ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Spontaneous Folding of CdTe Nanosheets Induced by Ligand Exchange

  • Roman B. Vasiliev*
    Roman B. Vasiliev
    Department of Materials Science  and  Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
    *E-mail: [email protected]
  • Elizabeth P. Lazareva
    Elizabeth P. Lazareva
    Department of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia
  • Daria A. Karlova
    Daria A. Karlova
    Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
  • Alexey V. Garshev
    Alexey V. Garshev
    Department of Materials Science  and  Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
  • Yuanzhao Yao
    Yuanzhao Yao
    Photonic Materials Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
    More by Yuanzhao Yao
  • Takashi Kuroda
    Takashi Kuroda
    Photonic Materials Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
  • Alexander M. Gaskov
    Alexander M. Gaskov
    Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
  • , and 
  • Kazuaki Sakoda
    Kazuaki Sakoda
    Photonic Materials Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Cite this: Chem. Mater. 2018, 30, 5, 1710–1717
Publication Date (Web):February 25, 2018
Copyright © 2018 American Chemical Society

    Article Views





    Other access options
    Supporting Info (1)»


    Abstract Image

    Two-dimensional (2D) semiconductors exhibit unique electronic and optical properties arising from the atomic-scale thickness and two-dimensional electronic structure. However, it is usually limited by an intrinsically flat morphology of 2D materials. Here, we report an effect of spontaneous folding of quasi-2D CdTe nanosheets stimulated by ligand exchange. We show that initially flat CdTe nanosheets with 100–200 nm lateral size and 5–6 ML thickness are uniformly rolled up when oleic acid is replaced by thiol-containing ligands. Detailed study shows nanosheet folding along the [110] direction forming multiwall scroll-like structures with the diameter being dependent on sheet thickness. A pronounced red shift of the exciton transitions of CdTe nanosheets is found due to thickness increase and strain appearance under thiol attachment. The folding mechanism is likely related to misfit strain at CdTe (001) basal planes as ultrathin CdS layer is formed. Possibility to precisely tune the nanostructure shape simply by ligand-induced strain can evolve into new synthetic strategies to control a spatial morphology of 2D materials.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.


    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.7b05324.

    • Additional TEM and HAADF-STEM images of the 6 ML CdTe samples covered by TGA and HDT; results of elemental composition analysis from STEM-EDX mapping for 6 ML CdTe covered by HDT; additional absorption spectra for 5 ML CdTe covered by HDT; calculation of scrolling radii for 5 and 6 ML CdTe covered by HDT (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

    Cited By

    This article is cited by 38 publications.

    1. Alexander I. Lebedev. Spontaneous Strain in Quasi-Two-Dimensional Janus CdSe Nanoplatelets and Its Microscopic Mechanisms. The Journal of Physical Chemistry C 2023, 127 (20) , 9911-9917.
    2. Benjamin T. Diroll, Burak Guzelturk, Hong Po, Corentin Dabard, Ningyuan Fu, Lina Makke, Emmanuel Lhuillier, Sandrine Ithurria. 2D II–VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chemical Reviews 2023, 123 (7) , 3543-3624.
    3. Nina N. Kurus, Alexander G. Milekhin, Roman I. Sklyar, Bedil M. Saidzhonov, Roman B. Vasiliev, Sergei V. Adichtchev, Nikolai V. Surovtsev, Alexander V. Latyshev, Dietrich R. T. Zahn. Phonons in Core–Shell CdSe/CdS Nanoplatelets Studied by Vibrational Spectroscopies. The Journal of Physical Chemistry C 2022, 126 (16) , 7107-7116.
    4. Hong Po, Corentin Dabard, Benoit Roman, Etienne Reyssat, José Bico, Benoit Baptiste, Emmanuel Lhuillier, Sandrine Ithurria. Chiral Helices Formation by Self-Assembled Molecules on Semiconductor Flexible Substrates. ACS Nano 2022, 16 (2) , 2901-2909.
    5. Alexander I. Lebedev, Bedil M. Saidzhonov, Konstantin A. Drozdov, Andrey A. Khomich, Roman B. Vasiliev. Raman and Infrared Studies of CdSe/CdS Core/Shell Nanoplatelets. The Journal of Physical Chemistry C 2021, 125 (12) , 6758-6766.
    6. Bedil M. Saidzhonov, Vladimir B. Zaytsev, Andrei A. Eliseev, Alexey Y. Grishko, Roman B. Vasiliev. Highly Luminescent Gradient Alloy CdSe1–xSx Nanoplatelets with Reduced Reabsorption for White-Light Generation. ACS Photonics 2020, 7 (11) , 3188-3198.
    7. Laura Piveteau, Dmitry N. Dirin, Christopher P. Gordon, Brennan J. Walder, Ta-Chung Ong, Lyndon Emsley, Christophe Copéret, Maksym V. Kovalenko. Colloidal-ALD-Grown Core/Shell CdSe/CdS Nanoplatelets as Seen by DNP Enhanced PASS–PIETA NMR Spectroscopy. Nano Letters 2020, 20 (5) , 3003-3018.
    8. Xuelian Yu, Yuxuan Wu, Jiayi Cui, Yue Ran, Wei Lin, Li-Min Liu, Jinhua Ye, Yihe Zhang, Andreu Cabot. Self-Induced Strain in 2D Chalcogenide Nanocrystals with Enhanced Photoelectrochemical Responsivity. Chemistry of Materials 2020, 32 (7) , 2774-2781.
    9. Daria A. Kurtina, Alexey V. Garshev, Irina S. Vasil’eva, Vladimir V. Shubin, Alexander M. Gaskov, Roman B. Vasiliev. Atomically Thin Population of Colloidal CdSe Nanoplatelets: Growth of Rolled-up Nanosheets and Strong Circular Dichroism Induced by Ligand Exchange. Chemistry of Materials 2019, 31 (23) , 9652-9663.
    10. Benjamin T. Diroll, Richard D. Schaller. Shape-Selective Optical Transformations of CdSe Nanoplatelets Driven by Halide Ion Ligand Exchange. Chemistry of Materials 2019, 31 (9) , 3556-3563.
    11. Nikita V. Tepliakov, Ilia A. Vovk, Alexander I. Shlykov, Mikhail Yu. Leonov, Alexander V. Baranov, Anatoly V. Fedorov, Ivan D. Rukhlenko. Optical Activity and Circular Dichroism of Perovskite Quantum-Dot Molecules. The Journal of Physical Chemistry C 2019, 123 (4) , 2658-2664.
    12. Debora Monego, Sarit Dutta, Doron Grossman, Marion Krapez, Pierre Bauer, Austin Hubley, Jérémie Margueritat, Benoit Mahler, Asaph Widmer-Cooper, Benjamin Abécassis. Ligand-induced incompatible curvatures control ultrathin nanoplatelet polymorphism and chirality. Proceedings of the National Academy of Sciences 2024, 121 (9)
    13. Daria A. Kurtina, Vladimir B. Zaytsev, Roman B. Vasiliev. Chirality in Atomically Thin CdSe Nanoplatelets Capped with Thiol-Free Amino Acid Ligands: Circular Dichroism vs. Carboxylate Group Coordination. Materials 2024, 17 (1) , 237.
    14. Vladimir G. Kuznetsov, Anton A. Gavrikov, Alexander V. Kolobov. Band Gap Engineering in Ultimately Thin Slabs of CdTe with Different Layer Stackings. Materials 2023, 16 (23) , 7494.
    15. Zahid Nazir, Yingzhuo Lun, Jialu Li, Gaoling Yang, Mingrui Liu, Shuqi Li, Gang Tang, Guofeng Zhang, Jiawang Hong, Liantuan Xiao, Haizheng Zhong. Breaking the symmetry of colloidal 2D nanoplatelets: Twist induced quantum coupling. Nano Research 2023, 16 (7) , 10522-10529.
    16. A.S. Akhmetova, A.K. Ospanova, B.N. Yussupbekova, T.T. Alibay. Influence of surfactants on the formation and growth of cadmium telluride nanoplatelets. Eurasian Journal of Physics and Functional Materials 2023, 7 (2) , 123-132.
    17. Daria A. Kurtina, Valeria P. Grafova, Irina S. Vasil’eva, Sergey V. Maksimov, Vladimir B. Zaytsev, Roman B. Vasiliev. Induction of Chirality in Atomically Thin ZnSe and CdSe Nanoplatelets: Strengthening of Circular Dichroism via Different Coordination of Cysteine-Based Ligands on an Ultimate Thin Semiconductor Core. Materials 2023, 16 (3) , 1073.
    18. Bing Bai, Chengxi Zhang, Yongjiang Dou, Lingmei Kong, Lin Wang, Sheng Wang, Jun Li, Yi Zhou, Long Liu, Baiquan Liu, Xiaoyu Zhang, Ido Hadar, Yehonadav Bekenstein, Aixiang Wang, Zongyou Yin, Lyudmila Turyanska, Jochen Feldmann, Xuyong Yang, Guohua Jia. Atomically flat semiconductor nanoplatelets for light-emitting applications. Chemical Society Reviews 2023, 52 (1) , 318-360.
    19. Yuliana Lukan, Andrii Hotynchan, Yuliia Andriichuk, Sergii Vojtovych, Yulia Seti, Yuriy Khalavka. II–VI Semiconductor-Based Nanomaterials. 2023, 325-357.
    20. Lilian Guillemeney, Laurent Lermusiaux, Guillaume Landaburu, Benoit Wagnon, Benjamin Abécassis. Curvature and self-assembly of semi-conducting nanoplatelets. Communications Chemistry 2022, 5 (1)
    21. I.S. Sadilov, An.A. Eliseev, Ar.A. Eliseev, A.V. Chumakova, D.A. Kurtina, R.B. Vasiliev, D.I. Petukhov. The origin for hydrocarbons fast transport and photoswitching permeation behavior in grafted laminar CdTe membranes. Journal of Membrane Science 2022, 661 , 120912.
    22. Huiyuan Bai, Zhibin Huang, Lei Zhang. Ultrathin scroll-like CdSe/CdS core/crown heteronanoplatelets: Colloidal synthesis and properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 648 , 129180.
    23. A.S. Akhmetova, D.H. Daurenbekov, A. Zh Kainarbay, Т.N. Nurakhmetov, A.A. Eliseev. Colloidal synthesis of CdTe nanoplatelets using various cadmium precursors. Optical Materials 2022, 131 , 112606.
    24. Bedil M. Saidzhonov, Vladimir B. Zaytsev, Roman B. Vasiliev. Effect of PMMA polymer matrix on optical properties of CdSe nanoplatelets. Journal of Luminescence 2021, 237 , 118175.
    25. Anastasiya D. Golinskaya, Alexander M. Smirnov, Maria V. Kozlova, Ekaterina V. Zharkova, Roman B. Vasiliev, Vladimir N. Mantsevich, Vladimir S. Dneprovskii. Tunable blue-shift of the charge-transfer photoluminescence in tetrapod-shaped CdTe/CdSe nanocrystals. Results in Physics 2021, 27 , 104488.
    26. Quentin Martinet, Justine Baronnier, Adrien Girard, Tristan Albaret, Lucien Saviot, Alain Mermet, Benjamin Abecassis, Jérémie Margueritat, Benoît Mahler. Ligand-dependent nano-mechanical properties of CdSe nanoplatelets: calibrating nanobalances for ligand affinity monitoring. Nanoscale 2021, 13 (18) , 8639-8647.
    27. Dinesh Yadav, Fabian Pauly, Maxim Trushin. Charge-carrier thermalization in bulk and monolayer CdTe from first principles. Physical Review B 2021, 103 (12)
    28. Fei Wang, Shaghraf Javaid, Wei Chen, Aixiang Wang, Mark A. Buntine, Guohua Jia. Synthesis of Atomically Thin CdTe Nanoplatelets by Using Polytelluride Tellurium Precursors. Australian Journal of Chemistry 2021, 74 (3) , 179.
    29. I. A. Milekhin, K. V. Anikin, M. Rahaman, E. E. Rodyakina, T. A. Duda, B. M. Saidzhonov, R. B. Vasiliev, V. M. Dzhagan, A. G. Milekhin, S. A. Batsanov, A. K. Gutakovskii, A. V. Latyshev, D. R. T. Zahn. Resonant plasmon enhancement of light emission from CdSe/CdS nanoplatelets on Au nanodisk arrays. The Journal of Chemical Physics 2020, 153 (16)
    30. Dmitrii Petukhov, Ilia Sadilov, Roman Vasiliev, Larisa Kozina, Andrei Eliseev. Labyrinthine transport of hydrocarbons through grafted laminar CdTe nanosheet membranes. Journal of Materials Chemistry A 2019, 7 (38) , 21684-21692.
    31. Daria A. Kurtina, Alexey V. Garshev, Larisa D. Kozina, Roman B. Vasiliev. Atomically-Thin CdSe and CdTe Colloidal Nanosheets: Growth, Crystal Structure, and Optical Properties. Vestnik RFFI 2019, (3) , 26-34.
    32. D Y Castro, I D Mikhailov. Shallow donor in spirally rolled-up quantum well. Journal of Physics: Conference Series 2019, 1247 (1) , 012004.
    33. Cheng Chen, Pengfei Song, Fanchao Meng, Pengfei Ou, Guoqiang Lan, Xinyu Liu, Jun Song. Effects of material heterogeneity on self-rolling of strained membranes. Extreme Mechanics Letters 2019, 29 , 100451.
    34. B.M. Saidzhonov, V.F. Kozlovsky, V.B. Zaytsev, R.B. Vasiliev. Ultrathin CdSe/CdS and CdSe/ZnS core-shell nanoplatelets: The impact of the shell material on the structure and optical properties. Journal of Luminescence 2019, 209 , 170-178.
    35. Shomaila Saeed, Pervaiz Ali Channar, Aamer Saeed, Fayaz Ali Larik. Fluorescence modulation of CdTe nanowire by azobenzene photochromic switches. Journal of Photochemistry and Photobiology A: Chemistry 2019, 369 , 159-165.
    36. R. V. Zakharov, V. V. Shorokhov, A. S. Trifonov, R. B. Vasiliev. The Transport of Electrons through Tetrapod-Shaped CdTe/CdSe Nanocrystals. Moscow University Physics Bulletin 2018, 73 (6) , 659-668.
    37. Cheng Chen, Pengfei Song, Fanchao Meng, Pengfei Ou, Xinyu Liu, Jun Song. Predictive modeling of misfit dislocation induced strain relaxation effect on self-rolling of strain-engineered nanomembranes. Applied Physics Letters 2018, 113 (11)
    38. Alexander M. Smirnov, Anastasiya Golinskaya, Dmitrii Przhiyalkovskii, Maria Kozlova, Roman Vasiliev, Vladimir Dneprovskii, Bedil Saidjonov, , , . Nonlinear effects in colloidal nanoplatelets with two-dimensional electronic structure. 2018, 76.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect