Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Mechanism for the Stable Performance of Sulfur-Copolymer Cathode in Lithium–Sulfur Battery Studied by Solid-State NMR Spectroscopy
My Activity
    Article

    Mechanism for the Stable Performance of Sulfur-Copolymer Cathode in Lithium–Sulfur Battery Studied by Solid-State NMR Spectroscopy
    Click to copy article linkArticle link copied!

    • Alexander Hoefling
      Alexander Hoefling
      Department of Chemistry, Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
    • Dan Thien Nguyen
      Dan Thien Nguyen
      Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
    • Pouya Partovi-Azar
      Pouya Partovi-Azar
      Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
    • Daniel Sebastiani
      Daniel Sebastiani
      Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
    • Patrick Theato
      Patrick Theato
      Department of Chemistry, Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany
    • Seung-Wan Song*
      Seung-Wan Song
      Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
      *E-mail: [email protected]
    • Young Joo Lee*
      Young Joo Lee
      Department of Chemistry, Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Chemistry of Materials

    Cite this: Chem. Mater. 2018, 30, 9, 2915–2923
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.7b05105
    Published April 12, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Rechargeable lithium–sulfur (Li–S) batteries have drawn significant attention as next-generation energy storage systems. Sulfur-copolymers are promising alternative cathode materials to elemental sulfur in Li–S batteries as they provide high reversible capacity. However, the redox mechanisms of these materials are not well understood owing to the difficulty in characterizing amorphous structures and identifying individual ionic species. Here, we use solid-state NMR techniques together with electrochemistry experiments and quantum calculations to investigate the structural evolution of the prototype S-copolymer cathodes, sulfur–diisopropenylbenzene copolymers (poly(S-co-DIB)), during cycling. We demonstrate that polysulfides with different chain lengths can be distinguished by 13C and 7Li NMR spectroscopy, revealing that the structure of the copolymers can be tuned in terms of polysulfide chain lengths and resulting reaction pathways during electrochemical cycling. Our results show that the improved cyclability of these cathodes originates from the role of organic moieties acting as anchors that fixate polysulfides to the polymeric network during cycling, thus preventing their diffusion into the electrolyte. We provide a new methodological concept for the mechanistic studies to track the intermediate species and phase transition in Li–S batteries.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.7b05105.

    • Deconvolution of 13C{1H} CP MAS NMR spectra of poly(S-co-DIB) copolymers, T1(13C) relaxation time, first-principles calculations of the systems bound to two polysulfide chains, solubility test, battery optimization procedure, deconvolution of 13C{1H} CP MAS NMR spectra of S-DIB-50 and S-DIB-10 cathodes at various SOD, 13C{1H} CP MAS NMR spectra of the electrodes after the washing step, and ex situ X-ray photoelectron spectroscopy (XPS) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 63 publications.

    1. Soumyadip Choudhury, Mohamed Akef, Andreas Seifert, Michael Göbel, Markus Gruschwitz, Rukiya Matsidik, Christoph Tegenkamp, Michael Sommer. Hybrid Organosulfur Network/MWCNT Composite Cathodes for Li–S Batteries. ACS Applied Materials & Interfaces 2024, 16 (5) , 6301-6314. https://doi.org/10.1021/acsami.3c09316
    2. Rukiya Matsidik, Konstantin Skudler, Sunel de Kock, Andreas Seifert, Matthias Müller, Michael Walter, Soumyadip Choudhury, Michael Sommer. On the Effect of Sulfur Strand Length on the Electrochemical Performance of Dual-Redox-Active Sulfur-Naphthalene Diimide Cathode Materials. ACS Applied Energy Materials 2023, 6 (18) , 9466-9474. https://doi.org/10.1021/acsaem.3c01438
    3. Jianhua Bao, Kaitlyn P. Martin, Eunkyung Cho, Kyung-Seok Kang, Richard S. Glass, Veaceslav Coropceanu, Jean-Luc Bredas, Wallace O’Neil Parker, Jr., Jon T. Njardarson, Jeffrey Pyun. On the Mechanism of the Inverse Vulcanization of Elemental Sulfur: Structural Characterization of Poly(sulfur-random-(1,3-diisopropenylbenzene)). Journal of the American Chemical Society 2023, 145 (22) , 12386-12397. https://doi.org/10.1021/jacs.3c03604
    4. Ayda Rafie, Rhyz Pereira, Ahmad Arabi Shamsabadi, Vibha Kalra. In Operando FTIR Study on the Effect of Sulfur Chain Length in Sulfur Copolymer-Based Li–S Batteries. The Journal of Physical Chemistry C 2022, 126 (30) , 12327-12338. https://doi.org/10.1021/acs.jpcc.1c09124
    5. Rahul Jay, Ankur L. Jadhav, Leo W. Gordon, Robert J. Messinger. Soluble Electrolyte-Coordinated Sulfide Species Revealed in Al–S Batteries by Nuclear Magnetic Resonance Spectroscopy. Chemistry of Materials 2022, 34 (10) , 4486-4495. https://doi.org/10.1021/acs.chemmater.2c00248
    6. Taeheon Lee, Philip T. Dirlam, Jon T. Njardarson, Richard S. Glass, Jeffrey Pyun. Polymerizations with Elemental Sulfur: From Petroleum Refining to Polymeric Materials. Journal of the American Chemical Society 2022, 144 (1) , 5-22. https://doi.org/10.1021/jacs.1c09329
    7. Wontae Jang, Keonwoo Choi, Ji Sung Choi, Do Heung Kim, Kookheon Char, Jeewoo Lim, Sung Gap Im. Transparent, Ultrahigh-Refractive Index Polymer Film (n ∼1.97) with Minimal Birefringence (Δn <0.0010). ACS Applied Materials & Interfaces 2021, 13 (51) , 61629-61637. https://doi.org/10.1021/acsami.1c17398
    8. Fei Dong, Chengxin Peng, Hongyi Xu, Yuxin Zheng, Hongfei Yao, Junhe Yang, Shiyou Zheng. Lithiated Sulfur-Incorporated, Polymeric Cathode for Durable Lithium–Sulfur Batteries with Promoted Redox Kinetics. ACS Nano 2021, 15 (12) , 20287-20299. https://doi.org/10.1021/acsnano.1c08449
    9. Leiqian Zhang, Lingfeng Ge, Guanjie He, Zhihong Tian, Jiajia Huang, Jingtao Wang, Dan J.L. Brett, Johan Hofkens, Feili Lai, Tianxi Liu. Tuning the Linkers in Polymer-Based Cathodes to Realize High Sulfur Content and High-Performance Potassium–Sulfur Batteries. The Journal of Physical Chemistry C 2021, 125 (34) , 18604-18613. https://doi.org/10.1021/acs.jpcc.1c05283
    10. Fan Zhang, Yingwu Luo, Xiang Gao, Rui Wang. Copolymerized Sulfur with Intrinsically Ionic Conductivity, Superior Dispersibility, and Compatibility for All-Solid-State Lithium Batteries. ACS Sustainable Chemistry & Engineering 2020, 8 (32) , 12100-12109. https://doi.org/10.1021/acssuschemeng.0c03425
    11. Jiaqi Shen, Yong Feng, Peng Wang, Guanyinsheng Qiu, Lianpeng Zhang, Lei Lu, Hui Wang, Rongfang Wang, Vladimir Linkov, Shan Ji. Conductive Sulfur-Rich Copolymer Composites as Lithium–Sulfur Battery Electrodes with Fast Kinetics and a High Cycle Stability. ACS Sustainable Chemistry & Engineering 2020, 8 (28) , 10389-10401. https://doi.org/10.1021/acssuschemeng.0c01791
    12. Hang-Yu Zhou, Zhu-Yin Sui, Kamran Amin, Liang-Wen Lin, Hai-Yan Wang, Bao-Hang Han. Investigating the Electrocatalysis of a Ti3C2/Carbon Hybrid in Polysulfide Conversion of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2020, 12 (12) , 13904-13913. https://doi.org/10.1021/acsami.9b23006
    13. Sangwoo Park, Seong-Jun Kim, Yung-Eun Sung, Kookheon Char, Jeong Gon Son. Short-Chain Polyselenosulfide Copolymers as Cathode Materials for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2019, 11 (49) , 45785-45795. https://doi.org/10.1021/acsami.9b17209
    14. Junpeng Ma, Jingbiao Fan, Shang Chen, Xinyue Yang, Kwun Nam Hui, Hongwen Zhang, Christopher W. Bielawski, Jianxin Geng. Covalent Confinement of Sulfur Copolymers onto Graphene Sheets Affords Ultrastable Lithium–Sulfur Batteries with Fast Cathode Kinetics. ACS Applied Materials & Interfaces 2019, 11 (14) , 13234-13243. https://doi.org/10.1021/acsami.9b00214
    15. Bijian Deng, Frieder Scheiba, Anhao Zuo, Sylvio Indris, Hang Li, Hannes Radinger, Alexander Grimm, Christian Njel. Sulfur Distribution Analysis in Lithium−Sulfur Cathode via Confined Inverse Vulcanization in Carbon Frameworks. Advanced Energy Materials 2024, https://doi.org/10.1002/aenm.202402996
    16. Xing-You Rao, Shuang-Fei Xiang, Jian Zhou, Zhen Zhang, Xiang-Yu Xu, Yuan-Yuan Xu, Xin-Chi Zhou, Zheng-Dao Pan, Su-Chong Tan, Shi-Xing Dong, Zhou-Lu Wang, Yu-Tong Wu, Yun-Lei Zhou, Xiang Liu, Yi Zhang, Shan Jiang. Recent progress and strategies of cathodes toward polysulfides shuttle restriction for lithium-sulfur batteries. Rare Metals 2024, 43 (9) , 4132-4161. https://doi.org/10.1007/s12598-024-02708-7
    17. Hang Shen, Botuo Zheng, Huagui Zhang. A Decade Development of Inverse Vulcanization Towards Green and Sustainable Practices. Polymer Reviews 2024, 30 , 1-56. https://doi.org/10.1080/15583724.2024.2382891
    18. Qiaowei Lin, Jiaxing Liang, Ruopian Fang, Changlong Sun, Aditya Rawal, Jun Huang, Quan‐Hong Yang, Wei Lv, Da‐Wei Wang. A Lewis Acid–Lewis Base Hybridized Electrocatalyst for Roundtrip Sulfur Conversion in Lithium–Sulfur Batteries. Advanced Energy Materials 2024, 14 (21) https://doi.org/10.1002/aenm.202400786
    19. Xiaoyin Zhang, Tong Yu, Shuaiyi Yang, Zhuoyan Qu, Ru Xiao, Guoxiu Wang, Zhenhua Sun, Feng Li. Organosulfur Cathodes in Lithium Metal Batteries: Bridging the Gap between Fundamentals and Practical Applications. Advanced Functional Materials 2024, 559 https://doi.org/10.1002/adfm.202405122
    20. Seong-Ju Lee, Gi-Yeon Han, Mo-Beom Yi, Jong-Ho Back, Hyun-Joong Kim. From waste to tape: Inverse vulcanization of sulfur and solvent-based depolymerization for preparation of pressure-sensitive adhesives. Journal of Materials Research and Technology 2024, 29 , 1798-1804. https://doi.org/10.1016/j.jmrt.2024.01.218
    21. Claudia V. Lopez, Rhett C. Smith. Composites produced from waste plastic with agricultural and energy sector by‐products. Journal of Applied Polymer Science 2024, 141 (3) https://doi.org/10.1002/app.54828
    22. Shuimiao Wang, Yurui Wu, Ming Yang, Li Sun, Yong Tao, Chang-An Yang. Sulfur-containing polymer/carbon nanotube composite cathode materials for high-energy lithium–sulfur batteries. New Journal of Chemistry 2024, 629 https://doi.org/10.1039/D3NJ04155G
    23. Zihui Song, Lin Wang, Wanyuan Jiang, Mengfan Pei, Borui Li, Runyue Mao, Siyang Liu, Tianpeng Zhang, Xigao Jian, Fangyuan Hu. “Like Compatible Like” Strategy Designing Strong Cathode‐Electrolyte Interface Quasi‐Solid‐State Lithium–Sulfur Batteries. Advanced Energy Materials 2024, 14 (4) https://doi.org/10.1002/aenm.202302688
    24. Thomas J. Leckie, Stuart D. Robertson, Edward Brightman. Recent advances in in situ / operando characterization of lithium–sulfur batteries. Energy Advances 2024, 3 https://doi.org/10.1039/D4YA00416G
    25. Dan Yang, Liyun Cao, Jianfeng Huang, Gengsheng Jiao, Donghua Wang, Qianqian Liu, Guodong Li, Chaozheng He, Liangliang Feng. Reversible active bridging sulfur sites grafted on Ni3S2 nanobelt arrays for efficient hydrogen evolution reaction. Journal of Colloid and Interface Science 2023, 649 , 194-202. https://doi.org/10.1016/j.jcis.2023.06.082
    26. Rana Kiani, Matthias Steimecke, Marah Alqaisi, Michael Bron, Daniel Sebastiani, Pouya Partovi-Azar. Characterization of sulfur/carbon copolymer cathodes for Li–S batteries: a combined experimental and ab initio Raman spectroscopy study. RSC Advances 2023, 13 (40) , 27756-27763. https://doi.org/10.1039/D3RA02980H
    27. Sunel de Kock, Konstantin Skudler, Rukiya Matsidik, Michael Sommer, Matthias Müller, Michael Walter. NEXAFS spectra of model sulfide chains: implications for sulfur networks obtained from inverse vulcanization. Physical Chemistry Chemical Physics 2023, 25 (30) , 20395-20404. https://doi.org/10.1039/D3CP02285D
    28. Tianpeng Zhang, Zihui Song, Jinfeng Zhang, Wanyuan Jiang, Runyue Mao, Borui Li, Siyang Liu, Xigao Jian, Fangyuan Hu. A semi-immobilized sulfur-rich copolymer backbone with conciliatory polymer skeleton and conductive substrates for high-performance Li-S batteries. Journal of Energy Chemistry 2023, 81 , 510-518. https://doi.org/10.1016/j.jechem.2023.02.031
    29. Timmy Thiounn, Menisha S. Karunarathna, Moira K. Lauer, Andrew G. Tennyson, Rhett C. Smith. Detoxification of bisphenol A via sulfur-mediated carbon–carbon σ-bond scission. RSC Sustainability 2023, 1 (3) , 535-542. https://doi.org/10.1039/D2SU00138A
    30. Charini P. Maladeniya, Andrew G. Tennyson, Rhett C. Smith. Single‐stage chemical recycling of plastic waste to yield durable composites via a tandem transesterification‐thiocracking process. Journal of Polymer Science 2023, 61 (9) , 787-793. https://doi.org/10.1002/pol.20220686
    31. Liam J. Dodd, Cássio Lima, David Costa-Milan, Alex R. Neale, Benedict Saunders, Bowen Zhang, Andrei Sarua, Royston Goodacre, Laurence J. Hardwick, Martin Kuball, Tom Hasell. Raman analysis of inverse vulcanised polymers. Polymer Chemistry 2023, 14 (12) , 1369-1386. https://doi.org/10.1039/D2PY01408D
    32. Sumana Bandyopadhyay, Bhanu Nandan. A review on design of cathode, anode and solid electrolyte for true all-solid-state lithium sulfur batteries. Materials Today Energy 2023, 31 , 101201. https://doi.org/10.1016/j.mtener.2022.101201
    33. Lisa Djuandhi, Uttam Mittal, Neeraj Sharma, Henrik L. Andersen. The Role of Carbon-Based Cathode Components in Li–S Batteries. Journal of The Electrochemical Society 2023, 170 (1) , 010522. https://doi.org/10.1149/1945-7111/acb1a5
    34. Robert Dominko, Sara Drvarič Talian, Alen Vizintin. Lithium sulfur batteries: Electrochemistry and mechanistic research. 2023, 430-455. https://doi.org/10.1016/B978-0-12-823144-9.00056-X
    35. Katelyn A. Tisdale, Charini P. Maladeniya, Claudia V. Lopez, Andrew G. Tennyson, Rhett C. Smith. Sustainable Composites from Waste Sulfur, Terpenoids, and Pozzolan Cements. Journal of Composites Science 2023, 7 (1) , 35. https://doi.org/10.3390/jcs7010035
    36. S. Qi, Q. Peng, D. Xu, C. Guo, J. Yang, H. Dong, Y. Wang, F. Wu, S. Chen. In situ structural evolutions of sulfur-limonene polysulfides encapsulated in yeast-derived porous N-doped carbon spheres for high-performance Li–S batteries. Materials Today Chemistry 2022, 26 , 101138. https://doi.org/10.1016/j.mtchem.2022.101138
    37. Yibo Hu, Haoyan Cheng, Haiting Chen, Shuge Dai, Kexing Song, Xin Ma, Meilin Liu, Hao Hu. Molecular structure-controlled synthesis of sulfur-containing polymers for rechargeable Li–S batteries. Journal of Materials Chemistry A 2022, 10 (43) , 22896-22914. https://doi.org/10.1039/D2TA06500B
    38. Alexander P. Grimm, Johannes M. Scheiger, Peter W. Roesky, Patrick Théato. Inverse vulcanization of trimethoxyvinylsilane particles. Polymer Chemistry 2022, 13 (41) , 5852-5860. https://doi.org/10.1039/D2PY00773H
    39. Haoran Wang, Bowen Zhang, Romy Dop, Peiyao Yan, Alex R. Neale, Laurence J. Hardwick, Tom Hasell. Oxygen heteroatom enhanced sulfur-rich polymers synthesized by inverse vulcanization for high-performance lithium-sulfur batteries. Journal of Power Sources 2022, 545 , 231921. https://doi.org/10.1016/j.jpowsour.2022.231921
    40. Pouya Partovi-Azar. Sulfur/Polyacrylonitrile-Based N-Terminated Graphene Nanoribbon Cathodes for Li-S Batteries. Physical Review Applied 2022, 18 (4) https://doi.org/10.1103/PhysRevApplied.18.044072
    41. Lisa Djuandhi, Bruce C. C. Cowie, Aditya Rawal, Neeraj Sharma. Investigation of low molecular weight sulfur–limonene polysulfide electrodes in Li–S cells. Journal of Materials Chemistry A 2022, 10 (35) , 18278-18294. https://doi.org/10.1039/D2TA04162F
    42. Ming Liu, Shengnan Zhang, Ernst R. H. van Eck, Chao Wang, Swapna Ganapathy, Marnix Wagemaker. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nature Nanotechnology 2022, 17 (9) , 959-967. https://doi.org/10.1038/s41565-022-01162-9
    43. Rana Kiani, Daniel Sebastiani, Pouya Partovi‐Azar. On the Structure of Sulfur/1,3‐Diisopropenylbenzene Co‐Polymer Cathodes for Li‐S Batteries: Insights from Density‐Functional Theory Calculations. ChemPhysChem 2022, 23 (1) https://doi.org/10.1002/cphc.202100519
    44. Yizhou Wang, Dong Zhou, Guoxiu Wang. Sulfur-Containing Polymer Cathode Materials for Li–S Batteries. 2022, 295-330. https://doi.org/10.1007/978-3-030-90899-7_8
    45. Xiangsi Liu, Ziteng Liang, Yuxuan Xiang, Min Lin, Qi Li, Zigeng Liu, Guiming Zhong, Riqiang Fu, Yong Yang. Solid‐State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization. Advanced Materials 2021, 33 (50) https://doi.org/10.1002/adma.202005878
    46. Hanvin Kim, Nozomi Takeuchi. Insights into oxygen reduction reaction on pristine carbon nanoparticles synthesized by the plasma-in-liquid process. Electrochimica Acta 2021, 390 , 138882. https://doi.org/10.1016/j.electacta.2021.138882
    47. Hong Sun Yang, Dong‐Min Kim, Youngjin Kim, Young Joo Lee, Kyu Tae Lee. Nonpolar Solvent‐based Electrolytes with a Quasi‐Solid‐State Redox Reaction for Lithium‐Sulfur Batteries. ChemElectroChem 2021, 8 (12) , 2321-2328. https://doi.org/10.1002/celc.202100578
    48. Samuel Petcher, Bowen Zhang, Tom Hasell. Mesoporous knitted inverse vulcanised polymers. Chemical Communications 2021, 57 (41) , 5059-5062. https://doi.org/10.1039/D1CC01152A
    49. Ayda Rafie, Arvinder Singh, Vibha Kalra. Synergistic effect of sulfur-rich copolymer/S8 and carbon host porosity in Li-S batteries. Electrochimica Acta 2021, 365 , 137088. https://doi.org/10.1016/j.electacta.2020.137088
    50. 金秋 周. The Application of Functional Polymers in Cathode of High-Performance Lithium Sulfur Batteries. Hans Journal of Nanotechnology 2021, 11 (04) , 258-277. https://doi.org/10.12677/NAT.2021.114029
    51. Monisha Monisha, Preetham Permude, Arnab Ghosh, Ajit Kumar, Saad Zafar, Sagar Mitra, Bimlesh Lochab. Halogen-free flame-retardant sulfur copolymers with stable Li–S battery performance. Energy Storage Materials 2020, 29 , 350-360. https://doi.org/10.1016/j.ensm.2020.04.041
    52. Thomas D. Kühne, Marcella Iannuzzi, Mauro Del Ben, Vladimir V. Rybkin, Patrick Seewald, Frederick Stein, Teodoro Laino, Rustam Z. Khaliullin, Ole Schütt, Florian Schiffmann, Dorothea Golze, Jan Wilhelm, Sergey Chulkov, Mohammad Hossein Bani-Hashemian, Valéry Weber, Urban Borštnik, Mathieu Taillefumier, Alice Shoshana Jakobovits, Alfio Lazzaro, Hans Pabst, Tiziano Müller, Robert Schade, Manuel Guidon, Samuel Andermatt, Nico Holmberg, Gregory K. Schenter, Anna Hehn, Augustin Bussy, Fabian Belleflamme, Gloria Tabacchi, Andreas Glöß, Michael Lass, Iain Bethune, Christopher J. Mundy, Christian Plessl, Matt Watkins, Joost VandeVondele, Matthias Krack, Jürg Hutter. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. The Journal of Chemical Physics 2020, 152 (19) https://doi.org/10.1063/5.0007045
    53. Xiaoyin Zhang, Ke Chen, Zhenhua Sun, Guangjian Hu, Ru Xiao, Hui-Ming Cheng, Feng Li. Structure-related electrochemical performance of organosulfur compounds for lithium–sulfur batteries. Energy & Environmental Science 2020, 13 (4) , 1076-1095. https://doi.org/10.1039/C9EE03848E
    54. Xiang Li, Lixia Yuan, Dezhong Liu, Zhen Li, Jie Chen, Kai Yuan, Jingwei Xiang, Yunhui Huang. High sulfur-containing organosulfur polymer composite cathode embedded by monoclinic S for lithium sulfur batteries. Energy Storage Materials 2020, 26 , 570-576. https://doi.org/10.1016/j.ensm.2019.11.030
    55. Ruopian Fang, Jiangtao Xu, Da-Wei Wang. Covalent fixing of sulfur in metal–sulfur batteries. Energy & Environmental Science 2020, 13 (2) , 432-471. https://doi.org/10.1039/C9EE03408K
    56. Sourav Bag, Chengtian Zhou, Patrick J. Kim, Vilas G. Pol, Venkataraman Thangadurai. LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li–S batteries. Energy Storage Materials 2020, 24 , 198-207. https://doi.org/10.1016/j.ensm.2019.08.019
    57. Lisa Djuandhi, Neeraj Sharma, Bruce C. C. Cowie, Thanh V. Nguyen, Aditya Rawal. Elucidation of structures and lithium environments for an organo-sulfur cathode. Physical Chemistry Chemical Physics 2019, 21 (34) , 18667-18679. https://doi.org/10.1039/C9CP03057C
    58. Pouya Partovi‐Azar, Daniel Sebastiani. Mechanism of Lithium Cation Hopping between Tetragonal Thiophene Cages. Batteries & Supercaps 2019, 2 (8) , 695-700. https://doi.org/10.1002/batt.201900043
    59. Justin M. Chalker, Max J. H. Worthington, Nicholas A. Lundquist, Louisa J. Esdaile. Synthesis and Applications of Polymers Made by Inverse Vulcanization. Topics in Current Chemistry 2019, 377 (3) https://doi.org/10.1007/s41061-019-0242-7
    60. Yun Li, Ian A. Murphy, Ying Chen, Francis Lin, Xiang Wang, Shanyu Wang, Dion Hubble, Sei-Hum Jang, Karl T. Muller, Chongmin Wang, Alex K.-Y. Jen, Jihui Yang. A multi-functional interface derived from thiol-modified mesoporous carbon in lithium–sulfur batteries. Journal of Materials Chemistry A 2019, 7 (21) , 13372-13381. https://doi.org/10.1039/C9TA02743B
    61. Tingting Liu, Xing Cheng, Haoxiang Yu, Haojie Zhu, Na Peng, Runtian Zheng, Jundong Zhang, Miao Shui, Yanhua Cui, Jie Shu. An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Materials 2019, 18 , 68-91. https://doi.org/10.1016/j.ensm.2018.09.027
    62. Dan Thien Nguyen, Alexander Hoefling, Minha Yee, Giang Thi Huong Nguyen, Patrick Theato, Young Joo Lee, Seung‐Wan Song. Enabling High‐Rate and Safe Lithium Ion–Sulfur Batteries by Effective Combination of Sulfur‐Copolymer Cathode and Hard‐Carbon Anode. ChemSusChem 2019, 12 (2) , 480-486. https://doi.org/10.1002/cssc.201802430
    63. Bin Li, Hongfei Xu, Yang Ma, Shubin Yang. Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horizons 2019, 4 (1) , 77-98. https://doi.org/10.1039/C8NH00170G

    Chemistry of Materials

    Cite this: Chem. Mater. 2018, 30, 9, 2915–2923
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.7b05105
    Published April 12, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    3515

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.