High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler CompoundsClick to copy article linkArticle link copied!
- Anton O. Oliynyk
- Erin Antono
- Taylor D. Sparks
- Leila Ghadbeigi
- Michael W. Gaultois
- Bryce Meredig
- Arthur Mar
Abstract

A machine-learning model has been trained to discover Heusler compounds, which are intermetallics exhibiting diverse physical properties attractive for applications in thermoelectric and spintronic materials. Improving these properties requires knowledge of crystal structures, which occur in three subtle variations (Heusler, inverse Heusler, and CsCl-type structures) that are difficult, and at times impossible, to distinguish by diffraction techniques. Compared to alternative approaches, this Heusler discovery engine performs exceptionally well, making fast and reliable predictions of the occurrence of Heusler vs non-Heusler compounds for an arbitrary combination of elements with no structural input on over 400 000 candidates. The model has a true positive rate of 0.94 (and false positive rate of 0.01). It is also valuable for data sanitizing, by flagging questionable entries in crystallographic databases. It was applied to screen candidates with the formula AB2C and predict the existence of 12 novel gallides MRu2Ga and RuM2Ga (M = Ti–Co) as Heusler compounds, which were confirmed experimentally. One member, TiRu2Ga, exhibited diagnostic superstructure peaks that confirm the adoption of an ordered Heusler as opposed to a disordered CsCl-type structure.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 290 publications.
- Wonho You, Jiho Lee, Chan Lee, Minho Jin, Haeyeon Lee, Jiyeon Kim, Jong Chan Shin, Hyunkyu Yang, Eungkyu Lee, Youn Sang Kim. Machine Learning Strategy for Optimizing Multiple Electrical Characteristics in Dual-Layer Oxide Thin Film Transistors. ACS Applied Materials & Interfaces 2025, 17
(1)
, 1565-1575. https://doi.org/10.1021/acsami.4c17179
- Calen J. Leverant, Jacob A. Harvey. Accelerating the Discovery of New, Single Phase High Entropy Ceramics via Active Learning. Chemistry of Materials 2024, 36
(22)
, 10994-11003. https://doi.org/10.1021/acs.chemmater.4c00303
- Jonathan S. Van Buskirk, Gordon G. C. Peterson, Daniel C. Fredrickson. Machine Learning-Based Investigation of Atomic Packing Effects: Chemical Pressures at the Extremes of Intermetallic Complexity. Journal of the American Chemical Society 2024, 146
(41)
, 28459-28467. https://doi.org/10.1021/jacs.4c10479
- Danica G. Gressel, Kyana M. Sanders, Daniel C. Fredrickson. Interface Nucleus Complementarity: An Iterative Process for the Discovery of Modular Intermetallics Guided by Chemical Pressure. Journal of the American Chemical Society 2024, 146
(37)
, 25439-25444. https://doi.org/10.1021/jacs.4c09131
- Hongwei Du, Jian Hui, Lanting Zhang, Hong Wang. Rational Design of Deep Learning Networks Based on a Fusion Strategy for Improved Material Property Predictions. Journal of Chemical Theory and Computation 2024, 20
(15)
, 6756-6771. https://doi.org/10.1021/acs.jctc.4c00187
- Nuno M. Fortunato, Xiaoqing Li, Stephan Schönecker, Ruiwen Xie, Andreas Taubel, Franziska Scheibel, Ingo Opahle, Oliver Gutfleisch, Hongbin Zhang. High-Throughput Screening of All-d-Metal Heusler Alloys for Magnetocaloric Applications. Chemistry of Materials 2024, 36
(14)
, 6765-6776. https://doi.org/10.1021/acs.chemmater.4c00345
- Rie T. Fredrickson, Daniel C. Fredrickson. Interface Nuclei in the Y–Ag–Zn System: Three Chemical Pressure-Templated Phases with Lamellar Mg2Zn11- and CaPd5+x-Type Domains. Inorganic Chemistry 2024, 63
(20)
, 9252-9264. https://doi.org/10.1021/acs.inorgchem.4c00966
- Zheng Long, Hongmei Lu, Zhimin Zhang. Large-Scale Glass-Transition Temperature Prediction with an Equivariant Neural Network for Screening Polymers. ACS Omega 2024, 9
(5)
, 5452-5462. https://doi.org/10.1021/acsomega.3c06843
- Yanbing Zhu, Evan R. Antoniuk, Dylan Wright, Fariborz Kargar, Nicholas Sesing, Austin D. Sendek, Tina T. Salguero, Ludwig Bartels, Alexander A. Balandin, Evan J. Reed, Felipe H. da Jornada. Machine-Learning-Driven Expansion of the 1D van der Waals Materials Space. The Journal of Physical Chemistry C 2023, 127
(44)
, 21675-21683. https://doi.org/10.1021/acs.jpcc.3c03882
- Jonathan S. Van Buskirk, Joseph D. Kraus, Daniel C. Fredrickson. The Intermetallic Reactivity Database: Compiling Chemical Pressure and Electronic Metrics toward Materials Design and Discovery. Chemistry of Materials 2023, 35
(9)
, 3582-3591. https://doi.org/10.1021/acs.chemmater.3c00214
- Jie Feng, Zhihao Dong, Yujin Ji, Youyong Li. Accelerating the Discovery of Metastable IrO2 for the Oxygen Evolution Reaction by the Self-Learning-Input Graph Neural Network. JACS Au 2023, 3
(4)
, 1131-1140. https://doi.org/10.1021/jacsau.2c00709
- Ruo Xi Yang, Caitlin A. McCandler, Oxana Andriuc, Martin Siron, Rachel Woods-Robinson, Matthew K. Horton, Kristin A. Persson. Big Data in a Nano World: A Review on Computational, Data-Driven Design of Nanomaterials Structures, Properties, and Synthesis. ACS Nano 2022, 16
(12)
, 19873-19891. https://doi.org/10.1021/acsnano.2c08411
- Megumi Iwayama, Stephen Wu, Chang Liu, Ryo Yoshida. Functional Output Regression for Machine Learning in Materials Science. Journal of Chemical Information and Modeling 2022, 62
(20)
, 4837-4851. https://doi.org/10.1021/acs.jcim.2c00626
- Brandon Faceira, Lionel Teule-Gay, Gian-Marco Rignanese, Aline Rougier. Toward the Prediction of Electrochromic Properties of WO3 Films: Combination of Experimental and Machine Learning Approaches. The Journal of Physical Chemistry Letters 2022, 13
(34)
, 8111-8115. https://doi.org/10.1021/acs.jpclett.2c02248
- Ziyu Hu, Wenjie Wu, Qitean Wang, Xiaohong Shao. Theoretical Study of Ba2X6 (X = S, Se, Te) for Thermoelectric Applications Based on First-Principles Calculations and Machine Learning. The Journal of Physical Chemistry C 2022, 126
(30)
, 12735-12741. https://doi.org/10.1021/acs.jpcc.2c00880
- Aishwaryo Ghosh, Soumendu Datta, Tanusri Saha-Dasgupta. Understanding the Trend in Core–Shell Preferences for Bimetallic Nanoclusters: A Machine Learning Approach. The Journal of Physical Chemistry C 2022, 126
(15)
, 6847-6853. https://doi.org/10.1021/acs.jpcc.2c01096
- Jiahong Shen, Vinay I. Hegde, Jiangang He, Yi Xia, Chris Wolverton. High-Throughput Computational Discovery of Ternary Mixed-Anion Oxypnictides. Chemistry of Materials 2021, 33
(24)
, 9486-9500. https://doi.org/10.1021/acs.chemmater.1c02294
- Muratahan Aykol, Joseph H. Montoya, Jens Hummelshøj. Rational Solid-State Synthesis Routes for Inorganic Materials. Journal of the American Chemical Society 2021, 143
(24)
, 9244-9259. https://doi.org/10.1021/jacs.1c04888
- Emily C. Schueller, Yuzki M. Oey, Kyle D. Miller, Kira E. Wyckoff, Ruining Zhang, William Zhang, Stephen D. Wilson, James M. Rondinelli, Ram Seshadri. AB2X6 Compounds and the Stabilization of Trirutile Oxides. Inorganic Chemistry 2021, 60
(12)
, 9224-9232. https://doi.org/10.1021/acs.inorgchem.1c01366
- Zijian Yang, Shinya Suzuki, Naoto Tanibata, Hayami Takeda, Masanobu Nakayama, Masayuki Karasuyama, Ichiro Takeuchi. Efficient Experimental Search for Discovering a Fast Li-Ion Conductor from a Perovskite-Type LixLa(1–x)/3NbO3 (LLNO) Solid-State Electrolyte Using Bayesian Optimization. The Journal of Physical Chemistry C 2021, 125
(1)
, 152-160. https://doi.org/10.1021/acs.jpcc.0c08887
- Callum J. Court, Batuhan Yildirim, Apoorv Jain, Jacqueline M. Cole. 3-D Inorganic Crystal Structure Generation and Property Prediction via Representation Learning. Journal of Chemical Information and Modeling 2020, 60
(10)
, 4518-4535. https://doi.org/10.1021/acs.jcim.0c00464
- Alexander S. Gzyl, Anton O. Oliynyk, Arthur Mar. Half-Heusler Structures with Full-Heusler Counterparts: Machine-Learning Predictions and Experimental Validation. Crystal Growth & Design 2020, 20
(10)
, 6469-6477. https://doi.org/10.1021/acs.cgd.0c00646
- Ian M. Pendleton, Mary K. Caucci, Michael Tynes, Aaron Dharna, Mansoor Ani Najeeb Nellikkal, Zhi Li, Emory M. Chan, Alexander J. Norquist, Joshua Schrier. Can Machines “Learn” Halide Perovskite Crystal Formation without Accurate Physicochemical Features?. The Journal of Physical Chemistry C 2020, 124
(25)
, 13982-13992. https://doi.org/10.1021/acs.jpcc.0c01726
- Anthony Yu-Tung Wang, Ryan J. Murdock, Steven K. Kauwe, Anton O. Oliynyk, Aleksander Gurlo, Jakoah Brgoch, Kristin A. Persson, Taylor D. Sparks. Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices. Chemistry of Materials 2020, 32
(12)
, 4954-4965. https://doi.org/10.1021/acs.chemmater.0c01907
- Jon-Paul Sun, Garrett C. McKeown Wessler, Tianlin Wang, Tong Zhu, Volker Blum, David B. Mitzi. Structural Tolerance Factor Approach to Defect-Resistant I2-II-IV-X4 Semiconductor Design. Chemistry of Materials 2020, 32
(4)
, 1636-1649. https://doi.org/10.1021/acs.chemmater.9b05107
- Pranay Chakraborty, Yida Liu, Tengfei Ma, Xixi Guo, Lei Cao, Run Hu, Yan Wang. Quenching Thermal Transport in Aperiodic Superlattices: A Molecular Dynamics and Machine Learning Study. ACS Applied Materials & Interfaces 2020, 12
(7)
, 8795-8804. https://doi.org/10.1021/acsami.9b18084
- Bryce Meredig. Five High-Impact Research Areas in Machine Learning for Materials Science. Chemistry of Materials 2019, 31
(23)
, 9579-9581. https://doi.org/10.1021/acs.chemmater.9b04078
- Volodymyr Gvozdetskyi, Bryan Owens-Baird, Sangki Hong, Tori Cox, Gourab Bhaskar, Colin Harmer, Yang Sun, Feng Zhang, Cai-Zhuang Wang, Kai-Ming Ho, Julia V. Zaikina. From NaZn4Sb3 to HT-Na1–xZn4–ySb3: Panoramic Hydride Synthesis, Structural Diversity, and Thermoelectric Properties. Chemistry of Materials 2019, 31
(21)
, 8695-8707. https://doi.org/10.1021/acs.chemmater.9b02239
- Anton
O. Oliynyk, , Jillian M. Buriak (Editor-in-Chief, Chemistry of Materials). Virtual Issue on Machine-Learning Discoveries in Materials Science. Chemistry of Materials 2019, 31
(20)
, 8243-8247. https://doi.org/10.1021/acs.chemmater.9b03854
- Lingfei Wei, Xiaojie Xu, Gurudayal, James Bullock, Joel W. Ager. Machine Learning Optimization of p-Type Transparent Conducting Films. Chemistry of Materials 2019, 31
(18)
, 7340-7350. https://doi.org/10.1021/acs.chemmater.9b01953
- Rinkle Juneja, George Yumnam, Swanti Satsangi, Abhishek K. Singh. Coupling the High-Throughput Property Map to Machine Learning for Predicting Lattice Thermal Conductivity. Chemistry of Materials 2019, 31
(14)
, 5145-5151. https://doi.org/10.1021/acs.chemmater.9b01046
- Gayatri Viswanathan, Anton O. Oliynyk, Erin Antono, Julia Ling, Bryce Meredig, Jakoah Brgoch. Single-Crystal Automated Refinement (SCAR): A Data-Driven Method for Determining Inorganic Structures. Inorganic Chemistry 2019, 58
(14)
, 9004-9015. https://doi.org/10.1021/acs.inorgchem.9b00344
- Alexander S. Gzyl, Anton O. Oliynyk, Lawrence A. Adutwum, Arthur Mar. Solving the Coloring Problem in Half-Heusler Structures: Machine-Learning Predictions and Experimental Validation. Inorganic Chemistry 2019, 58
(14)
, 9280-9289. https://doi.org/10.1021/acs.inorgchem.9b00987
- Rohit Batra, Huan Doan Tran, Chiho Kim, James Chapman, Lihua Chen, Anand Chandrasekaran, Rampi Ramprasad. General Atomic Neighborhood Fingerprint for Machine Learning-Based Methods. The Journal of Physical Chemistry C 2019, 123
(25)
, 15859-15866. https://doi.org/10.1021/acs.jpcc.9b03925
- Arun Mannodi-Kanakkithodi, Ji-Sang Park, Nari Jeon, Duyen H. Cao, David J. Gosztola, Alex B. F. Martinson, Maria K. Y. Chan. Comprehensive Computational Study of Partial Lead Substitution in Methylammonium Lead Bromide. Chemistry of Materials 2019, 31
(10)
, 3599-3612. https://doi.org/10.1021/acs.chemmater.8b04017
- Atsushi Sakurai, Kyohei Yada, Tetsushi Simomura, Shenghong Ju, Makoto Kashiwagi, Hideyuki Okada, Tadaaki Nagao, Koji Tsuda, Junichiro Shiomi. Ultranarrow-Band Wavelength-Selective Thermal Emission with Aperiodic Multilayered Metamaterials Designed by Bayesian Optimization. ACS Central Science 2019, 5
(2)
, 319-326. https://doi.org/10.1021/acscentsci.8b00802
- Dilip Krishnamurthy, Hasso Weiland, Amir Barati Farimani, Erin Antono, Josh Green, Venkatasubramanian Viswanathan. Machine Learning Based Approaches to Accelerate Energy Materials Discovery and Optimization. ACS Energy Letters 2019, 4
(1)
, 187-191. https://doi.org/10.1021/acsenergylett.8b02278
- Joy C. Garnett . Prediction of Mohs Hardness with Machine Learning Methods Using Compositional Features. 2019, 23-48. https://doi.org/10.1021/bk-2019-1326.ch002
- Tori Cox, Volodymyr Gvozdetskyi, Bryan Owens-Baird, Julia V. Zaikina. Rapid Phase Screening via Hydride Route: A Discovery of K8–xZn18+3xSb16. Chemistry of Materials 2018, 30
(23)
, 8707-8715. https://doi.org/10.1021/acs.chemmater.8b04211
- Bing Cao, Lawrence A. Adutwum, Anton O. Oliynyk, Erik J. Luber, Brian C. Olsen, Arthur Mar, Jillian M. Buriak. How To Optimize Materials and Devices via Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics. ACS Nano 2018, 12
(8)
, 7434-7444. https://doi.org/10.1021/acsnano.8b04726
- Chiho Kim, Anand Chandrasekaran, Tran Doan Huan, Deya Das, Rampi Ramprasad. Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions. The Journal of Physical Chemistry C 2018, 122
(31)
, 17575-17585. https://doi.org/10.1021/acs.jpcc.8b02913
- Anton O. Oliynyk, Michael W. Gaultois, Martin Hermus, Andrew J. Morris, Arthur Mar, Jakoah Brgoch. Searching for Missing Binary Equiatomic Phases: Complex Crystal Chemistry in the Hf−In System. Inorganic Chemistry 2018, 57
(13)
, 7966-7974. https://doi.org/10.1021/acs.inorgchem.8b01122
- Jake Graser, Steven K. Kauwe, Taylor D. Sparks. Machine Learning and Energy Minimization Approaches for Crystal Structure Predictions: A Review and New Horizons. Chemistry of Materials 2018, 30
(11)
, 3601-3612. https://doi.org/10.1021/acs.chemmater.7b05304
- Zheng Li, Noushin Omidvar, Wei Shan Chin, Esther Robb, Amanda Morris, Luke Achenie, Hongliang Xin. Machine-Learning Energy Gaps of Porphyrins with Molecular Graph Representations. The Journal of Physical Chemistry A 2018, 122
(18)
, 4571-4578. https://doi.org/10.1021/acs.jpca.8b02842
- Fleur Legrain, Jesús Carrete, Ambroise van Roekeghem, Georg K.H. Madsen, and Natalio Mingo . Materials Screening for the Discovery of New Half-Heuslers: Machine Learning versus ab Initio Methods. The Journal of Physical Chemistry B 2018, 122
(2)
, 625-632. https://doi.org/10.1021/acs.jpcb.7b05296
- Anton O. Oliynyk and Arthur Mar . Discovery of Intermetallic Compounds from Traditional to Machine-Learning Approaches. Accounts of Chemical Research 2018, 51
(1)
, 59-68. https://doi.org/10.1021/acs.accounts.7b00490
- Anton O. Oliynyk, Lawrence A. Adutwum, Brent W. Rudyk, Harshil Pisavadia, Sogol Lotfi, Viktor Hlukhyy, James J. Harynuk, Arthur Mar, and Jakoah Brgoch . Disentangling Structural Confusion through Machine Learning: Structure Prediction and Polymorphism of Equiatomic Ternary Phases ABC. Journal of the American Chemical Society 2017, 139
(49)
, 17870-17881. https://doi.org/10.1021/jacs.7b08460
- Edward Kim, Kevin Huang, Adam Saunders, Andrew McCallum, Gerbrand Ceder, and Elsa Olivetti . Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning. Chemistry of Materials 2017, 29
(21)
, 9436-9444. https://doi.org/10.1021/acs.chemmater.7b03500
- Fleur Legrain, Jesús Carrete, Ambroise van Roekeghem, Stefano Curtarolo, and Natalio Mingo . How Chemical Composition Alone Can Predict Vibrational Free Energies and Entropies of Solids. Chemistry of Materials 2017, 29
(15)
, 6220-6227. https://doi.org/10.1021/acs.chemmater.7b00789
- Jonathan Schmidt, Jingming Shi, Pedro Borlido, Liming Chen, Silvana Botti, and Miguel A. L. Marques . Predicting the Thermodynamic Stability of Solids Combining Density Functional Theory and Machine Learning. Chemistry of Materials 2017, 29
(12)
, 5090-5103. https://doi.org/10.1021/acs.chemmater.7b00156
- I. Ait Elkoua, R. Masrour. DFT and Monte Carlo study of the structural, elastic, electronic, magnetic and magnetocaloric properties of Ni2MnSi full-Heusler alloys. Materials Science in Semiconductor Processing 2025, 190 , 109266. https://doi.org/10.1016/j.mssp.2025.109266
- Andrij Vasylenko, Dmytro Antypov, Sven Schewe, Luke M. Daniels, John B. Claridge, Matthew S. Dyer, Matthew J. Rosseinsky. Digital features of chemical elements extracted from local geometries in crystal structures. Digital Discovery 2025, 4
(2)
, 477-485. https://doi.org/10.1039/D4DD00346B
- Bing Wang, Wei Zhou, Yong sheng Ren, Jia jia Xu, Shu Zhan, Wenhui Ma. Local angle information propagation model based on dual scale for crystal property prediction. Computational Materials Science 2025, 250 , 113740. https://doi.org/10.1016/j.commatsci.2025.113740
- Johann Lüder. Machine learning approach to predict
L
-edge x-ray absorption spectra of light transition metal ion compounds. Physical Review B 2025, 111
(8)
https://doi.org/10.1103/PhysRevB.111.085110
- Hyunsoo Park, Anthony Onwuli, Keith T. Butler, Aron Walsh. Mapping inorganic crystal chemical space. Faraday Discussions 2025, 256 , 601-613. https://doi.org/10.1039/D4FD00063C
- S. Mouchou, Y. Toual, A. Azouaoui, A. Maouhoubi, R. Masrour, A. Rezzouk, K. Bouslykhane, A. Hourmatallah, N. Benzakour. Electronic and magnetic properties of inverse Heusler Fe
2
RhSi and Fe
2
RhGe:
Ab initio
and Monte Carlo study. International Journal of Modern Physics B 2025, 33 https://doi.org/10.1142/S0217979225501206
- Wenjia Huo, Haiyue Wang, Liying Guo, Rongrong Zheng, Boyang Liang, Xiang Wu, Cheng Wang. Application of machine learning in polyimide structure design and property regulation. High Performance Polymers 2025, 36 https://doi.org/10.1177/09540083251313522
- Saad Boudabia, Youcef Mahdjoub, Ahmed Draoui, Fatima Zohra Bensalem, Kheira Laiourate. Material Property Prediction with CNN-LSTM Hybrid Models and Periodic Table as Input Representation. 2025, 102-111. https://doi.org/10.1007/978-3-031-82112-7_8
- Jasvinder Singh, Pulak Mohan Pandey. Machine learning for materials developments in metals additive manufacturing. 2025, 43-75. https://doi.org/10.1016/B978-0-443-22145-3.00003-7
- Jiao Huang, Qianli Xing, Jinglong Ji, Bo Yang. PerCNet: Periodic complete representation for crystal graphs. Neural Networks 2025, 181 , 106841. https://doi.org/10.1016/j.neunet.2024.106841
- Kivanc Saglik, Siddharth Srinivasan, Varsha Victor, Xizu Wang, Wei Zhang, Qingyu Yan. Machine learning for next-generation thermoelectrics. Materials Today Energy 2024, 46 , 101700. https://doi.org/10.1016/j.mtener.2024.101700
- Mohammad Alghadeer, Nufida D. Aisyah, Mahmoud Hezam, Saad M. Alqahtani, Ahmer A. B. Baloch, Fahhad H. Alharbi. Machine learning prediction of materials properties from chemical composition: Status and prospects. Chemical Physics Reviews 2024, 5
(4)
https://doi.org/10.1063/5.0235541
- Murat Tas, Ersoy Şaşıoğlu, Iosif Galanakis. Magnetic Properties of All-d Metallic Heusler Compounds: A First-Principles Study. Magnetism 2024, 4
(4)
, 400-411. https://doi.org/10.3390/magnetism4040026
- V. A. Milyutin, N. N. Nikulchenkov. Machine Learning Application for Functional Properties Prediction in Magnetic Materials. Physics of Metals and Metallography 2024, 125
(12)
, 1351-1366. https://doi.org/10.1134/S0031918X24601471
- Roger de Paz‐Castany, Konrad Eiler, Aliona Nicolenco, Maria Lekka, Eva García‐Lecina, Guillaume Brunin, Gian‐Marco Rignanese, David Waroquiers, Thomas Collet, Annick Hubin, Eva Pellicer. Hydrogen Evolution Reaction of Electrodeposited Ni‐W Films in Acidic Medium and Performance Optimization Using Machine Learning. ChemSusChem 2024, 97 https://doi.org/10.1002/cssc.202400444
- Sally Elkatatny, Walaa Abd-Elaziem, Tamer A. Sebaey, Moustafa A. Darwish, Atef Hamada. Machine-learning synergy in high-entropy alloys: A review. Journal of Materials Research and Technology 2024, 33 , 3976-3997. https://doi.org/10.1016/j.jmrt.2024.10.034
- Mohammed Jomaa, Dundappa Mumbaraddi, Vidyanshu Mishra, Madhusudan Chaudhary, Brenton Mah, Diane Delaruelle, Vladimir K. Michaelis, Arthur Mar. In search of coloured alloys resembling gold: Structure and optical properties of LiCu2Ga1−Al and Li(Cu1–Ni )2Ga. Journal of Solid State Chemistry 2024, 339 , 124909. https://doi.org/10.1016/j.jssc.2024.124909
- Y.K. Liu, Z.R. Liu, T.F. Xu, D. Legut, X. Yin, R.F. Zhang. Classification enhanced machine learning model for energetic stability of binary compounds. Computational Materials Science 2024, 244 , 113277. https://doi.org/10.1016/j.commatsci.2024.113277
- Leandro Carreira, Lea Pillemont, Yasser Sami, Nicolas Richard, Alain Esteve, Matthieu Jonckheere, Carole Rossi. Targeted nano-energetic material exploration through active learning algorithm implementation. Energetic Materials Frontiers 2024, 23 https://doi.org/10.1016/j.enmf.2024.08.004
- Quynh Anh T. Nguyen, Thi H. Ho, Tran Bao Tien, Yoshiyuki Kawazoe, Viet Q. Bui. Data-driven design of high-curie temperature full-heusler alloys for spintronic applications. Materials Today Physics 2024, 47 , 101541. https://doi.org/10.1016/j.mtphys.2024.101541
- Anthony Onwuli, Keith T. Butler, Aron Walsh. Ionic species representations for materials informatics. APL Machine Learning 2024, 2
(3)
https://doi.org/10.1063/5.0227009
- Alberto Boretti. Artificial intelligence driven evolution of perovskite-based solar thermochemical systems for hydrogen production: a narrative review. Emergent Materials 2024, 34 https://doi.org/10.1007/s42247-024-00823-w
- Sina Hossein Zadeh, Cem Cakirhan, Danial Khatamsaz, John Broucek, Timothy D. Brown, Xiaoning Qian, Ibrahim Karaman, Raymundo Arroyave. Data-driven study of composition-dependent phase compatibility in NiTi shape memory alloys. Materials & Design 2024, 244 , 113096. https://doi.org/10.1016/j.matdes.2024.113096
- Fanjin Wang, Anthony Harker, Mohan Edirisinghe, Maryam Parhizkar. Tackling Data Scarcity Challenge through Active Learning in Materials Processing with Electrospray. Advanced Intelligent Systems 2024, 6
(7)
https://doi.org/10.1002/aisy.202300798
- Seyed Ali Hosseini Khorasani, Ehsan Borhani, Mohammad Yousefieh, Amin Janghorbani. Towards tailored thermoelectric materials: An artificial intelligence-powered approach to material design. Physica B: Condensed Matter 2024, 685 , 415946. https://doi.org/10.1016/j.physb.2024.415946
- Jaroslaw Krzywanski, Marcin Sosnowski, Karolina Grabowska, Anna Zylka, Lukasz Lasek, Agnieszka Kijo-Kleczkowska. Advanced Computational Methods for Modeling, Prediction and Optimization—A Review. Materials 2024, 17
(14)
, 3521. https://doi.org/10.3390/ma17143521
- Anuradha Baghel, Digpratap Singh, Ankur Kumar. Applications of Machine Learning in Exploration of the Perovskite Solar Cells. 2024, 1-6. https://doi.org/10.1109/SCES61914.2024.10652432
- Yifan Wu, Aron Walsh, Alex M. Ganose. Race to the bottom: Bayesian optimisation for chemical problems. Digital Discovery 2024, 3
(6)
, 1086-1100. https://doi.org/10.1039/D3DD00234A
- K K Gupta, S Barman, S Dey, T Mukhopadhyay. Explainable machine learning assisted molecular-level insights for enhanced specific stiffness exploiting the large compositional space of AlCoCrFeNi high entropy alloys. Machine Learning: Science and Technology 2024, 5
(2)
, 025082. https://doi.org/10.1088/2632-2153/ad55a4
- Zhiyang Qin, Hongliang Zhao, Shuya Zhang, Yuheng Fan, Xianglei Dong, Zishuo Lan, Xiaobing Hu, Yang Song, Chunwen Guo. Design of high performance Cu-Ni-Si alloys via a multiobjective strategy based on machine learning. Materials Today Communications 2024, 39 , 108833. https://doi.org/10.1016/j.mtcomm.2024.108833
- Ayman Maqsood, Chen Chen, T. Jesper Jacobsson. The Future of Material Scientists in an Age of Artificial Intelligence. Advanced Science 2024, 11
(19)
https://doi.org/10.1002/advs.202401401
- Ryo Fukasawa, Toru Asahi, Takuya Taniguchi. Effectiveness and limitation of the performance prediction of perovskite solar cells by process informatics. Energy Advances 2024, 3
(4)
, 812-820. https://doi.org/10.1039/D3YA00617D
- Fan Yang, Guanjian Cheng, Wan-Jian Yin. Comparative study of crystal structure prediction approaches based on a graph network and an optimization algorithm. Science China Materials 2024, 67
(4)
, 1273-1281. https://doi.org/10.1007/s40843-024-2868-x
- Sabrina Djeradi, Tahar Dahame, Mohamed Abdelilah Fadla, Bachir Bentria, Mohammed Benali Kanoun, Souraya Goumri-Said. High-Throughput Ensemble-Learning-Driven Band Gap Prediction of Double Perovskites Solar Cells Absorber. Machine Learning and Knowledge Extraction 2024, 6
(1)
, 435-447. https://doi.org/10.3390/make6010022
- Ahsan Ali, Muhammad Adnan Khan, Hoimyung Choi. Supervised Machine Learning-Based Prediction of Hydrogen Storage Classes Utilizing Dibenzyltoluene as an Organic Carrier. Molecules 2024, 29
(6)
, 1280. https://doi.org/10.3390/molecules29061280
- Andrij Vasylenko, Benjamin M. Asher, Christopher M. Collins, Michael W. Gaultois, George R. Darling, Matthew S. Dyer, Matthew J. Rosseinsky. Inferring energy–composition relationships with Bayesian optimization enhances exploration of inorganic materials. The Journal of Chemical Physics 2024, 160
(5)
https://doi.org/10.1063/5.0180818
- Mukhtar Lawan Adam, Oyawale Adetunji Moses, Jonathan Pradana Mailoa, Chang-Yu Hsieh, Xue-Feng Yu, Hao Li, Haitao Zhao. Navigating materials chemical space to discover new battery electrodes using machine learning. Energy Storage Materials 2024, 65 , 103090. https://doi.org/10.1016/j.ensm.2023.103090
- Mohamed Mammeri, Lakhdar Dehimi, Hichem Bencherif, Fortunato Pezzimenti. Combined Machine Learning Techniques for Analyzing the Back Contact Influence on the Stability of Perovskite-Based Solar Cells. 2024, 119-125. https://doi.org/10.1007/978-981-97-4776-4_13
- Ahsan Ali, Muhammad Adnan Khan, Hoimyung Choi. Prediction of hydrogen generation from perhydro-dibenzyltoluene empowered with machine learning. International Journal of Hydrogen Energy 2024, 51 , 171-178. https://doi.org/10.1016/j.ijhydene.2023.10.250
- Oleg Heczko, Michal Rameš, Vít Kopecký, Petr Veřtát, Michal Varga, Ladislav Straka. Magnetic and transformation properties of Ni2MnGa combinatorically substituted with 5 at.% of transition elements from Cr to Cu – Experimental insight. Journal of Magnetism and Magnetic Materials 2024, 589 , 171510. https://doi.org/10.1016/j.jmmm.2023.171510
- D.G. Gulevich, I.R. Nabiev, P.S. Samokhvalov. Machine learning–assisted colloidal synthesis: A review. Materials Today Chemistry 2024, 35 , 101837. https://doi.org/10.1016/j.mtchem.2023.101837
- R. M. Rowan-Robinson, Z. Leong, S. Carpio, C. Oh, N. A. Morley. Material informatics for functional magnetic material discovery. AIP Advances 2024, 14
(1)
https://doi.org/10.1063/9.0000657
- Sina Hossein Zadeh, Cem Cakirhan, Danial Khatamsaz, John Broucek, Timothy Brown, Xiaoning Qian, Ibrahim Karaman, Raymundo Arroyave. Data-Driven Study of Composition-Dependent Phase Compatibility in Niti Shape Memory Alloys. 2024https://doi.org/10.2139/ssrn.4805747
- Thi H. Ho, Quynh Anh T. Nguyen, Tran Bao Tien, Yoshiyuki Kawazoe, Viet Q.Bui. Data-Driven Design of High-Curie Temperature Full-Heusler Alloys for Spintronic Applications. 2024https://doi.org/10.2139/ssrn.4889883
- George Stephen Thoppil, Jian–Feng Nie, Alankar Alankar. Bayesian approach for inferrable machine learning models of process–structure–property linkages in complex concentrated alloys. Journal of Alloys and Compounds 2023, 967 , 171595. https://doi.org/10.1016/j.jallcom.2023.171595
- Jonathan Schmidt, Hai-Chen Wang, Georg Schmidt, Miguel A. L. Marques. Machine learning guided high-throughput search of non-oxide garnets. npj Computational Materials 2023, 9
(1)
https://doi.org/10.1038/s41524-023-01009-4
- Noah Hoffmann, Tiago F. T. Cerqueira, Pedro Borlido, Antonio Sanna, Jonathan Schmidt, Miguel A. L. Marques. Searching for ductile superconducting Heusler X2YZ compounds. npj Computational Materials 2023, 9
(1)
https://doi.org/10.1038/s41524-023-01084-7
- Aishwaryo Ghosh, Biswajit Pabi, Atindra Nath Pal, Tanusri Saha-Dasgupta. Machine-learning prediction of the formation of atomic gold wires by mechanically controlled break junctions. Nanoscale 2023, 15
(42)
, 17045-17054. https://doi.org/10.1039/D3NR04301K
- Sean D. Griesemer, Yi Xia, Chris Wolverton. Accelerating the prediction of stable materials with machine learning. Nature Computational Science 2023, 3
(11)
, 934-945. https://doi.org/10.1038/s43588-023-00536-w
- Ebrar Yildirim, Övgü Ceyda Yelgel. Using Machine Learning Techniques to Discover Novel Thermoelectric Materials. 2023https://doi.org/10.5772/intechopen.1003210
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.