ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites Based on cfi-Type Layers

View Author Information
EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews KY16 9ST, U.K.
Advanced Microscope Laboratory (LMA), Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza 50018, Spain
§ J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
Cite this: Chem. Mater. 2017, 29, 13, 5605–5611
Publication Date (Web):June 8, 2017
https://doi.org/10.1021/acs.chemmater.7b01181
Copyright © 2017 American Chemical Society

    Article Views

    1584

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (3)»

    Abstract

    Abstract Image

    The hydrothermal synthesis of a zeolite with properties suitable for use in the assembly–disassembly–organization–reassembly (ADOR) process was designed, and a zeolite called SAZ-1 was successfully prepared. This zeolite was then used as a parent in the ADOR process, and two new daughter zeolites, IPC-15 and IPC-16, were prepared. The X-ray powder diffraction patterns of the new zeolites match well with those predicted using computational methods. The three materials form an isoreticular series with decreasing pores size from 14-ring to 12-ring to 10-ring.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.7b01181.

    • Contains 1H NMR spectrum of SDA used, SEM images and EDX results of materials made, TGA data, 13C NMR and enlarged STEM images of SAZ-1, Pawley refinement and 29Si MAS NMR of SAZ-1P, and DFT calculation information for predicted structures of IPC-15 and IPC-16 (PDF)

    • Crystallographic information for IPC-15

      (CIF)

    • Crystallographic information for IPC-16

      (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 58 publications.

    1. Mengting Jin, Ondřej Veselý, Christopher James Heard, Martin Kubů, Petr Nachtigall, Jiří Čejka, Lukáš Grajciar. The Role of Water Loading and Germanium Content in Germanosilicate Hydrolysis. The Journal of Physical Chemistry C 2021, 125 (43) , 23744-23757. https://doi.org/10.1021/acs.jpcc.1c06873
    2. Jin Zhang, Ondřej Veselý, Zdeněk Tošner, Michal Mazur, Maksym Opanasenko, Jiří Čejka, Mariya Shamzhy. Toward Controlling Disassembly Step within the ADOR Process for the Synthesis of Zeolites. Chemistry of Materials 2021, 33 (4) , 1228-1237. https://doi.org/10.1021/acs.chemmater.0c03993
    3. Jong Hun Kang, Dan Xie, Stacey I. Zones, Mark E. Davis. Fluoride-free Synthesis of Germanosilicate CIT-13 and Its Inverse Sigma Transformation To Form CIT-14. Chemistry of Materials 2020, 32 (5) , 2014-2024. https://doi.org/10.1021/acs.chemmater.9b05072
    4. Jong Hun Kang, Dan Xie, Stacey I. Zones, Mark E. Davis. Transformation of Extra-Large Pore Germanosilicate CIT-13 Molecular Sieve into Extra-Large Pore CIT-5 Molecular Sieve. Chemistry of Materials 2019, 31 (23) , 9777-9787. https://doi.org/10.1021/acs.chemmater.9b03675
    5. Yong Zhou, Shashikant A. Kadam, Mariya Shamzhy, Jiří Čejka, Maksym Opanasenko. Isoreticular UTL-Derived Zeolites as Model Materials for Probing Pore Size–Activity Relationship. ACS Catalysis 2019, 9 (6) , 5136-5146. https://doi.org/10.1021/acscatal.9b00950
    6. Susan E. Henkelis, Michal Mazur, Cameron M. Rice, Paul S. Wheatley, Sharon E. Ashbrook, Russell E. Morris. Kinetics and Mechanism of the Hydrolysis and Rearrangement Processes within the Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites. Journal of the American Chemical Society 2019, 141 (10) , 4453-4459. https://doi.org/10.1021/jacs.9b00643
    7. Peng Guo, Mobae Afeworki, Guang Cao, Yifeng Yun, Junliang Sun, Jie Su, Wei Wan, Xiaodong Zou. Synthesis and Structure of a Layered Fluoroaluminophosphate and Its Transformation to a Three-Dimensional Zeotype Framework. Inorganic Chemistry 2018, 57 (18) , 11753-11760. https://doi.org/10.1021/acs.inorgchem.8b01890
    8. Yi Li, Hongxiao Cao, Jihong Yu. Toward a New Era of Designed Synthesis of Nanoporous Zeolitic Materials. ACS Nano 2018, 12 (5) , 4096-4104. https://doi.org/10.1021/acsnano.8b02625
    9. Yanping Chen, Shiliang Huang, Xiaoge Wang, Lei Zhang, Ningning Wu, Fuhui Liao, and Yingxia Wang . Synthesis and Characterization of a Layered Silicogermanate PKU-22 and Its Topotactic Condensation to a Three-Dimensional STI-type Zeolite. Crystal Growth & Design 2017, 17 (10) , 5465-5473. https://doi.org/10.1021/acs.cgd.7b01000
    10. Mingming Peng, Yuhong Zhao, Hao Xu, Jingang Jiang, Peng Wu. Double Four Ring Units‐Containing Zeolites: Synthesis, Structural Modification and Catalytic Applications. Chemistry – A European Journal 2024, 9 https://doi.org/10.1002/chem.202303657
    11. Qiudi Yue, Valeryia Kasneryk, Michal Mazur, Sarra Abdi, Yong Zhou, Paul S. Wheatley, Russell E. Morris, Jiří Čejka, Mariya Shamzhy, Maksym Opanasenko. ADOR zeolite with 12 × 8 × 8-ring pores derived from IWR germanosilicate. Journal of Materials Chemistry A 2024, 3 https://doi.org/10.1039/D3TA06161B
    12. Ondřej Veselý, Russell E. Morris, Jiří Čejka. Beyond traditional synthesis of zeolites: The impact of germanosilicate chemistry in the search for new materials. Microporous and Mesoporous Materials 2023, 358 , 112385. https://doi.org/10.1016/j.micromeso.2022.112385
    13. Feng Jiao, Jun Zhang, Xianshu Cai, Hao Li, Yanan Xu, Yue Zhao, Hongbin Du. A fluoride-free siliceous STW-type zeolite synthesized using a designed organic structure-directing agent. Chemical Communications 2023, 59 (12) , 1649-1652. https://doi.org/10.1039/D2CC05850B
    14. Xiaozhe Hou, Zhenjiang Yao, Haojie Li, Miao Wang, Ying Wei, Ling Zhang, Yan Liang, Junjun Qiao, Jingbo Jia, Runduo Zhang. Tailored alkyl-imidazolium templating synthesis of extra-large-pore germanosilicate zeolite ITT as Baeyer-Villiger oxidation catalyst. Microporous and Mesoporous Materials 2023, 348 , 112340. https://doi.org/10.1016/j.micromeso.2022.112340
    15. Andreas Erlebach, Petr Nachtigall, Lukáš Grajciar. Accurate large-scale simulations of siliceous zeolites by neural network potentials. npj Computational Materials 2022, 8 (1) https://doi.org/10.1038/s41524-022-00865-w
    16. Gabriel Aguirre-Cruz, Felipe Legorreta-Garcia, Gael Aguirre-Cruz, Lia Stanciu, Gabriel Aguirre-Alvarez. Synthesis of hierarchical silica zeolites for heterogenous catalysis and adsorption. Microporous and Mesoporous Materials 2022, 345 , 112274. https://doi.org/10.1016/j.micromeso.2022.112274
    17. Sharon E. Ashbrook, Russell Morris, Cameron M. Rice. Understanding the synthesis and reactivity of ADORable zeolites using NMR spectroscopy. Current Opinion in Colloid & Interface Science 2022, 61 , 101634. https://doi.org/10.1016/j.cocis.2022.101634
    18. Xinyu Lan, Chunyang Wu, Hongdan Zhang, Kun Qian, Peng Cheng. Research progress in extra-large pore zeolite. SCIENTIA SINICA Chimica 2022, 52 (10) , 1759-1771. https://doi.org/10.1360/SSC-2022-0148
    19. Hao Xu, Peng Wu. New progress in zeolite synthesis and catalysis. National Science Review 2022, 9 (9) https://doi.org/10.1093/nsr/nwac045
    20. Jingtian Zhou, Qiudi Yue, Maksym Opanasenko, Xinyan Chen, Yajun Tao, Zhenlin Luo. In situ synchrotron X-ray diffraction reveals the disassembly–organisation mechanism of germanosilicate zeolites in HCl vapour. Inorganic Chemistry Frontiers 2022, 9 (14) , 3453-3460. https://doi.org/10.1039/D2QI00211F
    21. Natália Remperová, Jan Přech, Martin Kubů, Kinga Gołąbek, Juan F. Miñambres, Ming-Feng Hsieh, Alessandro Turrina, Michal Mazur. Gas-phase isomerisation of m-xylene on isoreticular zeolites with tuneable porosity. Catalysis Today 2022, 390-391 , 78-91. https://doi.org/10.1016/j.cattod.2021.11.044
    22. Marco Fabbiani, Amine Morsli, Giorgia Confalonieri, Thomas Cacciaguerra, François Fajula, Julien Haines, Abdelkader Bengueddach, Rossella Arletti, Francesco Di Renzo. On the chemical condensation of the layers of zeolite precursor MCM-22(P). Microporous and Mesoporous Materials 2022, 332 , 111678. https://doi.org/10.1016/j.micromeso.2021.111678
    23. Samantha E. Russell, Susan E. Henkelis, Simon M. Vornholt, Daniel N. Rainer, Karena W. Chapman, Russell E. Morris. In situ flow pair distribution function analysis to probe the assembly–disassembly–organisation–reassembly (ADOR) mechanism of zeolite IPC-2 synthesis. Materials Advances 2021, 2 (24) , 7949-7955. https://doi.org/10.1039/D1MA00335F
    24. Wenting Mao, Chao Bao, Lu Han. Electron Crystallographic Investigation of Crystals on the Mesostructural Scale. Microscopy and Microanalysis 2021, 27 (5) , 996-1006. https://doi.org/10.1017/S1431927621012149
    25. Chaoqun Bian, Yichang Yang, Xiaohui Luo, Wenxia Zhang, Jie Zhang, Longfeng Zhu, Jianping Qiu. Advances in the Synthesis of Crystalline Metallosilicate Zeolites via Interlayer Expansion. Molecules 2021, 26 (19) , 5916. https://doi.org/10.3390/molecules26195916
    26. Ondřej Veselý, Pavla Eliášová, Russell E. Morris, Jiří Čejka. Reverse ADOR: reconstruction of UTL zeolite from layered IPC-1P. Materials Advances 2021, 2 (12) , 3862-3870. https://doi.org/10.1039/D1MA00212K
    27. Hao Xu, Peng Wu. Two-dimensional zeolites in catalysis: current state-of-the-art and perspectives. Catalysis Reviews 2021, 63 (2) , 234-301. https://doi.org/10.1080/01614940.2021.1948298
    28. Martin Hartmann, Matthias Thommes, Wilhelm Schwieger. Hierarchically‐Ordered Zeolites: A Critical Assessment. Advanced Materials Interfaces 2021, 8 (4) https://doi.org/10.1002/admi.202001841
    29. Norihito Hiyoshi, Takuji Ikeda, Yasuhisa Hasegawa, Koichi Sato. Observation of La-exchanged NaY zeolite using aberration-corrected scanning transmission electron microscopy. Microporous and Mesoporous Materials 2021, 311 , 110711. https://doi.org/10.1016/j.micromeso.2020.110711
    30. Kun Lu, Ju Huang, Meichen Jiao, Yuhong Zhao, Yue Ma, Jingang Jiang, Hao Xu, Yanhang Ma, Peng Wu. Topotactic conversion of Ge-rich IWW zeolite into IPC-18 under mild condition. Microporous and Mesoporous Materials 2021, 310 , 110617. https://doi.org/10.1016/j.micromeso.2020.110617
    31. Iunia Podolean, Jin Zhang, Mariya Shamzhy, Vasile I. Pârvulescu, Jiří Čejka. Solvent-free ketalization of polyols over germanosilicate zeolites: the role of the nature and strength of acid sites. Catalysis Science & Technology 2020, 10 (24) , 8254-8264. https://doi.org/10.1039/D0CY01662D
    32. Maksym Opanasenko, Mariya Shamzhy, Yunzheng Wang, Wenfu Yan, Petr Nachtigall, Jiří Čejka. Synthesis and Post‐Synthesis Transformation of Germanosilicate Zeolites. Angewandte Chemie 2020, 132 (44) , 19548-19557. https://doi.org/10.1002/ange.202005776
    33. Maksym Opanasenko, Mariya Shamzhy, Yunzheng Wang, Wenfu Yan, Petr Nachtigall, Jiří Čejka. Synthesis and Post‐Synthesis Transformation of Germanosilicate Zeolites. Angewandte Chemie International Edition 2020, 59 (44) , 19380-19389. https://doi.org/10.1002/anie.202005776
    34. Elsy El Hayek, Bogdan Harbuzaru, Johan A. Martens, Céline Chizallet. Ab initio investigation of the relative stability of silicogermanates and their (Alumino)Silicates counterparts. Microporous and Mesoporous Materials 2020, 306 , 110425. https://doi.org/10.1016/j.micromeso.2020.110425
    35. Peng Ji, Renbing Tian, Hua Zheng, Jin-gang Jiang, Jinghua Sun, Junbiao Peng. Solvent-free synthesis of ZIF-8 from zinc acetate with the assistance of sodium hydroxide. Dalton Transactions 2020, 49 (36) , 12555-12558. https://doi.org/10.1039/D0DT02856H
    36. Matthew E. Potter, Mark E. Light, Daniel J. M. Irving, Alice E. Oakley, Stephanie Chapman, Philip Chater, Geoff Cutts, Andrew Watts, Michael Wharmby, Bart D. Vandegehuchte, Moritz W. Schreiber, Robert Raja. Exploring the origins of crystallisation kinetics in hierarchical materials using in situ X-ray diffraction and pair distribution function analysis. Physical Chemistry Chemical Physics 2020, 22 (34) , 18860-18867. https://doi.org/10.1039/D0CP00670J
    37. Hao Xu, Peng Wu. New Trends in Layered Zeolites. 2020https://doi.org/10.5772/intechopen.86696
    38. Daniel N. Rainer, Cameron M. Rice, Stewart J. Warrender, Sharon E. Ashbrook, Russell E. Morris. Mechanochemically assisted hydrolysis in the ADOR process. Chemical Science 2020, 11 (27) , 7060-7069. https://doi.org/10.1039/D0SC02547J
    39. Jiří Čejka, Roberto Millini, Maksym Opanasenko, David P. Serrano, Wieslaw J. Roth. Advances and challenges in zeolite synthesis and catalysis. Catalysis Today 2020, 345 , 2-13. https://doi.org/10.1016/j.cattod.2019.10.021
    40. Emily Schulman, Wei Wu, Dongxia Liu. Two-Dimensional Zeolite Materials: Structural and Acidity Properties. Materials 2020, 13 (8) , 1822. https://doi.org/10.3390/ma13081822
    41. Chengmin Li, Qing Zhang, Alvaro Mayoral. Ten Years of Aberration Corrected Electron Microscopy for Ordered Nanoporous Materials. ChemCatChem 2020, 12 (5) , 1248-1269. https://doi.org/10.1002/cctc.201901861
    42. Xue Liu, Yi Luo, Wenting Mao, Jingang Jiang, Hao Xu, Lu Han, Junliang Sun, Peng Wu. 3D Electron Diffraction Unravels the New Zeolite ECNU‐23 from the “Pure” Powder Sample of ECNU‐21. Angewandte Chemie 2020, 132 (3) , 1182-1186. https://doi.org/10.1002/ange.201912488
    43. Xue Liu, Yi Luo, Wenting Mao, Jingang Jiang, Hao Xu, Lu Han, Junliang Sun, Peng Wu. 3D Electron Diffraction Unravels the New Zeolite ECNU‐23 from the “Pure” Powder Sample of ECNU‐21. Angewandte Chemie International Edition 2020, 59 (3) , 1166-1170. https://doi.org/10.1002/anie.201912488
    44. Valeryia Kasneryk, Mariya Shamzhy, Jingtian Zhou, Qiudi Yue, Michal Mazur, Alvaro Mayoral, Zhenlin Luo, Russell E. Morris, Jiří Čejka, Maksym Opanasenko. Vapour-phase-transport rearrangement technique for the synthesis of new zeolites. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-12882-3
    45. Yuyan Zhang, Martin Kubů, Michal Mazur, Jiří Čejka. Encapsulation of Pt nanoparticles into IPC-2 and IPC-4 zeolites using the ADOR approach. Microporous and Mesoporous Materials 2019, 279 , 364-370. https://doi.org/10.1016/j.micromeso.2019.01.018
    46. Michal Mazur, Jan Přech, Jiří Čejka. Zeolites and Other Micro‐ and Mesoporous Molecular Sieves. 2019, 1-36. https://doi.org/10.1002/0471238961.zeolcejk.a01.pub2
    47. Xue Liu, Wenting Mao, Jingang Jiang, Xinqing Lu, Mingming Peng, Hao Xu, Lu Han, Shun‐ai Che, Peng Wu. Topotactic Conversion of Alkali‐Treated Intergrown Germanosilicate CIT‐13 into Single‐Crystalline ECNU‐21 Zeolite as Shape‐Selective Catalyst for Ethylene Oxide Hydration. Chemistry – A European Journal 2019, 25 (17) , 4520-4529. https://doi.org/10.1002/chem.201900173
    48. Rogeria Bingre, Cristina Megias Sayago, Pit Losch, Liang Huang, Qiang Wang, Marcelo M. Pereira, Benoît Louis. Recent progress in the biomass-mediated synthesis of porous materials. Inorganica Chimica Acta 2019, 487 , 379-386. https://doi.org/10.1016/j.ica.2018.12.045
    49. Susan E. Henkelis, Michal Mazur, Cameron M. Rice, Giulia P. M. Bignami, Paul S. Wheatley, Sharon E. Ashbrook, Jiří Čejka, Russell E. Morris. A procedure for identifying possible products in the assembly–disassembly–organization–reassembly (ADOR) synthesis of zeolites. Nature Protocols 2019, 14 (3) , 781-794. https://doi.org/10.1038/s41596-018-0114-6
    50. Mariya Shamzhy, Maksym Opanasenko, Patricia Concepción, Agustín Martínez. New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews 2019, 48 (4) , 1095-1149. https://doi.org/10.1039/C8CS00887F
    51. Christopher J. Heard, Jiří Čejka, Maksym Opanasenko, Petr Nachtigall, Gabriele Centi, Siglinda Perathoner. 2D Oxide Nanomaterials to Address the Energy Transition and Catalysis. Advanced Materials 2019, 31 (3) https://doi.org/10.1002/adma.201801712
    52. Chengeng Li, Manuel Moliner, Avelino Corma. Synthese von Zeolithen aus vorkristallisierten Bausteinen: Architektur im Nanomaßstab. Angewandte Chemie 2018, 130 (47) , 15554-15578. https://doi.org/10.1002/ange.201711422
    53. Chengeng Li, Manuel Moliner, Avelino Corma. Building Zeolites from Precrystallized Units: Nanoscale Architecture. Angewandte Chemie International Edition 2018, 57 (47) , 15330-15353. https://doi.org/10.1002/anie.201711422
    54. J. Přech, P. Pizarro, D. P. Serrano, J. Čejka. From 3D to 2D zeolite catalytic materials. Chemical Society Reviews 2018, 47 (22) , 8263-8306. https://doi.org/10.1039/C8CS00370J
    55. Allen Burton. Recent trends in the synthesis of high-silica zeolites. Catalysis Reviews 2018, 60 (1) , 132-175. https://doi.org/10.1080/01614940.2017.1389112
    56. Geo Paul, Chiara Bisio, Ilaria Braschi, Maurizio Cossi, Giorgio Gatti, Enrica Gianotti, Leonardo Marchese. Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chemical Society Reviews 2018, 47 (15) , 5684-5739. https://doi.org/10.1039/C7CS00358G
    57. Valeryia Kasneryk, Mariya Shamzhy, Maksym Opanasenko, Paul S. Wheatley, Russell E. Morris, Jiří Čejka. Insight into the ADOR zeolite-to-zeolite transformation: the UOV case. Dalton Transactions 2018, 47 (9) , 3084-3092. https://doi.org/10.1039/C7DT03751A
    58. Susan E. Henkelis, Samuel A. Morris, Michal Mazur, Paul S. Wheatley, Lauren N. McHugh, Russell E. Morris. Monitoring the assembly–disassembly–organisation–reassembly process of germanosilicate UTL through in situ pair distribution function analysis. Journal of Materials Chemistry A 2018, 6 (35) , 17011-17018. https://doi.org/10.1039/C8TA04320E

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect