ACS Publications. Most Trusted. Most Cited. Most Read
Identifying the Distribution of Al3+ in LiNi0.8Co0.15Al0.05O2
My Activity
    Article

    Identifying the Distribution of Al3+ in LiNi0.8Co0.15Al0.05O2
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
    Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States
    § Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
    X-ray Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
    Institute for Materials Research, SUNY Binghamton, Binghamton, New York 13902-6000, United States
    # Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
    Other Access OptionsSupporting Information (1)

    Chemistry of Materials

    Cite this: Chem. Mater. 2016, 28, 22, 8170–8180
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.6b02797
    Published October 7, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The doping of Al into layered Li transition metal (TM) oxide cathode materials, LiTMO2, is known to improve the structural and thermal stability, although the origin of the enhanced properties is not well understood. The effect of aluminum doping on layer stabilization has been investigated using a combination of techniques to measure the aluminum distribution in layered LiNi0.8Co0.15Al0.05O2 (NCA) over multiple length scales with 27Al and 7Li MAS NMR, local electrode atom probe (APT) tomography, X-ray and neutron diffraction, DFT, and SQUID magnetic susceptibility measurements. APT ion maps show a homogeneous distribution of Ni, Co, Al, and O2 throughout the structure at the single particle level in agreement with the high-temperature phase diagram. 7Li and 27Al NMR indicates that the Ni3+ ions undergo a dynamic Jahn–Teller (JT) distortion. 27Al NMR spectra indicate that the Al reduces the strain associated with the JT distortion, by preferential electronic ordering of the JT lengthened bonds directed toward the Al3+ ion. The ability to understand the complex atomic and orbital ordering around Al3+ demonstrated in the current method will be useful for studying the local environment of Al3+ in a range of transition metal oxide battery materials.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.6b02797.

    • Additional details of the NCA phase diagram, structural and NMR shift calculations, atom probe tomography experimental details and additional maps, calculated NMR spectra, 2D 7Li pj-MATPASS spectra, full deconvolution of 27Al NMR spectra, and static 27Al NMR shifts (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 80 publications.

    1. Linqin Mu, Dong Hou, Emily E. Foley, Minyi Dai, Jin Zhang, Zhisen Jiang, Muhammad Mominur Rahman, Yanbao Fu, Lu Ma, Enyuan Hu, Sami Sainio, Dennis Nordlund, Jue Liu, Jia-Mian Hu, Yijin Liu, Raphaële J. Clément, Feng Lin. Revealing the Chemical and Structural Complexity of Electrochemical Ion Exchange in Layered Oxide Materials. Journal of the American Chemical Society 2024, 146 (39) , 26916-26925. https://doi.org/10.1021/jacs.4c08089
    2. Sherif Abdulkader Tawfik, Arun Kumar A. V., Mahad Rashid, Svetha Venkatesh, Sunil Gupta. High-Voltage, High Capacity Aluminum-Rich Lithium Cathode Materials: A Bayesian Optimization and First-Principles Study. ACS Applied Energy Materials 2024, 7 (17) , 7232-7239. https://doi.org/10.1021/acsaem.4c01169
    3. Zhanning He, Maojie Zhang, Ke Zhou, Yong Cheng, Mingzeng Luo, Yu Su, Jialiang Hao, Yiou Sun, Yixiao Li, Yong Yang. Enabling Excellent Thermal Stability of an Ultrahigh Nickel-Rich Cathode (LiNi0.90Co0.05Mn0.05O2) by a Magnesium and Titanium Codoping Strategy. ACS Applied Energy Materials 2023, 6 (6) , 3422-3431. https://doi.org/10.1021/acsaem.2c04133
    4. Víctor Riesgo-González, David S. Hall, Katharina Märker, Jonathan Slaughter, Dominic S. Wright, Clare P. Grey. Effect of Annealing on the Structure, Composition, and Electrochemistry of NMC811 Coated with Al2O3 Using an Alkoxide Precursor. Chemistry of Materials 2022, 34 (21) , 9722-9735. https://doi.org/10.1021/acs.chemmater.2c02580
    5. Euan N. Bassey, Philip J. Reeves, Ieuan D. Seymour, Clare P. Grey. 17O NMR Spectroscopy in Lithium-Ion Battery Cathode Materials: Challenges and Interpretation. Journal of the American Chemical Society 2022, 144 (41) , 18714-18729. https://doi.org/10.1021/jacs.2c02927
    6. Vincent C. Wu, Raynald Giovine, Emily E. Foley, Jordan Finzel, Mahalingam Balasubramanian, Elias Sebti, Eve M. Mozur, Andrew H. Kwon, Raphaële J. Clément. Unlocking New Redox Activity in Alluaudite Cathodes through Compositional Design. Chemistry of Materials 2022, 34 (9) , 4088-4103. https://doi.org/10.1021/acs.chemmater.2c00324
    7. Zehao Cui, Qiang Xie, Arumugam Manthiram. Zinc-Doped High-Nickel, Low-Cobalt Layered Oxide Cathodes for High-Energy-Density Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2021, 13 (13) , 15324-15332. https://doi.org/10.1021/acsami.1c01824
    8. Sooraj Kunnikuruvan, Arup Chakraborty, Dan Thomas Major. Monte Carlo- and Simulated-Annealing-Based Funneled Approach for the Prediction of Cation Ordering in Mixed Transition-Metal Oxide Materials. The Journal of Physical Chemistry C 2020, 124 (50) , 27366-27377. https://doi.org/10.1021/acs.jpcc.0c08579
    9. Arup Chakraborty, Sooraj Kunnikuruvan, Sandeep Kumar, Boris Markovsky, Doron Aurbach, Mudit Dixit, Dan Thomas Major. Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1–x–yCoxMnyO2 and LiNi1–x–yCoxAlyO2. Chemistry of Materials 2020, 32 (3) , 915-952. https://doi.org/10.1021/acs.chemmater.9b04066
    10. Katharina Märker, Philip J. Reeves, Chao Xu, Kent J. Griffith, Clare P. Grey. Evolution of Structure and Lithium Dynamics in LiNi0.8Mn0.1Co0.1O2 (NMC811) Cathodes during Electrochemical Cycling. Chemistry of Materials 2019, 31 (7) , 2545-2554. https://doi.org/10.1021/acs.chemmater.9b00140
    11. Matthias F. Groh, Matthew J. Sullivan, Michael W. Gaultois, Oliver Pecher, Kent J. Griffith, Clare P. Grey. Interface Instability in LiFePO4–Li3+xP1–xSixO4 All-Solid-State Batteries. Chemistry of Materials 2018, 30 (17) , 5886-5895. https://doi.org/10.1021/acs.chemmater.8b01746
    12. Sasikala Natarajan, Sahana B. Moodakare, Vasu Shanmugam, Prathap Haridoss, Raghavan Gopalan. Infrared Spectroscopy Signatures of Aluminum Segregation and Partial Oxygen Substitution by Sulfur in LiNi0.8Co0.15Al0.05O2. ACS Applied Energy Materials 2018, 1 (6) , 2536-2545. https://doi.org/10.1021/acsaem.8b00262
    13. Maxwell D. Radin and Anton Van der Ven . Simulating Charge, Spin, and Orbital Ordering: Application to Jahn–Teller Distortions in Layered Transition-Metal Oxides. Chemistry of Materials 2018, 30 (3) , 607-618. https://doi.org/10.1021/acs.chemmater.7b03080
    14. Jiajia Huang, Haodong Liu, Naixie Zhou, Ke An, Ying Shirley Meng, and Jian Luo . Enhancing the Ion Transport in LiMn1.5Ni0.5O4 by Altering the Particle Wulff Shape via Anisotropic Surface Segregation. ACS Applied Materials & Interfaces 2017, 9 (42) , 36745-36754. https://doi.org/10.1021/acsami.7b09903
    15. Xiang Li, Mingxue Tang, Xuyong Feng, Ivan Hung, Alyssa Rose, Po-Hsiu Chien, Zhehong Gan, and Yan-Yan Hu . Lithiation and Delithiation Dynamics of Different Li Sites in Li-Rich Battery Cathodes Studied by Operando Nuclear Magnetic Resonance. Chemistry of Materials 2017, 29 (19) , 8282-8291. https://doi.org/10.1021/acs.chemmater.7b02589
    16. Haodong Liu, Hongyao Zhou, Byoung-Sun Lee, Xing Xing, Matthew Gonzalez, and Ping Liu . Suppressing Lithium Dendrite Growth with a Single-Component Coating. ACS Applied Materials & Interfaces 2017, 9 (36) , 30635-30642. https://doi.org/10.1021/acsami.7b08198
    17. Jicheng Zhang, Zhenzhong Yang, Rui Gao, Lin Gu, Zhongbo Hu, and Xiangfeng Liu . Suppressing the Structure Deterioration of Ni-Rich LiNi0.8Co0.1Mn0.1O2 through Atom-Scale Interfacial Integration of Self-Forming Hierarchical Spinel Layer with Ni Gradient Concentration. ACS Applied Materials & Interfaces 2017, 9 (35) , 29794-29803. https://doi.org/10.1021/acsami.7b08802
    18. Bohang Song, Wangda Li, Seung-Min Oh, and Arumugam Manthiram . Long-Life Nickel-Rich Layered Oxide Cathodes with a Uniform Li2ZrO3 Surface Coating for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2017, 9 (11) , 9718-9725. https://doi.org/10.1021/acsami.7b00070
    19. Steven Lee, Steven Kmiec, Arumugam Manthiram. Effects of Coprecipitation Conditions on the Electrochemical Properties of Cobalt‐Free LiNi 0.9 Mn 0.1‐x Al x O 2 Cathodes. Small 2024, https://doi.org/10.1002/smll.202406947
    20. Hatef Yousefi-Mashhour, Mohammad Mahdi Kalantarian, Afshin Namiranian. A comprehensive quantitative DFT procedure to evaluate rate-capability and electron conduction of intercalation electrode materials: Assessment of novel Li[Mi]1/3[Mj]1/3[Mk]1/3O2 electrodes as case studies. Physica B: Condensed Matter 2024, 685 , 416035. https://doi.org/10.1016/j.physb.2024.416035
    21. Ines Hamam, Roee Omessi, Mitchell Ball, J. R. Dahn. Is Aluminium Useful in NiMn Cathode Systems?: A Study of the Effectiveness of Al in Co-Free, Ni-Rich Positive Electrode Materials for Li-Ion Batteries. Journal of The Electrochemical Society 2024, 171 (6) , 060515. https://doi.org/10.1149/1945-7111/ad4e73
    22. Junrun Feng, Zhuo Chen, Weihua Zhou, Zhangxiang Hao. Origin and characterization of the oxygen loss phenomenon in the layered oxide cathodes of Li-ion batteries. Materials Horizons 2023, 10 (11) , 4686-4709. https://doi.org/10.1039/D3MH00780D
    23. H. Nguyen, R. Silverstein, A. Zaveri, W. Cui, P. Kurzhals, S. Sicolo, M. Bianchini, K. Seidel, R. J. Clément. Twin Boundaries Contribute to The First Cycle Irreversibility of LiNiO 2. Advanced Functional Materials 2023, 14 https://doi.org/10.1002/adfm.202306168
    24. Fangfang Zou, Xue Xia, Xiaojia Zheng, Xu Su, Wei Guan, Xueqiang Qi, Meng Wang, Lian Wang, Xuebu Hu. Promotion of Li+ desolvation and efficient cathode interphase formation by 4-aminobenzoic multifunctional electrolyte additive. Chemical Engineering Journal 2023, 470 , 144246. https://doi.org/10.1016/j.cej.2023.144246
    25. Woosuk Kang, Inho Nam, Changshin Jo. Pseudocapacitive behavior of mesoporous tungsten oxide in aqueous Zn2+ electrolyte. Korean Journal of Chemical Engineering 2023, 40 (6) , 1353-1359. https://doi.org/10.1007/s11814-022-1370-2
    26. Lijuan Hou, Qi Liu, Xinyuan Chen, Qiang Yang, Daobin Mu, Li Li, Feng Wu, Renjie Chen. In-depth understanding of the deterioration mechanism and modification engineering of high energy density Ni-rich layered lithium transition-metal oxide cathode for lithium-ion batteries. Chemical Engineering Journal 2023, 465 , 142946. https://doi.org/10.1016/j.cej.2023.142946
    27. Xinyong Tian, Ruiqi Guo, Ying Bai, Ning Li, Xinran Wang, Jiantao Wang, Chuan Wu. High-Performance High-Nickel Multi-Element Cathode Materials for Lithium-Ion Batteries. Batteries 2023, 9 (6) , 319. https://doi.org/10.3390/batteries9060319
    28. Zhuangzhuang Cui, Xiao Li, Xiaoyu Bai, Xiaodi Ren, Xing Ou. A comprehensive review of foreign-ion doping and recent achievements for nickel-rich cathode materials. Energy Storage Materials 2023, 57 , 14-43. https://doi.org/10.1016/j.ensm.2023.02.003
    29. Kent J. Griffith, John M. Griffin. Solid-state NMR of energy storage materials. 2023, 282-329. https://doi.org/10.1016/B978-0-12-823144-9.00147-3
    30. B. Jeevanantham, P. Sarathkumar, S. Kavita, M.K. Shobana. Magnesium doped LiNi Mn Co O2 cathode- structural properties. Applied Surface Science Advances 2022, 12 , 100350. https://doi.org/10.1016/j.apsadv.2022.100350
    31. Luca Spiridigliozzi, Gianfranco Dell’Agli, Emanuela Callone, Sandra Dirè, Renzo Campostrini, Paolo Bettotti, Mauro Bortolotti, Giorgio Speranza, Vincenzo M. Sglavo, Mattia Biesuz. A structural and thermal investigation of Li-doped high entropy (Mg, Co, Ni, Cu, Zn)O obtained by co-precipitation. Journal of Alloys and Compounds 2022, 927 , 166933. https://doi.org/10.1016/j.jallcom.2022.166933
    32. Jiayi Wang, Xincheng Lei, Lin Gu, Xin Wang, Dong Su. Structure modification of Ni-rich layered oxide cathode toward advanced lithium-ion batteries. Journal of Materials Research 2022, 37 (19) , 3250-3268. https://doi.org/10.1557/s43578-022-00528-y
    33. Jeevanantham B, Shobana M.K.. Enhanced cathode materials for advanced lithium-ion batteries using nickel-rich and lithium/manganese-rich LiNi Mn Co O2. Journal of Energy Storage 2022, 54 , 105353. https://doi.org/10.1016/j.est.2022.105353
    34. Roy Benedek. Vibrational Entropy Contribution to Mixing Free Energy of Ni-Rich LiNi 1-y Co y O 2. Journal of The Electrochemical Society 2022, 169 (6) , 060508. https://doi.org/10.1149/1945-7111/ac71da
    35. Lifan Wang, Jingyue Wang, Leiying Wang, Mingjun Zhang, Rui Wang, Chun Zhan. A critical review on nickel-based cathodes in rechargeable batteries. International Journal of Minerals, Metallurgy and Materials 2022, 29 (5) , 925-941. https://doi.org/10.1007/s12613-022-2446-z
    36. Nicholas S. Grundish, Hailong Lyu, Ieuan D. Seymour, Graeme Henkelman, Hadi Khani. Disrupting Sodium Ordering and Phase Transitions in a Layered Oxide Cathode. Journal of The Electrochemical Society 2022, 169 (4) , 040504. https://doi.org/10.1149/1945-7111/ac60eb
    37. Annam Butt, Ghulam Ali, Khadija Tul Kubra, Rehana Sharif, Ayesha Salman, Muzaffar Bashir, Sidra Jamil. Recent Advances in Enhanced Performance of Ni‐Rich Cathode Materials for Li‐Ion Batteries: A Review. Energy Technology 2022, 10 (3) https://doi.org/10.1002/ente.202100775
    38. Ming Yang, Liquan Chen, Hong Li, Fan Wu. Air/Water Stability Problems and Solutions for Lithium Batteries. Energy Material Advances 2022, 2022 https://doi.org/10.34133/2022/9842651
    39. Razieh Razavi. Potential of various nanocages for electrodes of Li- and Na-ion batteries: theoretical investigation. Bulletin of Materials Science 2021, 44 (4) https://doi.org/10.1007/s12034-021-02560-w
    40. R. Parmar, D.B. de Freitas Neto, S. Kazim, S.J. Rezvani, J.M. Rosolen, R. Gunnella, M. Amati, L. Gregoratti. Manganese vanadium sulfate-oxide cylindrical core-shell heterostructures by electro-spray deposition on graphite foil for Li+ ion intercalation. Journal of Alloys and Compounds 2021, 888 , 161483. https://doi.org/10.1016/j.jallcom.2021.161483
    41. Zhongliang Xiao, Pei Liu, Liubin Song, Zhong Cao, Jinlian Du, Chengfeng Zhou, Peng Jiang. The correlation between structure and thermal properties of nickel-rich ternary cathode materials: a review. Ionics 2021, 27 (8) , 3207-3217. https://doi.org/10.1007/s11581-021-04103-z
    42. Sanghyuk Park, Kwangho Park, Ji-Seop Shin, Gyeongbin Ko, Wooseok Kim, Jun-Young Park, Kyungjung Kwon. Utilizing the Intrinsic Thermal Instability of Swedenborgite Structured YBaCo4O7+δ as an Opportunity for Material Engineering in Lithium-Ion Batteries by Er and Ga Co-Doping Processes. Materials 2021, 14 (16) , 4565. https://doi.org/10.3390/ma14164565
    43. M. Akhilash, P.S. Salini, Bibin John, T.D. Mercy. A journey through layered cathode materials for lithium ion cells – From lithium cobalt oxide to lithium-rich transition metal oxides. Journal of Alloys and Compounds 2021, 869 , 159239. https://doi.org/10.1016/j.jallcom.2021.159239
    44. L. Peng, R. J. Clément, M. Lin, Y. Yang. NMR Principles of Paramagnetic Materials. 2021, 1-70. https://doi.org/10.1039/9781839160097-00001
    45. Fanghui Du, Xiang Li, Ling Wu, Die Hu, Qun Zhou, Pengpeng Sun, Tao Xu, Chengxiang Mei, Qi Hao, Zhongxu Fan, Junwei Zheng. Tailoring the Al distribution in secondary particles for optimizing the electrochemical performance of LiNi0.8Co0.1Mn0.1O2. Ceramics International 2021, 47 (9) , 12981-12991. https://doi.org/10.1016/j.ceramint.2021.01.161
    46. Ben Pei, Hui Zhou, Anshika Goel, Mateusz Zuba, Hao Liu, Fengxia Xin, M. Stanley Whittingham. Al Substitution for Mn during Co-Precipitation Boosts the Electrochemical Performance of LiNi 0.8 Mn 0.1 Co 0.1 O 2. Journal of The Electrochemical Society 2021, 168 (5) , 050532. https://doi.org/10.1149/1945-7111/ac0020
    47. Fangfang Wang, Ruoyu Hong, Xuesong Lu, Huiyong Liu, Yuan Zhu, Ying Zheng, David Hui. Improvement of long-term cycling performance of high-nickel cathode materials by ZnO coating. Nanotechnology Reviews 2021, 10 (1) , 210-220. https://doi.org/10.1515/ntrev-2021-0020
    48. Xi Yang, Xuesong Huang, Hancheng Shi, Peng Dong, Ding Wang, Jianguo Duan, Yingjie Zhang. Growth mechanisms for spherical Ni0.815Co0.15Al0.035(OH)2 precursors prepared via the ammonia complexation precipitation method. Journal of Energy Chemistry 2021, 53 , 379-386. https://doi.org/10.1016/j.jechem.2020.05.049
    49. A. Bayri, E. Gocer, E. Altin, S. Altundag, E. Oz, M. Harfouche, S. Altin, S. Avci. LiNi0.8Co0.15Ti0.05O2: synthesis by solid state reaction and investigation of structural and electrochemical properties with enhanced battery performance. Journal of Materials Science: Materials in Electronics 2020, 31 (22) , 20527-20538. https://doi.org/10.1007/s10854-020-04572-4
    50. Xiaohong Zhang, Qingsong Tong, Weimin Zhang, Jingzheng Weng, Yu Sheng. Synthesis and stored performance of LiNi0.8Co0.17Al0.03O2 cathode material prepared by using a flocculation precipitation process. Electrochimica Acta 2020, 359 , 136943. https://doi.org/10.1016/j.electacta.2020.136943
    51. Sang-Hyun Moon, Eun-Soo Kim, Ji-Eun Lee, Yeon-Kyung Shin, Min-Cheol Kim, Kyung-Won Park. Improved electrochemical properties of LiNi0.8Co0.15Al0.05O2 cathode materials synthesized using micelle structures. Journal of Solid State Electrochemistry 2020, 24 (10) , 2233-2240. https://doi.org/10.1007/s10008-020-04680-5
    52. X. Huang, J. Duan, J. He, H. Shi, Y. Li, Y. Zhang, D. Wang, P. Dong, Y. Zhang. Ions Transfer Behavior during water washing for LiNi0.815Co0.15Al0.035O2: Role of Excess Lithium. Materials Today Energy 2020, 17 , 100440. https://doi.org/10.1016/j.mtener.2020.100440
    53. Liubin Song, Jinlian Du, Zhongliang Xiao, Peng Jiang, Zhong Cao, Huali Zhu. Research Progress on the Surface of High-Nickel Nickel–Cobalt–Manganese Ternary Cathode Materials: A Mini Review. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00761
    54. Zifei Li, Xiuyi Lin, Hebin Zhou, Lidan Xing, Guangyuan Lan, Wenguang Zhang, Jiawei Chen, Mingzhu Liu, Qiming Huang, Weishan Li. Stabilizing the interphasial layer of Ni-rich cathode and graphite anode for lithium ion battery with multifunctional additive. Journal of Power Sources 2020, 467 , 228343. https://doi.org/10.1016/j.jpowsour.2020.228343
    55. Jili Li, Ming Liu, Junchao An, Panpan Tian, Chunjuan Tang, Tiekun Jia, Faheem K. Butt, Dongsheng Yu, Weijie Bai, Chuanbao Cao, Xiangyu Feng. The synergism of nanoplates with habit-tuned crystal and substitution of cobalt with titanium in Ni-rich LiNi0.80Co0.15Al0.05O2 cathode for lithium-ion batteries. Journal of Alloys and Compounds 2020, 829 , 154555. https://doi.org/10.1016/j.jallcom.2020.154555
    56. Tian-Peng Gao, Ka Wai Wong, Ka Ming Ng. High-quality LiNi0.8Co0.15Al0.05O2 cathode with excellent structural stability: Suppressed structural degradation and pore defects generation. Nano Energy 2020, 73 , 104798. https://doi.org/10.1016/j.nanoen.2020.104798
    57. Thomas E. Ashton, Peter J. Baker, Dustin Bauer, Alexandra R. Groves, Carlos Sotelo-Vazquez, Takashi Kamiyama, Takeshi Matsukawa, Kenji M. Kojima, Jawwad A. Darr. Multiple diffusion pathways in Li x Ni 0.77 Co 0.14 Al 0.09 O 2 (NCA) Li-ion battery cathodes. Journal of Materials Chemistry A 2020, 8 (23) , 11545-11552. https://doi.org/10.1039/D0TA03809A
    58. Lehao Liu, Meicheng Li, Lihua Chu, Bing Jiang, Ruoxu Lin, Xiaopei Zhu, Guozhong Cao. Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Progress in Materials Science 2020, 111 , 100655. https://doi.org/10.1016/j.pmatsci.2020.100655
    59. Wuwei Yan, Shunyi Yang, Youyuan Huang, Yong Yang, Guohui Yuan. A review on doping/coating of nickel-rich cathode materials for lithium-ion batteries. Journal of Alloys and Compounds 2020, 819 , 153048. https://doi.org/10.1016/j.jallcom.2019.153048
    60. Maxwell D. Radin, John C. Thomas, Anton Van der Ven. Order-disorder versus displacive transitions in Jahn-Teller active layered materials. Physical Review Materials 2020, 4 (4) https://doi.org/10.1103/PhysRevMaterials.4.043601
    61. Fushan Geng, Bo Peng, Yefeng Yao, Qun Chen, Bingwen Hu. Solid-state NMR studies on crystalline solid polymer electrolytes and important cathode materials for lithium-ion batteries. 2020, 265-308. https://doi.org/10.1016/bs.arnmr.2020.02.005
    62. Ding Wang, Weihong Liu, Xuhong Zhang, Yue Huang, Mingbiao Xu, Wei Xiao. Review of Modified Nickel-Cobalt Lithium Aluminate Cathode Materials for Lithium-Ion Batteries. International Journal of Photoenergy 2019, 2019 , 1-13. https://doi.org/10.1155/2019/2730849
    63. Zachary W. Lebens-Higgins, David M. Halat, Nicholas V. Faenza, Matthew J. Wahila, Manfred Mascheck, Tomas Wiell, Susanna K. Eriksson, Paul Palmgren, Jose Rodriguez, Fadwa Badway, Nathalie Pereira, Glenn G. Amatucci, Tien-Lin Lee, Clare P. Grey, Louis F. J. Piper. Surface Chemistry Dependence on Aluminum Doping in Ni-rich LiNi0.8Co0.2−yAlyO2 Cathodes. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-53932-6
    64. Lamuel David, Debasish Mohanty, Linxiao Geng, Rose E. Ruther, Athena S. Sefat, Ercan Cakmak, Gabriel M. Veith, Harry M. Meyer, Hsin Wang, David L. Wood. High‐Voltage Performance of Ni‐Rich NCA Cathodes: Linking Operating Voltage with Cathode Degradation. ChemElectroChem 2019, 6 (22) , 5571-5580. https://doi.org/10.1002/celc.201901338
    65. Zachary W. Lebens-Higgins, Nicholas V. Faenza, Maxwell D. Radin, Hao Liu, Shawn Sallis, Jatinkumar Rana, Julija Vinckeviciute, Philip J. Reeves, Mateusz J. Zuba, Fadwa Badway, Nathalie Pereira, Karena W. Chapman, Tien-Lin Lee, Tianpin Wu, Clare P. Grey, Brent C. Melot, Anton Van Der Ven, Glenn G. Amatucci, Wanli Yang, Louis F. J. Piper. Revisiting the charge compensation mechanisms in LiNi 0.8 Co 0.2−y Al y O 2 systems. Materials Horizons 2019, 6 (10) , 2112-2123. https://doi.org/10.1039/C9MH00765B
    66. Qi Liu, Yunhao Zhao, Weiwei Liu, Meiyu Wang, Jingjun Ding, Yuzhang Feng, Wenbin You, Peng Wang, Pengfei Guan, Renchao Che. Understanding the role of aluminium in determining the surface structure and electrochemical performance of layered cathodes. Nanoscale 2019, 11 (27) , 13007-13016. https://doi.org/10.1039/C9NR02799H
    67. Eliran Evenstein, Rosy, Shira Haber, Hadar Sclar, Lothar Houben, Kevin Leung, Michal Leskes, Malachi Noked. Atomic surface reduction of interfaces utilizing vapor phase approach: High energy LiNixMnyCoz oxide as a test case. Energy Storage Materials 2019, 19 , 261-269. https://doi.org/10.1016/j.ensm.2018.12.014
    68. Aili Zhang, Axiang Li, Shuai Tong, Lina Yv, Xinran Yang, Shihang Dai, Zhongcai Shao. Synthesis and performance of Al 3+ -doped cathode materials 0.6Li[Li 1/3 Mn 2/3 ]O 2 · 0.4Li[Ni 1/3 Mn 1/3 Co( 1/3- y ) Al y ]O 2 by high temperature solid-state method. International Journal of Materials Research 2019, 110 (3) , 261-267. https://doi.org/10.3139/146.111739
    69. Bi Luo, Bing Jiang, Peng Peng, JiaJia Huang, Jiewei Chen, Meicheng Li, Lihua Chu, Yingfeng Li. Improving the electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode material via tungsten modification. Electrochimica Acta 2019, 297 , 398-405. https://doi.org/10.1016/j.electacta.2018.11.202
    70. Kai Shi, Chen Lai, Xuejun Liu, Yinping Wei, Wei Lv, Jinshu Wang, Jia Li, Chenglin Yan, Baohua Li, Quan-Hong Yang, Feiyu Kang, Yan-Bing He. LiNi0.8Co0.15Al0.05O2 as both a trapper and accelerator of polysulfides for lithium-sulfur batteries. Energy Storage Materials 2019, 17 , 111-117. https://doi.org/10.1016/j.ensm.2018.07.024
    71. Li-Na Xiao, Xiang Ding, Zhong-Feng Tang, Xiao-Dong He, Jia-Ying Liao, Yan-Hua Cui, Chun-Hua Chen. Layered LiNi0.80Co0.15Al0.05O2 as cathode material for hybrid Li+/Na+ batteries. Journal of Solid State Electrochemistry 2018, 22 (11) , 3431-3442. https://doi.org/10.1007/s10008-018-4053-5
    72. Nicholai Daugaard Jensen, Claude Forano, Suraj Shiv Charan Pushparaj, Yusuke Nishiyama, Belayneh Bekele, Ulla Gro Nielsen. The distribution of reactive Ni 2+ in 2D Mg 2−x Ni x Al-LDH nanohybrid materials determined by solid state 27 Al MAS NMR spectroscopy. Physical Chemistry Chemical Physics 2018, 20 (39) , 25335-25342. https://doi.org/10.1039/C8CP05243C
    73. Yu Xia, Jianming Zheng, Chongmin Wang, Meng Gu. Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 2018, 49 , 434-452. https://doi.org/10.1016/j.nanoen.2018.04.062
    74. Aaron C. Johnston-Peck, Saya Takeuchi, K. Kamala Bharathi, Andrew. A. Herzing, Leonid A. Bendersky. Local degradation pathways in lithium-rich manganese–nickel–cobalt oxide epitaxial thin films. Journal of Materials Science 2018, 53 (2) , 1365-1379. https://doi.org/10.1007/s10853-017-1593-5
    75. Florian Strauss, Gwenaëlle Rousse, Dmitry Batuk, Mingxue Tang, Elodie Salager, Goran Dražić, Robert Dominko, Jean-Marie Tarascon. Electrochemical behavior of Bi 4 B 2 O 9 towards lithium-reversible conversion reactions without nanosizing. Physical Chemistry Chemical Physics 2018, 20 (4) , 2330-2338. https://doi.org/10.1039/C7CP07693B
    76. Haodong Liu, Hao Liu, Ieuan D. Seymour, Natasha Chernova, Kamila M. Wiaderek, Nicole M. Trease, Sunny Hy, Yan Chen, Ke An, Minghao Zhang, Olaf J. Borkiewicz, Saul H. Lapidus, Bao Qiu, Yonggao Xia, Zhaoping Liu, Peter J. Chupas, Karena W. Chapman, M. Stanley Whittingham, Clare P. Grey, Ying Shirley Meng. Identifying the chemical and structural irreversibility in LiNi 0.8 Co 0.15 Al 0.05 O 2 – a model compound for classical layered intercalation. Journal of Materials Chemistry A 2018, 6 (9) , 4189-4198. https://doi.org/10.1039/C7TA10829J
    77. Jiajia Huang, Haodong Liu, Tao Hu, Ying Shirley Meng, Jian Luo. Enhancing the electrochemical performance of Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 via WO3 doping and accompanying spontaneous surface phase formation. Journal of Power Sources 2018, 375 , 21-28. https://doi.org/10.1016/j.jpowsour.2017.11.048
    78. Maxwell D. Radin, Sunny Hy, Mahsa Sina, Chengcheng Fang, Haodong Liu, Julija Vinckeviciute, Minghao Zhang, M. Stanley Whittingham, Y. Shirley Meng, Anton Van der Ven. Narrowing the Gap between Theoretical and Practical Capacities in Li‐Ion Layered Oxide Cathode Materials. Advanced Energy Materials 2017, 7 (20) https://doi.org/10.1002/aenm.201602888
    79. Jiaqing Qiu, Mingming Zhao, Qunxing Zhao, Yuxia Xu, Li Zhang, Xin Lu, Huaiguo Xue, Huan Pang. Aluminum-based materials for advanced battery systems. Science China Materials 2017, 60 (7) , 577-607. https://doi.org/10.1007/s40843-017-9060-x
    80. Akihiro Tamura, Shigeomi Takai, Takeshi Yabutsuka, Takeshi Yao. Relaxation Analysis of Li x NiO 2 and Li x (NCA)O 2 in the Deeply Lithium Extracted Region (x ≤ 0.12). Journal of The Electrochemical Society 2017, 164 (7) , A1514-A1519. https://doi.org/10.1149/2.0691707jes

    Chemistry of Materials

    Cite this: Chem. Mater. 2016, 28, 22, 8170–8180
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.6b02797
    Published October 7, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    3418

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.