D.; Lee, W. I. Het-erojunctioned BiOCl/Bi2O3, a New Visible Light Photocatalyst J. Catal. 2009, 262, 144 149 DOI: 10.1016/j.jcat.2008.12.020
  14. 14
    Chang, X.; Huang, J.; Cheng, C.; Sui, Q.; Sha, W.; Ji, G.; Deng, S.; Yu, G. BiOX (X = Cl, Br, I) Photocatalysts Prepared Using NaBiO3 as the Bi Source: Characterization and Catalytic Performance Catal. Commun. 2010, 11, 460 464 DOI: 10.1016/j.catcom.2009.11.023
  15. 15
    Cheng, H.; Huang, B.; Dai, Y. Engineering BiOX (X= Cl, Br, I) Nanostructures for Highly Efficient Photocatalytic Applications Nanoscale 2014, 6, 2009 2026 DOI: 10.1039/c3nr05529a
  16. 16
    Bhachu, D. S.; Moniz, S. J. A.; Sathasivam, S.; Scanlon, D. O.; Walsh, A.; Bawaked, S. M.; Mokhtar, M.; Obaid, A. Y.; Parkin, I. P.; Tang, J.; Carmalt, C. J. Bismuth Oxyhalides: Synthesis, Structure and Photoelectrochemical Activity Chem. Sci. 2016,  DOI: 10.1039/C6SC00389C
  17. 17
    Zhang, H.; Liu, L.; Zhou, Z. First-Principles Studies on Facet-Dependent Photocatalytic Properties of Bismuth Oxyhalides (BiOXs) RSC Adv. 2012, 2, 9224 9229 DOI: 10.1039/c2ra20881d
  18. 18
    Gnayem, H.; Sasson, Y. Hierarchical Nanostructured 3D Flowerlike BiOClxBr1–x Semi- conductors with Exceptional Visible Light Photocatalytic Activity ACS Catal. 2013, 3, 186 191 DOI: 10.1021/cs3005133
  19. 19
    Zhang, H.; Liu, L.; Zhou, Z. Towards Better Photocatalysts: First-Principles Studies of the Alloying Effects on the Photocatalytic Activities of Bismuth Oxyhalides Under Visible Light Phys. Chem. Chem. Phys. 2012, 14, 1286 1292 DOI: 10.1039/C1CP23516H
  20. 20
    Li, J.; Yu, Y.; Zhang, L. Bismuth Oxyhalide Nanomaterials: Layered Structures Meet Photocatalysis Nanoscale 2014, 6, 8473 8488 DOI: 10.1039/C4NR02553A
  21. 21
    Shamaila, S.; Sajjad, A. K. L.; Chen, F.; Zhang, J. WO3 /BiOCl, a novel heterojunction as visible light photocatalyst J. Colloid Interface Sci. 2011, 356, 465 472 DOI: 10.1016/j.jcis.2011.01.015
  22. 22
    Shenawi-Khalil, S.; Uvarov, V.; Fronton, S.; Popov, I.; Sasson, Y. A Novel Heterojunc-tion BiOBr/Bismuth Oxyhydrate Photocatalyst with Highly Enhanced Visible Light Photocatalytic Properties J. Phys. Chem. C 2012, 116, 11004 11012 DOI: 10.1021/jp3009964
  23. 23
    Keramidas, K.; Voutsas, G.; Rentzeperis, P. The Crystal Structure of BiOCl Z. Kristallogr. - Cryst. Mater. 1993, 205, 35 40 DOI: 10.1524/zkri.1993.205.12.35
  24. 24
    Bannister, F.; Hey, M. The Crystal Structure Of The Bismuth Oxyhalides Mineral. Mag. 1935, 24, 49 58 DOI: 10.1180/minmag.1935.024.149.01
  25. 25
    Kusainova, A. M.; Zhou, W.; Irvine, J. T.; Lightfoot, P. Layered Intergrowth Phases Bi4MO8X (X= Cl, M= Ta and X= Br, M= Ta or Nb): Structural and Electrophysical Characterization J. Solid State Chem. 2002, 166, 148 157 DOI: 10.1006/jssc.2002.9572
  26. 26
    Ai, Z.; Ho, W.; Lee, S.; Zhang, L. Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres Under Visible Light Environ. Sci. Technol. 2009, 43, 4143 4150 DOI: 10.1021/es9004366
  27. 27
    Henle, J.; Simon, P.; Frenzel, A.; Scholz, S.; Kaskel, S. Nanosized BiOX (X= Cl, Br, I) Particles Synthesized in Reverse Microemulsions Chem. Mater. 2007, 19, 366 373 DOI: 10.1021/cm061671k
  28. 28
    Wang, W.; Huang, F.; Lin, X. xBiOI—(1–x)BiOCl as efficient visible-light-driven photocatalysts Scr. Mater. 2007, 56, 669 672 DOI: 10.1016/j.scriptamat.2006.12.023
  29. 29
    Wang, W.; Huang, F.; Lin, X.; Yang, J. Visible-Light-Responsive Photocatalysts xBiOBr—(1–x)BiOI Catal. Commun. 2008, 9, 8 12 DOI: 10.1016/j.catcom.2007.05.014
  30. 30
    Chen, L.; Yin, S.-F.; Huang, R.; Zhou, Y.; Luo, S.-L.; Au, C.-T. Facile Synthesis of BiOCl Nano-Flowers of Narrow Band Gap and their Visible-Light-Induced Photocatalytic Property Catal. Commun. 2012, 23, 54 57 DOI: 10.1016/j.catcom.2012.03.001
  31. 31
    Su, W.; Wang, J.; Huang, Y.; Wang, W.; Wu, L.; Wang, X.; Liu, P. Synthesis and Catalytic Performances of a Novel Photocatalyst BiOF Scr. Mater. 2010, 62, 345 348 DOI: 10.1016/j.scriptamat.2009.10.039
  32. 32
    Deng, H.; Wang, J.; Peng, Q.; Wang, X.; Li, Y. Controlled Hydrothermal Synthesis of Bismuth Oxyhalide Nanobelts and Nanotubes Chem. - Eur. J. 2005, 11, 6519 6524 DOI: 10.1002/chem.200500540
  33. 33
    Heyd, S.; Scuseria, G. E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential J. Chem. Phys. 2003, 118, 8207 8215 DOI: 10.1063/1.1564060
  34. 34
    Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the Exchange Screening Parameter on the Performance Of Screened Hybrid Functionals J. Chem. Phys. 2006, 125, 224106 DOI: 10.1063/1.2404663
  35. 35
    Blöchl, P. E. Projector Augmented-Wave Method Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953 DOI: 10.1103/PhysRevB.50.17953
  36. 36
    Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented Wave Method Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758 1775 DOI: 10.1103/PhysRevB.59.1758
  37. 37
    Grimme, S. Accurate Description of van der Waals Complexes by Density Funcitonal Theory Including Empirical Corrections J. Comput. Chem. 2004, 25, 1463 1473 DOI: 10.1002/jcc.20078
  38. 38
    Savory, C. N.; Palgrave, R. G.; Bronstein, H.; Scanlon, D. O. Spatial Electron-hole Separation in a One Dimensional Hybrid Organic–Inorganic Lead Iodide Sci. Rep. 2016, 6, 20626 DOI: 10.1038/srep20626
  39. 39
    Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-wave Basis Set Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169 11186 DOI: 10.1103/PhysRevB.54.11169
  40. 40
    Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 49, 14251 14271 DOI: 10.1103/PhysRevB.49.14251
  41. 41
    Walsh, A.; Butler, K. T. Prediction of Electron Energies in Metal Oxides Acc. Chem. Res. 2014, 47, 364 372 DOI: 10.1021/ar400115x
  42. 42
    Ganose, A. M.; Butler, K. T.; Walsh, A.; Scanlon, D. O. Relativistic Electronic Struc-ture and Band Alignment of BiSI and BiSeI: Candidate Photovoltaic Materials J. Mater. Chem. A 2016, 4, 2060 2068 DOI: 10.1039/C5TA09612J
  43. 43
    Brgoch, J.; Lehner, A. J.; Chabinyc, M.; Seshadri, R. Ab Initio Calculations of Band Gaps and Absolute Band Positions of Polymorphs of RbPbI3 and CsPbI3: Implications for Main-Group Halide Perovskite Photovoltaics J. Phys. Chem. C 2014, 118, 27721 27727 DOI: 10.1021/jp508880y
  44. 44
    Brivio, F.; Butler, K. T.; Walsh, A.; Van Schilfgaarde, M. Relativistic Quasiparticle Self-Consistent Electronic Structure of Hybrid Halide Perovskite Photovoltaic Absorbers Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 155204 DOI: 10.1103/PhysRevB.89.155204
  45. 45
    Even, J.; Pedesseau, L.; Jancu, J.-M.; Katan, C. Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications J. Phys. Chem. Lett. 2013, 4, 2999 3005 DOI: 10.1021/jz401532q
  46. 46
    Ganose, A. M.; Savory, C. N.; Scanlon, D. O. (CH3NH3)2Pb(SCN)2I2: A More Stable Structural Motif for Hybrid Halide Photovoltaics? J. Phys. Chem. Lett. 2015, 6, 4594 4598 DOI: 10.1021/acs.jpclett.5b02177
  47. 47
    Zhang, H.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Topological Insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a Single Dirac Cone on the Surface Nat. Phys. 2009, 5, 438 442 DOI: 10.1038/nphys1270
  48. 48
    Scanlon, D.; King, P.; Singh, R.; De La Torre, A.; Walker, S. M.; Balakrishnan, G.; Baumberger, F.; Catlow, C. Controlling Bulk Conductivity in Topological Insulators:Key Role of Anti-Site Defects Adv. Mater. 2012, 24, 2154 2158 DOI: 10.1002/adma.201200187
  49. 49
    Waghmare, U.; Spaldin, N.; Kandpal, H.; Seshadri, R. First-Principles Indicators of Metallicity and Cation Off-Centricity in rhe IV-VI Rocksalt Chalcogenides of Divalent Ge, Sn, and Pb Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 67, 125111 DOI: 10.1103/PhysRevB.67.125111
  50. 50
    Raulot, J.-M.; Baldinozzi, G.; Seshadri, R.; Cortona, P. An Ab-Initio Study of the rôle of Lone Pairs in the Structure and Insulator–Metal Transition in SnO and PbO Solid State Sci. 2002, 4, 467 474 DOI: 10.1016/S1293-2558(02)01280-3
  51. 51
    Walsh, A.; Watson, G. W. The Origin of the Stereochemically Active Pb(II) Lone Pair: DFT Calculations on PbO And PbS J. Solid State Chem. 2005, 178, 1422 1428 DOI: 10.1016/j.jssc.2005.01.030
  52. 52
    Burton, L. A.; Walsh, A. Band Alignment in SnS Thin-Film Solar Cells: Possible Origin of the Low Conversion Efficiency Appl. Phys. Lett. 2013, 102, 132111 DOI: 10.1063/1.4801313
  53. 53
    Butler, K. T.; Hendon, C. H.; Walsh, A. Electronic Chemical Potentials of Porous Metal–Organic Frameworks J. Am. Chem. Soc. 2014, 136, 2703 2706 DOI: 10.1021/ja4110073
  54. 54
    Hahn, N. T.; Hoang, S.; Self, J. L.; Mullins, C. B. Spray Pyrolysis Deposition and Photoelectrochemical Properties of n-Type BiOI Nanoplatelet Thin Films ACS Nano 2012, 6, 7712 7722 DOI: 10.1021/nn3031063
  55. 55
    Scanlon, D. O.; Watson, G. W. On the Possibility of p-Type SnO2 J. Mater. Chem. 2012, 22, 25236 25245 DOI: 10.1039/c2jm34352e
  56. 56
    Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; Van Schilfgaarde, M.; Walsh, A. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells Nano Lett. 2014, 14, 2584 2590 DOI: 10.1021/nl500390f
  57. 57
    Ganose, A. M.; Scanlon, D. O. Band Gap and Work Function Tailoring of SnO2 for Improved Transparent Conducting Ability in Photovoltaics J. Mater. Chem. C 2016, 4, 1467 1475 DOI: 10.1039/C5TC04089B
  58. 58
    Chang, X.; Gondal, M.; Al-Saadi, A.; Ali, M.; Shen, H.; Zhou, Q.; Zhang, J.; Du, M.; Liu, Y.; Ji, G. Photodegradation of Rhodamine B Over Unexcited Semiconductor Compounds of BiOCl and BiOBr J. Colloid Interface Sci. 2012, 377, 291 298 DOI: 10.1016/j.jcis.2012.03.021
  59. 59
    Zhang, J.; Xia, J.; Yin, S.; Li, H.; Xu, H.; He, M.; Huang, L.; Zhang, Q. Improvement of Visible Light Photocatalytic Activity Over Flower-Like BiOCl/BiOBr Microspheres Synthesized by Reactable Ionic Liquids Colloids Surf., A 2013, 420, 89 95 DOI: 10.1016/j.colsurfa.2012.11.054
  60. 60
    Cao, J.; Xu, B.; Luo, B.; Lin, H.; Chen, S. Novel BiOI/BiOBr Heterojunction Photocatalysts with Enhanced Visible Light Photocatalytic Properties Catal. Commun. 2011, 13, 63 68 DOI: 10.1016/j.catcom.2011.06.019

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 333 publications.

  1. Melissa Jane Marks, Cecilie Friberg Klysner, Sara Frank, Nanna Nielsen Lange, Rebekka Klemmt, Henrik Særkjær Jeppesen, Marcel Ceccato, Espen Drath Bøjesen, Maarten G. Goesten, Nina Lock. Revisiting Microstructure, Facet Exposure, and Lattice Distortion in Bismuth Oxyhalide (BiOX, X = Cl, Br, I) Nanomaterials for Catalysis. ACS Applied Nano Materials 2025, 8 (13) , 6301-6317. https://doi.org/10.1021/acsanm.4c06675
  2. Xin He, Jiazheng Diao, Qi Yao, Hui Wang, Xia Zhong, Wen Si, Qiang Fu, Long Yuan, Xiaodong Zhang, Yi Xie. Activating Intrinsic Self-Trapped Exciton Emission in Bismuth Oxyhalides by Edge Iodine Doping. ACS Photonics 2025, 12 (1) , 384-391. https://doi.org/10.1021/acsphotonics.4c01770
  3. Albert Gonzalez, Abelline Fionah, Gbemisola J. Bamiduro, Elsayed M. Zahran. Heterostructured S-Scheme BiOBr/Cu2O Nanocomposite for Photocatalytic Degradation of Glyphosate. ACS Omega 2024, 9 (49) , 48512-48523. https://doi.org/10.1021/acsomega.4c07304
  4. Vinay Kumar Sriramadasu, Santanu Bhattacharyya. Hierarchical Hybrids Made of Mixed Metal-Based Sillén-Structured CdxBiO2Br @ Graphene Oxide for Efficient Photocatalytic H2O2 Production. The Journal of Physical Chemistry C 2024, 128 (37) , 15286-15297. https://doi.org/10.1021/acs.jpcc.4c03838
  5. Kornkamon Meesombad, Kasempong Srisawad, Pongtanawat Khemthong, Teera Butburee, Chattarika Sukpattanacharoen, Kajornsak Faungnawakij, Pongkarn Chakthranont. Single-Step Fabrication of BiOI Nanoplates as Gas Diffusion Electrodes for CO2 Electroreduction to Formate: Effects of Spray Pyrolysis Temperature on Activity and Flooding Propensity. ACS Applied Nano Materials 2024, 7 (17) , 20046-20057. https://doi.org/10.1021/acsanm.4c02570
  6. Chengchao Zhong, Cédric Tassel, Daichi Kato, Kanta Ogawa, Ken Niwa, Osamu Tomita, Yukino Ito, Shogo Kawaguchi, Masashi Hasegawa, Ryu Abe, Hiroshi Kageyama. Decompression-Induced In-Plane Lone Pair Electrons in BiSF Synthesized under High Pressure. Chemistry of Materials 2024, 36 (9) , 4495-4501. https://doi.org/10.1021/acs.chemmater.4c00114
  7. Mingyue Wang, Raul Quesada-Cabrera, Sanjayan Sathasivam, Matthew O. Blunt, Joanna Borowiec, Claire J. Carmalt. Visible-Light-Active Iodide-Doped BiOBr Coatings for Sustainable Infrastructure. ACS Applied Materials & Interfaces 2023, 15 (42) , 49270-49280. https://doi.org/10.1021/acsami.3c11525
  8. Snigdha Lal, Marcello Righetto, Aleksander M. Ulatowski, Silvia G. Motti, Zhuotong Sun, Judith L. MacManus-Driscoll, Robert L. Z. Hoye, Laura M. Herz. Bandlike Transport and Charge-Carrier Dynamics in BiOI Films. The Journal of Physical Chemistry Letters 2023, 14 (29) , 6620-6629. https://doi.org/10.1021/acs.jpclett.3c01520
  9. Ruiyun Xin, Xiao Han, Jinlu He. Atomic-Scale Insights into the Activation of Near-Infrared- Responsive Photoactivity in BiOCl Grain Boundaries. The Journal of Physical Chemistry C 2023, 127 (28) , 13759-13766. https://doi.org/10.1021/acs.jpcc.3c00948
  10. Minghui Fu, Hongbin Dou, Wenbo Zhai, Bingsen Hou, Congcong Wu, Wei Meng, Nan Wu, Zhuo Zhang, Tsu-Chien Weng, Yi Yu, Hung-Ta Wang. Enhancing UV-C Photoelectron Lifetimes for Avalanche-like Photocurrents in Carbon-Doped Bi3O4Cl Nanosheets. ACS Applied Materials & Interfaces 2023, 15 (27) , 32525-32537. https://doi.org/10.1021/acsami.3c03331
  11. Jyoti Pandey, Neetu Yadav, Priyanka Yadav, Shivangi Rao, Kashmira Malla, Poojan Koirala, Madhav Prasad Ghimire, Rajamani Nagarajan. Hole and Electron Doping Outcomes in Bi2YO4Cl. Inorganic Chemistry 2023, 62 (24) , 9471-9483. https://doi.org/10.1021/acs.inorgchem.3c00716
  12. Zaichun Sun, Shaoyong Qin, Daichi Oka, Huijuan Zhang, Tomoteru Fukumura, Yuji Matsumoto, Bingchu Mei. Near-Ultraviolet Light-Driven Photocathodic Activity for (001)-Oriented BiOCl Thin Films Synthesized by Mist Chemical Vapor Deposition. Inorganic Chemistry 2023, 62 (23) , 8914-8922. https://doi.org/10.1021/acs.inorgchem.3c00466
  13. Valérie Werner, Ulrich Aschauer, Günther J. Redhammer, Jürgen Schoiber, Gregor A. Zickler, Simone Pokrant. Synthesis and Structure of the Double-Layered Sillén–Aurivillius Perovskite Oxychloride La2.1Bi2.9Ti2O11Cl as a Potential Photocatalyst for Stable Visible Light Solar Water Splitting. Inorganic Chemistry 2023, 62 (17) , 6649-6660. https://doi.org/10.1021/acs.inorgchem.3c00116
  14. Zaichun Sun, Huijuan Zhang, Bingchu Mei. Enhanced Charge Separation and Transfer Efficiency of BiOI with the Dominantly Exposed (102) Facet for Sensitive Photoelectrochemical Photodetection. Inorganic Chemistry 2023, 62 (14) , 5512-5519. https://doi.org/10.1021/acs.inorgchem.2c04523
  15. Huijuan Zhang, Wenyan Luo, Zaichun Sun, Chunya Li. Highly Sensitive and Stable Visible-Light Self-Power Photodetectors Based on Solution-Processed Bi4O5I2. Crystal Growth & Design 2023, 23 (4) , 2852-2859. https://doi.org/10.1021/acs.cgd.3c00036
  16. Bingke Zhang, Dongbo Wang, Jiamu Cao, Chenchen Zhao, Jingwen Pan, Donghao Liu, Sihang Liu, Zhi Zeng, Tianyuan Chen, Gang Liu, Shujie Jiao, Zhikun Xu, Yuewu Huang, Liancheng Zhao, Jinzhong Wang. Efficient Doping Induced by Charge Transfer at the Hetero-Interface to Enhance Photocatalytic Performance. ACS Applied Materials & Interfaces 2023, 15 (10) , 12924-12935. https://doi.org/10.1021/acsami.2c19209
  17. Yingshu Wang, Shuyue Wang, Jiasi Gan, Jinni Shen, Zizhong Zhang, Huidong Zheng, Xuxu Wang. Photocatalytic Coreduction of N2 and CO2 with H2O to (NH2)2CO on 2D-CdS/3D-BiOBr. ACS Sustainable Chemistry & Engineering 2023, 11 (5) , 1962-1973. https://doi.org/10.1021/acssuschemeng.2c06827
  18. Uma V. Ghorpade, Mahesh P. Suryawanshi, Martin A. Green, Tom Wu, Xiaojing Hao, Kevin M. Ryan. Emerging Chalcohalide Materials for Energy Applications. Chemical Reviews 2023, 123 (1) , 327-378. https://doi.org/10.1021/acs.chemrev.2c00422
  19. Matthew N. Gordon, Kaustav Chatterjee, Nayana Christudas Beena, Sara E. Skrabalak. Sustainable Production of Layered Bismuth Oxyhalides for Photocatalytic H2 Production. ACS Sustainable Chemistry & Engineering 2022, 10 (48) , 15622-15641. https://doi.org/10.1021/acssuschemeng.2c05326
  20. Hassan Ouhbi, Julia Wiktor. Ab Initio Insights into Charge Localization in Bismuth Oxyhalides BiOX (X = F, Cl, Br, I). The Journal of Physical Chemistry C 2022, 126 (46) , 19956-19961. https://doi.org/10.1021/acs.jpcc.2c06711
  21. Jhimli Paul Guin, James A. Sullivan, K. Ravindranathan Thampi. Challenges Facing Sustainable Visible Light Induced Degradation of Poly- and Perfluoroalkyls (PFA) in Water: A Critical Review. ACS Engineering Au 2022, 2 (3) , 134-150. https://doi.org/10.1021/acsengineeringau.1c00031
  22. Yanbiao Shi, Hao Li, Chengliang Mao, Guangming Zhan, Zhiping Yang, Cancan Ling, Kai Wei, Xiao Liu, Zhihui Ai, Lizhi Zhang. Manipulating Excitonic Effects in Layered Bismuth Oxyhalides for Photocatalysis. ACS ES&T Engineering 2022, 2 (6) , 957-974. https://doi.org/10.1021/acsestengg.1c00466
  23. Zhiping Yang, Yanbiao Shi, Hao Li, Chengliang Mao, Xiaobing Wang, Xiufan Liu, Xiao Liu, Lizhi Zhang. Oxygen and Chlorine Dual Vacancies Enable Photocatalytic O2 Dissociation into Monatomic Reactive Oxygen on BiOCl for Refractory Aromatic Pollutant Removal. Environmental Science & Technology 2022, 56 (6) , 3587-3595. https://doi.org/10.1021/acs.est.1c08532
  24. Vinoth Selvaraj, Alagarsamy Pandikumar. Turning UV Light-Active BiOF into Visible Light-Active BiOF by Forming a Heterojunction with g-C3N4 and Its Photoelectrochemical Water Splitting Performance in Reverse Osmosis-Rejected Wastewater. The Journal of Physical Chemistry C 2022, 126 (1) , 79-90. https://doi.org/10.1021/acs.jpcc.1c09201
  25. Xiaoli Yang, Shaodong Sun, Jie Cui, Man Yang, Yongguang Luo, Shuhua Liang. Synthesis, Functional Modifications, and Diversified Applications of Hybrid BiOCl-Based Heterogeneous Photocatalysts: A Review. Crystal Growth & Design 2021, 21 (11) , 6576-6618. https://doi.org/10.1021/acs.cgd.1c00866
  26. Qinglin Yuan, Shuxian Wei, Taiping Hu, Yixing Ye, Yunyu Cai, Jun Liu, Pengfei Li, Changhao Liang. Defect-Modified Ultrathin BiOX (X = Cl, Br) Nanosheets Via a Top–Down Approach with Effective Visible-Light Photocatalytic Degradation. The Journal of Physical Chemistry C 2021, 125 (34) , 18630-18639. https://doi.org/10.1021/acs.jpcc.1c02950
  27. Kaustav Chatterjee, Sara E. Skrabalak. Durable Metal Heteroanionic Photocatalysts. ACS Applied Materials & Interfaces 2021, 13 (31) , 36670-36678. https://doi.org/10.1021/acsami.1c09774
  28. Yinghao Wen, Mingbao Feng, Peng Zhang, Hong-Chai Zhou, Virender K. Sharma, Xingmao Ma. Metal Organic Frameworks (MOFs) as Photocatalysts for the Degradation of Agricultural Pollutants in Water. ACS ES&T Engineering 2021, 1 (5) , 804-826. https://doi.org/10.1021/acsestengg.1c00051
  29. Leo Diehl, Douglas H. Fabini, Nella M. Vargas-Barbosa, Alberto Jiménez-Solano, Theresa Block, Viola Duppel, Igor Moudrakovski, Kathrin Küster, Rainer Pöttgen, Bettina V. Lotsch. Interplay between Valence Band Tuning and Redox Stability in SnTiO3: Implications for Directed Design of Photocatalysts. Chemistry of Materials 2021, 33 (8) , 2824-2836. https://doi.org/10.1021/acs.chemmater.0c04886
  30. Matthew N. Gordon, Kaustav Chatterjee, Alison L. Lambright, Sandra L. A. Bueno, Sara E. Skrabalak. Organohalide Precursors for the Continuous Production of Photocatalytic Bismuth Oxyhalide Nanoplates. Inorganic Chemistry 2021, 60 (7) , 4218-4225. https://doi.org/10.1021/acs.inorgchem.0c03231
  31. Mary O. Olagunju, Elsayed M. Zahran, Jacqueline M. Reed, Elnaz Zeynaloo, Dharmendra Shukla, Joshua L. Cohn, Bapurao Surnar, Shanta Dhar, Leonidas G. Bachas, Marc R. Knecht. Halide Effects in BiVO4/BiOX Heterostructures Decorated with Pd Nanoparticles for Photocatalytic Degradation of Rhodamine B as a Model Organic Pollutant. ACS Applied Nano Materials 2021, 4 (3) , 3262-3272. https://doi.org/10.1021/acsanm.1c00481
  32. Akinobu Nakada, Daichi Kato, Ryky Nelson, Hikaru Takahira, Masayoshi Yabuuchi, Masanobu Higashi, Hajime Suzuki, Maria Kirsanova, Naoji Kakudou, Cédric Tassel, Takafumi Yamamoto, Craig M. Brown, Richard Dronskowski, Akinori Saeki, Artem Abakumov, Hiroshi Kageyama, Ryu Abe. Conduction Band Control of Oxyhalides with a Triple-Fluorite Layer for Visible Light Photocatalysis. Journal of the American Chemical Society 2021, 143 (6) , 2491-2499. https://doi.org/10.1021/jacs.0c10288
  33. Yanyan Zhao, Si Zhou, Jijun Zhao, Yi Du, Shi Xue Dou. Control of Photocarrier Separation and Recombination at Bismuth Oxyhalide Interface for Nitrogen Fixation. The Journal of Physical Chemistry Letters 2020, 11 (21) , 9304-9312. https://doi.org/10.1021/acs.jpclett.0c02480
  34. Meikun Shen, Tianben Ding, Jiang Luo, Che Tan, Khalid Mahmood, Zheyu Wang, Dongyan Zhang, Rohan Mishra, Matthew D. Lew, Bryce Sadtler. Competing Activation and Deactivation Mechanisms in Photodoped Bismuth Oxybromide Nanoplates Probed by Single-Molecule Fluorescence Imaging. The Journal of Physical Chemistry Letters 2020, 11 (13) , 5219-5227. https://doi.org/10.1021/acs.jpclett.0c01237
  35. Andrea Crovetto, Alireza Hajijafarassar, Ole Hansen, Brian Seger, Ib Chorkendorff, Peter C. K. Vesborg. Parallel Evaluation of the BiI3, BiOI, and Ag3BiI6 Layered Photoabsorbers. Chemistry of Materials 2020, 32 (8) , 3385-3395. https://doi.org/10.1021/acs.chemmater.9b04925
  36. Devendra Tiwari, Dominic Alibhai, David Cherns, David J Fermin. Crystal and Electronic Structure of Bismuth Thiophosphate, BiPS4: An Earth-Abundant Solar Absorber. Chemistry of Materials 2020, 32 (3) , 1235-1242. https://doi.org/10.1021/acs.chemmater.9b04626
  37. Wei Zeng, Li-ping Feng, Jie Li, Haixi Pan, Xiaodong Zhang, Xiaoqi Zheng, Yicheng Huang, Rui Zhang, Zhengtang Liu. Synthesis of Millimeter-Size Single-Crystal 2D BiOI Sheets and Ribbons on Mica. Chemistry of Materials 2019, 31 (23) , 9715-9720. https://doi.org/10.1021/acs.chemmater.9b03249
  38. Hai-xi Pan, Li-ping Feng, Wei Zeng, Quan-chao Zhang, Xiao-dong Zhang, Zheng-tang Liu. Active Sites in Single-Layer BiOX (X = Cl, Br, and I) Catalysts for the Hydrogen Evolution Reaction. Inorganic Chemistry 2019, 58 (19) , 13195-13202. https://doi.org/10.1021/acs.inorgchem.9b02053
  39. Dandan Cui, Liang Wang, Yi Du, Weichang Hao, Jun Chen. Photocatalytic Reduction on Bismuth-Based p-Block Semiconductors. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 15936-15953. https://doi.org/10.1021/acssuschemeng.8b04977
  40. Sujuan Wu, Weiwei Sun, Jianguo Sun, Zachary D. Hood, Shi-Ze Yang, Lidong Sun, Paul R. C. Kent, Matthew F. Chisholm. Surface Reorganization Leads to Enhanced Photocatalytic Activity in Defective BiOCl. Chemistry of Materials 2018, 30 (15) , 5128-5136. https://doi.org/10.1021/acs.chemmater.8b01629
  41. Alex M. Ganose, Saya Matsumoto, John Buckeridge, David O. Scanlon. Defect Engineering of Earth-Abundant Solar Absorbers BiSI and BiSeI. Chemistry of Materials 2018, 30 (11) , 3827-3835. https://doi.org/10.1021/acs.chemmater.8b01135
  42. Daichi Kato, Kenta Hongo, Ryo Maezono, Masanobu Higashi, Hironobu Kunioku, Masayoshi Yabuuchi, Hajime Suzuki, Hiroyuki Okajima, Chengchao Zhong, Kousuke Nakano, Ryu Abe, and Hiroshi Kageyama . Valence Band Engineering of Layered Bismuth Oxyhalides toward Stable Visible-Light Water Splitting: Madelung Site Potential Analysis. Journal of the American Chemical Society 2017, 139 (51) , 18725-18731. https://doi.org/10.1021/jacs.7b11497
  43. Wei Deng, Huilei Zhao, Fuping Pan, Xuhui Feng, Bahngmi Jung, Ahmed Abdel-Wahab, Bill Batchelor, and Ying Li . Visible-Light-Driven Photocatalytic Degradation of Organic Water Pollutants Promoted by Sulfite Addition. Environmental Science & Technology 2017, 51 (22) , 13372-13379. https://doi.org/10.1021/acs.est.7b04206
  44. Amal BaQais, Antton Curutchet, Ahmed Ziani, Hassan Ait Ahsaine, Philippe Sautet, Kazuhiro Takanabe, and Tangui Le Bahers . Bismuth Silver Oxysulfide for Photoconversion Applications: Structural and Optoelectronic Properties. Chemistry of Materials 2017, 29 (20) , 8679-8689. https://doi.org/10.1021/acs.chemmater.7b02664
  45. Christopher N. Savory, Alex M. Ganose, and David O. Scanlon . Exploring the PbS–Bi2S3 Series for Next Generation Energy Conversion Materials. Chemistry of Materials 2017, 29 (12) , 5156-5167. https://doi.org/10.1021/acs.chemmater.7b00628
  46. Robert L. Z. Hoye, Philip Schulz, Laura T. Schelhas, Aaron M. Holder, Kevin H. Stone, John D. Perkins, Derek Vigil-Fowler, Sebastian Siol, David O. Scanlon, Andriy Zakutayev, Aron Walsh, Ian C. Smith, Brent C. Melot, Rachel C. Kurchin, Yiping Wang, Jian Shi, Francisco C. Marques, Joseph J. Berry, William Tumas, Stephan Lany, Vladan Stevanović, Michael F. Toney, and Tonio Buonassisi . Perovskite-Inspired Photovoltaic Materials: Toward Best Practices in Materials Characterization and Calculations. Chemistry of Materials 2017, 29 (5) , 1964-1988. https://doi.org/10.1021/acs.chemmater.6b03852
  47. Jie Li, Hao Li, Guangming Zhan, and Lizhi Zhang . Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides. Accounts of Chemical Research 2017, 50 (1) , 112-121. https://doi.org/10.1021/acs.accounts.6b00523
  48. Adarsh Singh, Amit Bhatnagar, Ashok Kumar Gupta. Novel 2D/3D Z-scheme heterojunction with Bi12O15Cl6 nanoplates anchored on MIL-53 (Fe) derived Fe2O3@C micro-rods for enhanced visible-light-mediated photocatalytic degradation of fluoroquinolones in wastewater. Separation and Purification Technology 2025, 363 , 132176. https://doi.org/10.1016/j.seppur.2025.132176
  49. Gang Yan, Xuzheng Cao, Qi Zhao, Wei Hu, Zhenxun Zhao, Hongfei Shi. Bismuth-based photocatalysts for formaldehyde photodegradation: a review and prospects. Inorganic Chemistry Communications 2025, 178 , 114547. https://doi.org/10.1016/j.inoche.2025.114547
  50. Dong Chen, Rui Zhang, Jie He, Maoqin Xu, Zixi Li, Yujie Liu, Dongyuan Li. In-situ synthesis of nitrogen-deficient g-C3N4-BiOBr-Bi2WO6/PVDF heterojunction composite membrane with enhanced retention and degradation performance. Applied Surface Science 2025, 695 , 162871. https://doi.org/10.1016/j.apsusc.2025.162871
  51. Aswin L N Kondusamy, Wenhao Liu, Joy Roy, Xiangyu Zhu, Connor V Smith, Xinglu Wang, Chadwin Young, Moon J Kim, Robert M Wallace, William G Vandenberghe, Bing Lv. Bismuth oxychloride as a van der Waals dielectric for 2D electronics. Nanotechnology 2025, 36 (18) , 185201. https://doi.org/10.1088/1361-6528/adc00c
  52. Qinghai Zhang, Weiweng Wang, Yunlong Qu, Mengqi Bian, Rui Liu, Guanghui Chen, Chaojie Li, Jihai Duan. A novel Z-scheme Ag/AgBr/Bi4O5Br2 heterojunction with rich oxygen vacancy for enhanced photocatalytic degradation of formaldehyde. Microporous and Mesoporous Materials 2025, 389 , 113555. https://doi.org/10.1016/j.micromeso.2025.113555
  53. C. Ashina, N. Pugazhenthiran, R.V. Mangalaraja, P. Sathishkumar. Review on enhancing solar photocatalysis for sustainable degradation of invisible environmental pollutants. Renewable and Sustainable Energy Reviews 2025, 214 , 115490. https://doi.org/10.1016/j.rser.2025.115490
  54. Jaideep Malik, Anil Kumar, Divya Meena, Mohd Afzal, Vandana Meena, Soumitra Maiti. Photocatalytic activity of Sillén phases, BaBiO2X (X = Cl & Br), their crystal structure and DFT studies. Ceramics International 2025, 51 (11) , 14544-14552. https://doi.org/10.1016/j.ceramint.2025.01.291
  55. Yao Chen, Tianlei Wang, Lei Zhang, Wei Zhao, Rui Xu. Fabrication of piezo-phototronic effect enhanced photocatalytic coating based on ZnO/BiOCl and its degradation performance. Journal of Nanoparticle Research 2025, 27 (4) https://doi.org/10.1007/s11051-025-06297-z
  56. Tunde L. Yusuf, Benjamin O. Orimolade, Daniel Masekela, Kayode Adegoke, Kwena D. Modibane, Seshibe Makgato. BiOX(X=Cl, Br, I)-based S-scheme heterostructure photocatalysts for environmental remediation and energy conversion.. Materials Today Sustainability 2025, 8 , 101115. https://doi.org/10.1016/j.mtsust.2025.101115
  57. Anju Joseph, R. Jayakrishnan, Akhil M. Anand, Vinoy Thomas. Ag-doped BiOBr nanoparticles: a grander photocatalyst. Journal of Materials Science: Materials in Electronics 2025, 36 (10) https://doi.org/10.1007/s10854-025-14695-1
  58. Yu Su, Zheng Gao, Lei Zhang, Bo Zhang, Rui Xu, Xiang Cheng, Nansha Li, Wei Zhao. g-C 3 N 4 -modified BiOCl as a visible light catalyst and its enhanced photocatalytic degradation/sterilization performance. Catalysis Science & Technology 2025, 15 (7) , 2261-2271. https://doi.org/10.1039/D4CY01561D
  59. Wenke Gui, Shan Jiang, Luyuan Wang, Chuangwei Liu, Zichao Huang, Li Wang, Jianping Yang. Construction of Asymmetric Anion Layer to Accelerate Carrier Reaction Kinetics and Thermodynamically Promote Photocatalytic CO 2 Reduction. Advanced Functional Materials 2025, https://doi.org/10.1002/adfm.202505919
  60. Akira Yamakata, Kosaku Kato, Takafumi Ogawa, Kanta Ogawa, Makoto Ogawa, Daichi Kato, Chengchao Zhong, Akihide Kuwabara, Ryu Abe, Hiroshi Kageyama. Conduction Band and Defect Engineering for the Prominent Visible‐Light Responsive Photocatalysts. Angewandte Chemie International Edition 2025, 64 (13) https://doi.org/10.1002/anie.202419624
  61. Emily Grace Ward, Alexandru Bogdan Georgescu. Visualizing Lone Pairs and Quantifying Their Bonding in Solids with Tight-Binding Wannier Models from First Principles. Journal of Physics: Materials 2025, https://doi.org/10.1088/2515-7639/adc33e
  62. Cheng-Gong Lu, Chu-Jie Jiao, Xiu-Cheng Zhang, Wen-Cong Lin, Xue-Fei Chen. Fly Ash-Supported Photocatalysts: Synthesis, Applications, and Advances in Modification Technology. Crystals 2025, 15 (3) , 223. https://doi.org/10.3390/cryst15030223
  63. Zilan Fang, Guangri Chen, Guoliang Zhu, Lianwei Shan, Huanyan Xu, Jagadeesh Suriyaprakash, Haitao Wu, Limin Dong, Xuejiao Li, Changhui Lu. Crystal facet/interface anchored Janus activity of BiOBr in driving photocatalytic water splitting. Separation and Purification Technology 2025, 354 , 129191. https://doi.org/10.1016/j.seppur.2024.129191
  64. Akira Yamakata, Kosaku Kato, Takafumi Ogawa, Kanta Ogawa, Makoto Ogawa, Daichi Kato, Chengchao Zhong, Akihide Kuwabara, Ryu Abe, Hiroshi Kageyama. Conduction Band and Defect Engineering for the Prominent Visible‐Light Responsive Photocatalysts. Angewandte Chemie 2025, 108 https://doi.org/10.1002/ange.202419624
  65. Tushar Kanti Das, Marcin Jesionek, Krystian Mistewicz, Mirosława Kępińska, Anna Starczewska, Maciej Krzywiecki, Aleksandra Przybyła, Maciej Zubko, Mateusz Kozioł. BiOI: Self‐Powered Humidity Sensor and Breath Monitor. Advanced Materials Technologies 2025, 9 https://doi.org/10.1002/admt.202401988
  66. Anjitha A, Shijina K, Ajayan K. V., Sindhu Swaminathan, Irene M. C. Lo, Kishore Sridharan. Combating eukaryotic and prokaryotic harmful algal blooms with visible-light driven BiOBr x I 1− x /MFe 2 O 4 /g-C 3 N 4 (M = Co & Ni) recyclable photocatalysts. Environmental Science: Nano 2025, 12 (1) , 262-275. https://doi.org/10.1039/D4EN00955J
  67. Bartłomiej Toroń, Tushar Kanti Das, Mateusz Kozioł, Piotr Szperlich, Mirosława Kępińska. Impact of hydrochloric acid doping on polyaniline conductivity and piezoelectric performance in polyaniline/bismuth oxyiodide nanocomposites. Composites Part B: Engineering 2025, 289 , 111960. https://doi.org/10.1016/j.compositesb.2024.111960
  68. Yan Wang, Huanhuan Wang, Xiaoyang Wang, Jing Zhang, Guoyong Wang, Xiaochao Zhang. Facile synthesis of S-scheme Bi2S3/BiOCl heterojunction with tunable bandgap structures for enhanced photocatalytic organic degradation performance. Inorganic Chemistry Communications 2025, 171 , 113532. https://doi.org/10.1016/j.inoche.2024.113532
  69. Van Quang Nguyen, Manjiri A. Mahadadalkar, Pham Cam Nam, Jae-Jin Shim, Jagpreet Singh, Bao Van, D. Duc Nguyen. Microwave synthesized ternary BiOCl/BiOBr/Bi2O3 nanocomposite for enhanced degradation of organic contaminants under visible light exposure. Journal of the Taiwan Institute of Chemical Engineers 2025, 166 , 105520. https://doi.org/10.1016/j.jtice.2024.105520
  70. Leticia M.B. Silva, Francisco A.A. Barros, Marisa C. Oliveira, Renan A.P. Ribeiro, M.E.H. Maia da Costa, Odivaldo C. Alves, Evelyn C.S. Santos, Luiz K.C. de Souza, C.C. Santos, A.S. de Menezes, Surender K. Sharma, Geraldo E. Luz Jr, L.S. Cavalcante, E. Longo, M.A.P. Almeida. Theoretical and experimental investigation on electronic and photocatalytic properties of n-p BiOBr/FeWO4 heterojunction for dyes degradation. Journal of Alloys and Compounds 2025, 1010 , 177323. https://doi.org/10.1016/j.jallcom.2024.177323
  71. Muhammad Sufyan Javed, Muhammad Altaf Nazir, Zainab Shafiq, Sami Ullah, Tayyaba Najam, Rashid Iqbal, Mostafa A. Ismail, Tensangmu Lama Tamang, Syed Shoaib Ahmad Shah. Advanced materials for photocatalytic removal of antibiotics from wastewater. Journal of Alloys and Compounds 2025, 1010 , 177926. https://doi.org/10.1016/j.jallcom.2024.177926
  72. Tao Zhang, Zhi-Cong He, Qiong Mei, Wei Peng, Qi-Zhao Wang, Hong-Fei Cheng, Fei Ding. Monolayer BiOI doped with nonmetals (B, C, N, Si, P, S) to enhance photocatalytic hydrogen precipitation performance. Applied Surface Science 2024, 669 , 160560. https://doi.org/10.1016/j.apsusc.2024.160560
  73. R. Sereika, Š. Varnagiris, M. Urbonavičius, R. Žaltauskas, D. Milčius. Synthesis and properties of quasi-one-dimensional BiSBr crystals via the Bridgman-Stockbarger technique. Journal of Crystal Growth 2024, 643 , 127816. https://doi.org/10.1016/j.jcrysgro.2024.127816
  74. Tawanwit Luangwanta, Auttaphon Chachvalvutikul, Athis Watwiangkham, Siriporn Jungsuttiwong, Sulawan Kaowphong. Ethylene glycol-assisted microwave synthesis of bismuth-rich oxychlorides photocatalysts with oxygen vacancies for efficient degradation of bisphenol A and oxidation of arsenite. Journal of Environmental Chemical Engineering 2024, 12 (5) , 114100. https://doi.org/10.1016/j.jece.2024.114100
  75. Tushar Kanti Das, Marcin Jesionek, Krystian Mistewicz, Bartłomiej Nowacki, Mirosława Kępińska, Maciej Zubko, Marcin Godzierz, Anna Gawron. Ultrasonic-Assisted Conversion of Micrometer-Sized BiI3 into BiOI Nanoflakes for Photocatalytic Applications. International Journal of Molecular Sciences 2024, 25 (19) , 10265. https://doi.org/10.3390/ijms251910265
  76. Anusit Thongnum. Photoexcited charge-carrier transport in monolayer and bulk bismuth oxyiodide: the impact of the polaronic effect and deep-level defects. Physica Scripta 2024, 99 (8) , 085507. https://doi.org/10.1088/1402-4896/ad5b95
  77. Mengshi Zhou, Chunxiao Zhang, Chaoyu He, Jin Li, Tao Ouyang, Chao Tang, Jianxin Zhong. Novel BiOI/LaOXI〈IX〉 heterojunction with enhanced visible-light driven photocatalytic performance: unveiling the mechanism of interlayer electron transition. Physical Chemistry Chemical Physics 2024, 26 (28) , 19450-19459. https://doi.org/10.1039/D4CP01195C
  78. Han Wang, Xi Zhang, Hongyu Zhu, Gang Xiang. Robust Bi-anchoring carbon dot/BiOCl sheet heterojunction photocatalysts toward superior photocatalytic activity. Nanoscale 2024, 16 (26) , 12670-12679. https://doi.org/10.1039/D4NR01304B
  79. Jiyu Ning, Weijia Meng, Chuang Wang, Huangkai Wang, Chao Wu, Lidong You, Xianyou Wang, Yong Pei, Haibo Wang, Zhenhua Yang. Structure design of a BiOF solid electrolyte with remarkably outstanding fluoride ion diffusion performance induced by Ga doping. Journal of Materials Chemistry A 2024, 12 (26) , 15592-15600. https://doi.org/10.1039/D4TA02308K
  80. Lidong You, Huangkai Wang, Chuang Wang, Weijia Meng, Chao Wu, Biao Wei, Xianyou Wang, Yong Pei, Haibo Wang, Zhenhua Yang. Atomically engineered Al-doped LaOCl for chlorine-ion batteries. Ceramics International 2024, 50 (14) , 25312-25321. https://doi.org/10.1016/j.ceramint.2024.04.261
  81. Jiaji Zhang, Bingchu Mei, Huiyu Chen, Zaichun Sun. Review on synthetic approaches and PEC activity performance of bismuth binary and mixed-anion compounds for potential applications in marine engineering. Dalton Transactions 2024, 53 (25) , 10376-10402. https://doi.org/10.1039/D4DT01212G
  82. Dongsheng Chen, Keqian Gong, Xiangyang Xu, Chenyu Huang, Pengtao Lei. Enhancing the adsorption–photocatalytic efficiency of BiOBr for Congo red degradation by tuning the surface charge and bandgap via an Y 3+ –I − co-doping strategy. Physical Chemistry Chemical Physics 2024, 26 (24) , 17155-17170. https://doi.org/10.1039/D4CP00876F
  83. Jing-Hang Wu, Tian-Hao Yang, Yi-Jiao Sun, Yuan Min, Yi Hu, Fei Chen, Jie-Jie Chen, Han-Qing Yu. Tailoring the selective generation of oxidative organic radicals for toxic-by-product-free water decontamination. Proceedings of the National Academy of Sciences 2024, 121 (23) https://doi.org/10.1073/pnas.2403544121
  84. Shijie Li, Changjun You, Ke Rong, Chunqiang Zhuang, Xiaobo Chen, Bin Zhang. Chemically bonded Mn0.5Cd0.5S/BiOBr S-scheme photocatalyst with rich oxygen vacancies for improved photocatalytic decontamination performance. Advanced Powder Materials 2024, 3 (3) , 100183. https://doi.org/10.1016/j.apmate.2024.100183
  85. Xinyi Gu, Linyi Li, Yanlin Wu, Wenbo Dong. Enhancement of microplastics degradation with MIL-101 modified BiOI photocatalyst under light and dark alternated system. Journal of Environmental Chemical Engineering 2024, 12 (3) , 112958. https://doi.org/10.1016/j.jece.2024.112958
  86. Liangpang Xu, Jimmy C. Yu, Ying Wang. Recent advances on bismuth oxyhalides for photocatalytic CO2 reduction. Journal of Environmental Sciences 2024, 140 , 183-203. https://doi.org/10.1016/j.jes.2023.07.002
  87. Jingjing Zhao, Zhong Liu, Zhiyong Ji, Xiaowei An, Xiao Du, Fengfeng Gao, Xiaogang Hao, Jun Li. Selective transmembrane transport of iodide based on electrochemically induced iodide-trap BiOI/MWCNTs/PVA composite membrane. Journal of Membrane Science 2024, 705 , 122866. https://doi.org/10.1016/j.memsci.2024.122866
  88. Kunhua Ren, Fubo Shao, Hui Li, Xiqiang Mao, Jian Yang, Ximei Fan. Preparation of BiOBr x Cl 1‐x solid solution photocatalyst with oxygen vacancies for degradation of methyl orange under simulated sunlight. Journal of the Chinese Chemical Society 2024, 71 (5) , 465-473. https://doi.org/10.1002/jccs.202300455
  89. Zicheng Chen, Xuefeng Zhang, Kai Xu, Xiangyang He, Junkai Li, Lanhe Zhang, Guanhua Wang. Facile fabrication of nanocellulose-supported membrane composited with modified carbon nitride and HKUST-1 for efficient photocatalytic degradation of formaldehyde. International Journal of Biological Macromolecules 2024, 268 , 131937. https://doi.org/10.1016/j.ijbiomac.2024.131937
  90. Rui Zhao, Juexiu Li, Maiqi Sun, Qixu Shi, Mingzhu Zhao, Miaomiao Li, Zixuan Bi, Xinrui Lei, Jinping Jia. Enhanced photocatalytic degradation by higher exposure of {110} facet and surface oxygen vacancies of BiOBr through cobalt doping strategy. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 687 , 133402. https://doi.org/10.1016/j.colsurfa.2024.133402
  91. Longqiang He, Yongjun Wang, Yanmei Li, Xiaohua Wang, Lianwei Shan. Research Progress of and Perspectives of BiOCl Photocatalytic Materials. Ferroelectrics 2024, 618 (4) , 983-998. https://doi.org/10.1080/00150193.2023.2300609
  92. Zaichun Sun, Tahta Amrillah. Potential application of bismuth oxyiodide (BiOI) when it meets light. Nanoscale 2024, 16 (10) , 5079-5106. https://doi.org/10.1039/D3NR06559F
  93. Vinoth S, Pandikumar A. Recent advances in bismuth oxyfluoride-based photocatalysts for energy and environmental remediation. Materials Today Chemistry 2024, 36 , 101924. https://doi.org/10.1016/j.mtchem.2024.101924
  94. Ivan Caño, Jonathan W. Turnley, Pol Benítez, Cibrán López-Álvarez, José-Miguel Asensi, David Payno, Joaquim Puigdollers, Marcel Placidi, Claudio Cazorla, Rakesh Agrawal, Edgardo Saucedo. Novel synthesis of semiconductor chalcohalide anti-perovskites by low-temperature molecular precursor ink deposition methodologies. Journal of Materials Chemistry C 2024, 12 (9) , 3154-3163. https://doi.org/10.1039/D3TC04410F
  95. Mauro Mato, Josep Cornella. Bismuth in Radical Chemistry and Catalysis. Angewandte Chemie 2024, 136 (8) https://doi.org/10.1002/ange.202315046
  96. Mauro Mato, Josep Cornella. Bismuth in Radical Chemistry and Catalysis. Angewandte Chemie International Edition 2024, 63 (8) https://doi.org/10.1002/anie.202315046
  97. Xujun Liu, Hang Zhang, Xianhua Qiu, Hao Ye, Yu Xie, Yun Ling. Construction of BiOCl/In2O3 heterojunction for effective photocatalytic reduction of CO2. Applied Catalysis A: General 2024, 671 , 119574. https://doi.org/10.1016/j.apcata.2024.119574
  98. Huijun Guo, Xin Wang, Shihao Wang, Hanyu Ma, Jianzhi Liu. A signal “switch-on” photoelectrochemical sensor based on a 3D-FM/BiOI heterostructure for the sensitive detection of l -ascorbic acid. RSC Advances 2024, 14 (7) , 4556-4567. https://doi.org/10.1039/D3RA08288A
  99. Lei Yue, Dandan Cui, Fubo Tian, Shuang Liu, Zonglun Li, Ran Liu, Zhen Yao, Yanchun Li, Dongliang Yang, Xiaodong Li, Quanjun Li, Yi Du, Bingbing Liu. Synchronous pressure-induced enhancement in the photoresponsivity and response speed of BiOBr. Acta Materialia 2024, 263 , 119529. https://doi.org/10.1016/j.actamat.2023.119529
  100. Zhen-Long Lv, Shi-Jie Lv, Xiao-Fei Wang, Hong-Ling Cui. Electronic, Mechanical, and Infrared Properties of BiOX (X = Cl, Br, I) Monolayers. physica status solidi (b) 2023, https://doi.org/10.1002/pssb.202300415
Load more citations

Chemistry of Materials

Cite this: Chem. Mater. 2016, 28, 7, 1980–1984
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.chemmater.6b00349
Published March 10, 2016

Copyright © 2016 American Chemical Society. This publication is licensed under CC-BY.

Article Views

11k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Crystal structure of the BiOX systems (space group P4/nmm, D4h symmetry) with stoichiometric X–Bi–O–Bi–X bilayers stacked along the c axis.

    Figure 2

    Figure 2. Scalar relativistic (dashed lines) and fully relativistic (black lines) electronic band structures of the BiOX series with the hybrid HSE06 functional. The highest occupied state (including spin–orbit coupling) is set to 0 eV.

    Figure 3

    Figure 3. Fully relativistic (HSE06+SOC) electronic density of states (DOS), including projections onto ion-centered atomic orbitals (PEDOS). The highest occupied state is set to 0 eV.

    Figure 4

    Figure 4. Calculated valence band alignment of the BiOX series (HSE including spin–orbit coupling). The vacuum level was aligned to the (001) surface in a slab calculation with a vacuum thickness of 15 Å. The electrostatic potentials were aligned and checked using the package MacroDensity. (53)

  • References


    This article references 60 other publications.

    1. 1
      Auer, G.; Griebler, W.; Jahn, B. In Industrial Inorganic Pigments; Buxbaum, G., Pfaff, G., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2005; pp 129 130.
    2. 2
      Pfaff, G.; Reynders, P. Angle-Dependent Optical Effects Deriving from Submicron Structures of Films and Pigments Chem. Rev. 1999, 99, 1963 1982 DOI: 10.1021/cr970075u
    3. 3
      Rotmensch, J.; Whitlock, J.; Dietz, M.; Hines, J.; Reba, R.; Horwitz, E.; Harper, P. Development of 212-BiOCl as a new therapeutic modality against microscopic carcinoma Abstr. Pap. Am. Chem. Soc. 1998, U926 U926
    4. 4
      Briand, G. G.; Burford, N. Bismuth Compounds and Preparations with Biological or Medicinal Relevance Chem. Rev. 1999, 99, 2601 2658 DOI: 10.1021/cr980425s
    5. 5
      Rabatin, J. G. Bismuth Activated Rare Earth Oxybromide Phosphors and X-Ray Image Converters Utilizing Said Phosphors. U.S. Patent 4,068,129, 1978.
    6. 6
      Michel, C. R.; Contreras, N. L. L.; Martínez-Preciado, A. H. Gas Sensing Properties of Nanostructured Bismuth Oxychloride Sens. Actuators, B 2011, 160, 271 277 DOI: 10.1016/j.snb.2011.07.047
    7. 7
      Kijima, N.; Matano, K.; Saito, M.; Oikawa, T.; Konishi, T.; Yasuda, H.; Sato, T.; Yoshimura, Y. Oxidative Catalytic Cracking of N-Butane to Lower Alkenes over Layered BiOCl Catalyst Appl. Catal., A 2001, 206, 237 244 DOI: 10.1016/S0926-860X(00)00598-6
    8. 8
      Ghosh, R.; Maiti, S.; Chakraborty, A. Facile Catalyzed Acylation of Heteroatoms Using BiCl3 Generated in situ From the Procatalyst BiOCl and Acetyl Chloride Tetrahedron Lett. 2004, 45, 6775 6778 DOI: 10.1016/j.tetlet.2004.07.044
    9. 9
      Zhang, K.-L.; Liu, C.-M.; Huang, F.-Q.; Zheng, C.; Wang, W.-D. Study of the Electronic Structure and Photocatalytic Activity of the BiOCl Photocatalyst Appl. Catal., B 2006, 68, 125 129 DOI: 10.1016/j.apcatb.2006.08.002
    10. 10
      Zhang, J.; Shi, F.; Lin, J.; Chen, D.; Gao, J.; Huang, Z.; Ding, X.; Tang, C. Self-Assembled 3-D Architectures of BiOBr as a Visible Light-Driven Photocatalyst Chem. Mater. 2008, 20, 2937 2941 DOI: 10.1021/cm7031898
    11. 11
      Zhang, X.; Ai, Z.; Jia, F.; Zhang, L. Generalized One-Pot Synthesis, Characterization,and Photocatalytic Activity of Hierarchical BiOX (x= Cl, Br, I) Nanoplate Microspheres J. Phys. Chem. C 2008, 112, 747 753 DOI: 10.1021/jp077471t
    12. 12
      An, H.; Du, Y.; Wang, T.; Wang, C.; Hao, W.; Zhang, J. Photocatalytic Properties of BiOX (X= Cl, Br, and I) Rare Met. 2008, 27, 243 250 DOI: 10.1016/S1001-0521(08)60123-0
    13. 13
      Chai, S. Y.; Kim, Y. J.; Jung, M. H.; Chakraborty, A. K.; Jung, D.; Lee, W. I. Het-erojunctioned BiOCl/Bi2O3, a New Visible Light Photocatalyst J. Catal. 2009, 262, 144 149 DOI: 10.1016/j.jcat.2008.12.020
    14. 14
      Chang, X.; Huang, J.; Cheng, C.; Sui, Q.; Sha, W.; Ji, G.; Deng, S.; Yu, G. BiOX (X = Cl, Br, I) Photocatalysts Prepared Using NaBiO3 as the Bi Source: Characterization and Catalytic Performance Catal. Commun. 2010, 11, 460 464 DOI: 10.1016/j.catcom.2009.11.023
    15. 15
      Cheng, H.; Huang, B.; Dai, Y. Engineering BiOX (X= Cl, Br, I) Nanostructures for Highly Efficient Photocatalytic Applications Nanoscale 2014, 6, 2009 2026 DOI: 10.1039/c3nr05529a
    16. 16
      Bhachu, D. S.; Moniz, S. J. A.; Sathasivam, S.; Scanlon, D. O.; Walsh, A.; Bawaked, S. M.; Mokhtar, M.; Obaid, A. Y.; Parkin, I. P.; Tang, J.; Carmalt, C. J. Bismuth Oxyhalides: Synthesis, Structure and Photoelectrochemical Activity Chem. Sci. 2016,  DOI: 10.1039/C6SC00389C
    17. 17
      Zhang, H.; Liu, L.; Zhou, Z. First-Principles Studies on Facet-Dependent Photocatalytic Properties of Bismuth Oxyhalides (BiOXs) RSC Adv. 2012, 2, 9224 9229 DOI: 10.1039/c2ra20881d
    18. 18
      Gnayem, H.; Sasson, Y. Hierarchical Nanostructured 3D Flowerlike BiOClxBr1–x Semi- conductors with Exceptional Visible Light Photocatalytic Activity ACS Catal. 2013, 3, 186 191 DOI: 10.1021/cs3005133
    19. 19
      Zhang, H.; Liu, L.; Zhou, Z. Towards Better Photocatalysts: First-Principles Studies of the Alloying Effects on the Photocatalytic Activities of Bismuth Oxyhalides Under Visible Light Phys. Chem. Chem. Phys. 2012, 14, 1286 1292 DOI: 10.1039/C1CP23516H
    20. 20
      Li, J.; Yu, Y.; Zhang, L. Bismuth Oxyhalide Nanomaterials: Layered Structures Meet Photocatalysis Nanoscale 2014, 6, 8473 8488 DOI: 10.1039/C4NR02553A
    21. 21
      Shamaila, S.; Sajjad, A. K. L.; Chen, F.; Zhang, J. WO3 /BiOCl, a novel heterojunction as visible light photocatalyst J. Colloid Interface Sci. 2011, 356, 465 472 DOI: 10.1016/j.jcis.2011.01.015
    22. 22
      Shenawi-Khalil, S.; Uvarov, V.; Fronton, S.; Popov, I.; Sasson, Y. A Novel Heterojunc-tion BiOBr/Bismuth Oxyhydrate Photocatalyst with Highly Enhanced Visible Light Photocatalytic Properties J. Phys. Chem. C 2012, 116, 11004 11012 DOI: 10.1021/jp3009964
    23. 23
      Keramidas, K.; Voutsas, G.; Rentzeperis, P. The Crystal Structure of BiOCl Z. Kristallogr. - Cryst. Mater. 1993, 205, 35 40 DOI: 10.1524/zkri.1993.205.12.35
    24. 24
      Bannister, F.; Hey, M. The Crystal Structure Of The Bismuth Oxyhalides Mineral. Mag. 1935, 24, 49 58 DOI: 10.1180/minmag.1935.024.149.01
    25. 25
      Kusainova, A. M.; Zhou, W.; Irvine, J. T.; Lightfoot, P. Layered Intergrowth Phases Bi4MO8X (X= Cl, M= Ta and X= Br, M= Ta or Nb): Structural and Electrophysical Characterization J. Solid State Chem. 2002, 166, 148 157 DOI: 10.1006/jssc.2002.9572
    26. 26
      Ai, Z.; Ho, W.; Lee, S.; Zhang, L. Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres Under Visible Light Environ. Sci. Technol. 2009, 43, 4143 4150 DOI: 10.1021/es9004366
    27. 27
      Henle, J.; Simon, P.; Frenzel, A.; Scholz, S.; Kaskel, S. Nanosized BiOX (X= Cl, Br, I) Particles Synthesized in Reverse Microemulsions Chem. Mater. 2007, 19, 366 373 DOI: 10.1021/cm061671k
    28. 28
      Wang, W.; Huang, F.; Lin, X. xBiOI—(1–x)BiOCl as efficient visible-light-driven photocatalysts Scr. Mater. 2007, 56, 669 672 DOI: 10.1016/j.scriptamat.2006.12.023
    29. 29
      Wang, W.; Huang, F.; Lin, X.; Yang, J. Visible-Light-Responsive Photocatalysts xBiOBr—(1–x)BiOI Catal. Commun. 2008, 9, 8 12 DOI: 10.1016/j.catcom.2007.05.014
    30. 30
      Chen, L.; Yin, S.-F.; Huang, R.; Zhou, Y.; Luo, S.-L.; Au, C.-T. Facile Synthesis of BiOCl Nano-Flowers of Narrow Band Gap and their Visible-Light-Induced Photocatalytic Property Catal. Commun. 2012, 23, 54 57 DOI: 10.1016/j.catcom.2012.03.001
    31. 31
      Su, W.; Wang, J.; Huang, Y.; Wang, W.; Wu, L.; Wang, X.; Liu, P. Synthesis and Catalytic Performances of a Novel Photocatalyst BiOF Scr. Mater. 2010, 62, 345 348 DOI: 10.1016/j.scriptamat.2009.10.039
    32. 32
      Deng, H.; Wang, J.; Peng, Q.; Wang, X.; Li, Y. Controlled Hydrothermal Synthesis of Bismuth Oxyhalide Nanobelts and Nanotubes Chem. - Eur. J. 2005, 11, 6519 6524 DOI: 10.1002/chem.200500540
    33. 33
      Heyd, S.; Scuseria, G. E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential J. Chem. Phys. 2003, 118, 8207 8215 DOI: 10.1063/1.1564060
    34. 34
      Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the Exchange Screening Parameter on the Performance Of Screened Hybrid Functionals J. Chem. Phys. 2006, 125, 224106 DOI: 10.1063/1.2404663
    35. 35
      Blöchl, P. E. Projector Augmented-Wave Method Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953 DOI: 10.1103/PhysRevB.50.17953
    36. 36
      Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented Wave Method Phys. Rev. B: Condens. Matter Mater. Phys. 1999, 59, 1758 1775 DOI: 10.1103/PhysRevB.59.1758
    37. 37
      Grimme, S. Accurate Description of van der Waals Complexes by Density Funcitonal Theory Including Empirical Corrections J. Comput. Chem. 2004, 25, 1463 1473 DOI: 10.1002/jcc.20078
    38. 38
      Savory, C. N.; Palgrave, R. G.; Bronstein, H.; Scanlon, D. O. Spatial Electron-hole Separation in a One Dimensional Hybrid Organic–Inorganic Lead Iodide Sci. Rep. 2016, 6, 20626 DOI: 10.1038/srep20626
    39. 39
      Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-wave Basis Set Phys. Rev. B: Condens. Matter Mater. Phys. 1996, 54, 11169 11186 DOI: 10.1103/PhysRevB.54.11169
    40. 40
      Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 49, 14251 14271 DOI: 10.1103/PhysRevB.49.14251
    41. 41
      Walsh, A.; Butler, K. T. Prediction of Electron Energies in Metal Oxides Acc. Chem. Res. 2014, 47, 364 372 DOI: 10.1021/ar400115x
    42. 42
      Ganose, A. M.; Butler, K. T.; Walsh, A.; Scanlon, D. O. Relativistic Electronic Struc-ture and Band Alignment of BiSI and BiSeI: Candidate Photovoltaic Materials J. Mater. Chem. A 2016, 4, 2060 2068 DOI: 10.1039/C5TA09612J
    43. 43
      Brgoch, J.; Lehner, A. J.; Chabinyc, M.; Seshadri, R. Ab Initio Calculations of Band Gaps and Absolute Band Positions of Polymorphs of RbPbI3 and CsPbI3: Implications for Main-Group Halide Perovskite Photovoltaics J. Phys. Chem. C 2014, 118, 27721 27727 DOI: 10.1021/jp508880y
    44. 44
      Brivio, F.; Butler, K. T.; Walsh, A.; Van Schilfgaarde, M. Relativistic Quasiparticle Self-Consistent Electronic Structure of Hybrid Halide Perovskite Photovoltaic Absorbers Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 155204 DOI: 10.1103/PhysRevB.89.155204
    45. 45
      Even, J.; Pedesseau, L.; Jancu, J.-M.; Katan, C. Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications J. Phys. Chem. Lett. 2013, 4, 2999 3005 DOI: 10.1021/jz401532q
    46. 46
      Ganose, A. M.; Savory, C. N.; Scanlon, D. O. (CH3NH3)2Pb(SCN)2I2: A More Stable Structural Motif for Hybrid Halide Photovoltaics? J. Phys. Chem. Lett. 2015, 6, 4594 4598 DOI: 10.1021/acs.jpclett.5b02177
    47. 47
      Zhang, H.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Topological Insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a Single Dirac Cone on the Surface Nat. Phys. 2009, 5, 438 442 DOI: 10.1038/nphys1270
    48. 48
      Scanlon, D.; King, P.; Singh, R.; De La Torre, A.; Walker, S. M.; Balakrishnan, G.; Baumberger, F.; Catlow, C. Controlling Bulk Conductivity in Topological Insulators:Key Role of Anti-Site Defects Adv. Mater. 2012, 24, 2154 2158 DOI: 10.1002/adma.201200187
    49. 49
      Waghmare, U.; Spaldin, N.; Kandpal, H.; Seshadri, R. First-Principles Indicators of Metallicity and Cation Off-Centricity in rhe IV-VI Rocksalt Chalcogenides of Divalent Ge, Sn, and Pb Phys. Rev. B: Condens. Matter Mater. Phys. 2003, 67, 125111 DOI: 10.1103/PhysRevB.67.125111
    50. 50
      Raulot, J.-M.; Baldinozzi, G.; Seshadri, R.; Cortona, P. An Ab-Initio Study of the rôle of Lone Pairs in the Structure and Insulator–Metal Transition in SnO and PbO Solid State Sci. 2002, 4, 467 474 DOI: 10.1016/S1293-2558(02)01280-3
    51. 51
      Walsh, A.; Watson, G. W. The Origin of the Stereochemically Active Pb(II) Lone Pair: DFT Calculations on PbO And PbS J. Solid State Chem. 2005, 178, 1422 1428 DOI: 10.1016/j.jssc.2005.01.030
    52. 52
      Burton, L. A.; Walsh, A. Band Alignment in SnS Thin-Film Solar Cells: Possible Origin of the Low Conversion Efficiency Appl. Phys. Lett. 2013, 102, 132111 DOI: 10.1063/1.4801313
    53. 53
      Butler, K. T.; Hendon, C. H.; Walsh, A. Electronic Chemical Potentials of Porous Metal–Organic Frameworks J. Am. Chem. Soc. 2014, 136, 2703 2706 DOI: 10.1021/ja4110073
    54. 54
      Hahn, N. T.; Hoang, S.; Self, J. L.; Mullins, C. B. Spray Pyrolysis Deposition and Photoelectrochemical Properties of n-Type BiOI Nanoplatelet Thin Films ACS Nano 2012, 6, 7712 7722 DOI: 10.1021/nn3031063
    55. 55
      Scanlon, D. O.; Watson, G. W. On the Possibility of p-Type SnO2 J. Mater. Chem. 2012, 22, 25236 25245 DOI: 10.1039/c2jm34352e
    56. 56
      Frost, J. M.; Butler, K. T.; Brivio, F.; Hendon, C. H.; Van Schilfgaarde, M.; Walsh, A. Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells Nano Lett. 2014, 14, 2584 2590 DOI: 10.1021/nl500390f
    57. 57
      Ganose, A. M.; Scanlon, D. O. Band Gap and Work Function Tailoring of SnO2 for Improved Transparent Conducting Ability in Photovoltaics J. Mater. Chem. C 2016, 4, 1467 1475 DOI: 10.1039/C5TC04089B
    58. 58
      Chang, X.; Gondal, M.; Al-Saadi, A.; Ali, M.; Shen, H.; Zhou, Q.; Zhang, J.; Du, M.; Liu, Y.; Ji, G. Photodegradation of Rhodamine B Over Unexcited Semiconductor Compounds of BiOCl and BiOBr J. Colloid Interface Sci. 2012, 377, 291 298 DOI: 10.1016/j.jcis.2012.03.021
    59. 59
      Zhang, J.; Xia, J.; Yin, S.; Li, H.; Xu, H.; He, M.; Huang, L.; Zhang, Q. Improvement of Visible Light Photocatalytic Activity Over Flower-Like BiOCl/BiOBr Microspheres Synthesized by Reactable Ionic Liquids Colloids Surf., A 2013, 420, 89 95 DOI: 10.1016/j.colsurfa.2012.11.054
    60. 60
      Cao, J.; Xu, B.; Luo, B.; Lin, H.; Chen, S. Novel BiOI/BiOBr Heterojunction Photocatalysts with Enhanced Visible Light Photocatalytic Properties Catal. Commun. 2011, 13, 63 68 DOI: 10.1016/j.catcom.2011.06.019
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.6b00349.

    • Comparison of lattice parameters and bond lengths calculated with and without Grimme’s D3 dispersion correction (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.