Anomalous H2 Desorption Rate of NaAlH4 Confined in Nitrogen-Doped Nanoporous Carbon FrameworksClick to copy article linkArticle link copied!
- Christopher L. CarrChristopher L. CarrCenter for Nanoscience and Department of Physics and Astronomy, University of Missouri−Saint Louis, One University Boulevard, Saint Louis, Missouri 63121, United StatesMore by Christopher L. Carr
- Waruni JayawardanaWaruni JayawardanaCenter for Nanoscience and Department of Physics and Astronomy, University of Missouri−Saint Louis, One University Boulevard, Saint Louis, Missouri 63121, United StatesMore by Waruni Jayawardana
- Hongyang ZouHongyang ZouDepartment of Physics, Washington University, One Brookings Drive, Saint Louis, Missouri 63130, United StatesMore by Hongyang Zou
- James L. WhiteJames L. WhiteSandia National Laboratories, Livermore, California 94550, United StatesMore by James L. White
- Farid El GabalyFarid El GabalySandia National Laboratories, Livermore, California 94550, United StatesMore by Farid El Gabaly
- Mark S. ConradiMark S. ConradiDepartment of Physics, Washington University, One Brookings Drive, Saint Louis, Missouri 63130, United StatesABQMR Inc., Albuquerque, New Mexico 87106, United StatesMore by Mark S. Conradi
- Vitalie StavilaVitalie StavilaSandia National Laboratories, Livermore, California 94550, United StatesMore by Vitalie Stavila
- Mark D. AllendorfMark D. AllendorfSandia National Laboratories, Livermore, California 94550, United StatesMore by Mark D. Allendorf
- Eric H. Majzoub*Eric H. Majzoub*E-mail: [email protected]Center for Nanoscience and Department of Physics and Astronomy and Department of Chemistry and Biochemistry, University of Missouri−Saint Louis, One University Boulevard, Saint Louis, Missouri 63121, United StatesMore by Eric H. Majzoub
Abstract

Confining NaAlH4 in nanoporous carbon scaffolds is known to alter the sorption kinetics and/or pathways of the characteristic bulk hydride reactions through interaction with the framework at the interface, increased specific surface area of the resulting nanoparticles, decreased hydrogen diffusion distances, and prevention of phase segregation. Although the nanosize effects have been well studied, the influence of the carbon scaffold surface chemistry remains unclear. Here we compare the hydrogen sorption characteristics of NaAlH4 confined by melt infiltration in nitrogen-doped/undoped ordered nanoporous carbon of two different geometries. 23Na and 27Al MAS NMR, N2 sorption, and PXRD verify NaAlH4 was successfully confined and remains intact in the carbon nanopores after infiltration. Both the N-doped/undoped nanoconfined systems demonstrate improved reversibility in relation to the bulk hydride during hydrogen desorption/absorption cycling. Isothermal kinetic measurements indicate a lowering of the activation energy for H2 desorption by as much as 70 kJ/mol in N-doped frameworks, far larger than the reduction in carbon-only frameworks. Most interestingly, this dramatic lowering of the activation energy is accompanied by an unexpected and anomalously low NaAlH4 desorption rate in the N-doped frameworks. This suggests that the framework surface chemistry plays an important role in the desorption process and that the rate limiting step for desorption may be associated with interactions of the hydride and host surface. Our results indicate that functionalization of carbon scaffold surface chemistry with heteroatoms provides a powerful method of altering the characteristic hydrogen sorption properties of confined metal hydride systems. This technique may prove beneficial in the path to a viable metal hydride-based hydrogen storage system.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 47 publications.
- HyeonJi Kim, Seunghyuck Chi, ShinYoung Kang, Brandon C. Wood, Minkee Choi, Eun Seon Cho. Elucidating the Interfacial Effects of Nonmetallic Elements on the Dehydrogenation Behavior of Nanoconfined NaAlH4 in Zeolite-Templated Carbon. ACS Applied Nano Materials 2025, Article ASAP.
- Mohana Shivanna, Timothy A. Elmslie, Catalin D. Spataru, Sakun Duwal, Nicholas Porcellino, Sergio Mouzaya, Christopher P. Pakhanyan, Farid El Gabaly, Saori Kawaguchi-Imada, Jinghua Guo, Zengqing Zhuo, Min-Jae Kim, Blake T. Sturtevant, Joseph Anthony Teprovich, Mark D. Allendorf, Peter A. Sharma, Vitalie Stavila. Nanoconfinement of High Hydrogen-to-Metal Ratio Lanthanum Hydrides in Functionalized Carbon Hosts. ACS Applied Energy Materials 2025, 8
(1)
, 7-15. https://doi.org/10.1021/acsaem.4c02100
- YongJun Cho, Hyun Cho, Eun Seon Cho. Nanointerface Engineering of Metal Hydrides for Advanced Hydrogen Storage. Chemistry of Materials 2023, 35
(2)
, 366-385. https://doi.org/10.1021/acs.chemmater.2c02628
- Chulaluck Pratthana, Kondo-Francois Aguey-Zinsou. LiAlH4 Nanoparticles Encapsulated within Metallic Titanium Shells for Enhanced Hydrogen Storage. ACS Applied Nano Materials 2022, 5
(11)
, 16413-16422. https://doi.org/10.1021/acsanm.2c03483
- YongJun Cho, ShinYoung Kang, Brandon C. Wood, Eun Seon Cho. Heteroatom-Doped Graphenes as Actively Interacting 2D Encapsulation Media for Mg-Based Hydrogen Storage. ACS Applied Materials & Interfaces 2022, 14
(18)
, 20823-20834. https://doi.org/10.1021/acsami.1c23837
- YongJun Cho, Sichi Li, Jonathan L. Snider, Maxwell A. T. Marple, Nicholas A. Strange, Joshua D. Sugar, Farid El Gabaly, Andreas Schneemann, Sungsu Kang, Min-ho Kang, Hayoung Park, Jungwon Park, Liwen F. Wan, Harris E. Mason, Mark D. Allendorf, Brandon C. Wood, Eun Seon Cho, Vitalie Stavila. Reversing the Irreversible: Thermodynamic Stabilization of LiAlH4 Nanoconfined Within a Nitrogen-Doped Carbon Host. ACS Nano 2021, 15
(6)
, 10163-10174. https://doi.org/10.1021/acsnano.1c02079
- Yijing Huang, Yonghong Cheng, Jinying Zhang. A Review of High Density Solid Hydrogen Storage Materials by Pyrolysis for Promising Mobile Applications. Industrial & Engineering Chemistry Research 2021, 60
(7)
, 2737-2771. https://doi.org/10.1021/acs.iecr.0c04387
- Andreas Schneemann, Liwen F. Wan, Andrew S. Lipton, Yi-Sheng Liu, Jonathan L. Snider, Alexander A. Baker, Joshua D. Sugar, Catalin D. Spataru, Jinghua Guo, Tom S. Autrey, Mathias Jørgensen, Torben R. Jensen, Brandon C. Wood, Mark D. Allendorf, Vitalie Stavila. Nanoconfinement of Molecular Magnesium Borohydride Captured in a Bipyridine-Functionalized Metal–Organic Framework. ACS Nano 2020, 14
(8)
, 10294-10304. https://doi.org/10.1021/acsnano.0c03764
- James L. White, Nicholas A. Strange, Joshua D. Sugar, Jonathan L. Snider, Andreas Schneemann, Andrew S. Lipton, Michael F. Toney, Mark D. Allendorf, Vitalie Stavila. Melting of Magnesium Borohydride under High Hydrogen Pressure: Thermodynamic Stability and Effects of Nanoconfinement. Chemistry of Materials 2020, 32
(13)
, 5604-5615. https://doi.org/10.1021/acs.chemmater.0c01050
- Aurelien Gasnier, Guillermina Amica, Julián Juan, Horacio Troiani, Fabiana C. Gennari. N-Doped Graphene-Rich Aerogels Decorated with Nickel and Cobalt Nanoparticles: Effect on Hydrogen Storage Properties of Nanoconfined LiBH4. The Journal of Physical Chemistry C 2020, 124
(1)
, 115-125. https://doi.org/10.1021/acs.jpcc.9b09510
- Andreas Schneemann, James L. White, ShinYoung Kang, Sohee Jeong, Liwen F. Wan, Eun Seon Cho, Tae Wook Heo, David Prendergast, Jeffrey J. Urban, Brandon C. Wood, Mark D. Allendorf, Vitalie Stavila. Nanostructured Metal Hydrides for Hydrogen Storage. Chemical Reviews 2018, 118
(22)
, 10775-10839. https://doi.org/10.1021/acs.chemrev.8b00313
- Amanuel Gidey Gebretatios, Fawzi Banat, Chin Kui Cheng. A critical review of hydrogen storage: toward the nanoconfinement of complex hydrides from the synthesis and characterization perspectives. Sustainable Energy & Fuels 2024, 8
(22)
, 5091-5130. https://doi.org/10.1039/D4SE00353E
- Yuxiao Jia, Panpan Zhou, Xuezhang Xiao, Xuancheng Wang, Bo Han, Jianchuan Wang, Fen Xu, Lixian Sun, Lixin Chen. Synergetic action of 0D/2D/3D N-doped carbon nanocages and NbB2 nanocatalyst on reversible hydrogen storage performance of lithium borohydride. Chemical Engineering Journal 2024, 485 , 150090. https://doi.org/10.1016/j.cej.2024.150090
- Yunting Wang, Yudong Xue, Andreas Züttel. Nanoscale engineering of solid-state materials for boosting hydrogen storage. Chemical Society Reviews 2024, 53
(2)
, 972-1003. https://doi.org/10.1039/D3CS00706E
- Ho Seok Yoon, Bo Young Lim, Hee Young Park, Soo-Kil Kim, Won Suk Jung. Modifying electronic and physical properties of Fe-NSC catalyst for oxygen reduction reaction via sulfur doping process. Journal of Electroanalytical Chemistry 2023, 948 , 117813. https://doi.org/10.1016/j.jelechem.2023.117813
- Chulaluck Pratthana, Kondo-Francois Aguey-Zinsou. Tuning the hydrogen thermodynamics of NaAlH4 by encapsulation within a titanium shell. International Journal of Hydrogen Energy 2023, 48
(75)
, 29240-29255. https://doi.org/10.1016/j.ijhydene.2023.04.028
- Yongfeng Liu, Wenxuan Zhang, Xin Zhang, Limei Yang, Zhenguo Huang, Fang Fang, Wenping Sun, Mingxia Gao, Hongge Pan. Nanostructured light metal hydride: Fabrication strategies and hydrogen storage performance. Renewable and Sustainable Energy Reviews 2023, 184 , 113560. https://doi.org/10.1016/j.rser.2023.113560
- Prasanta Kumar Panda, Benudhar Sahoo, Seeram Ramakrishna. Hydrogen Production, Purification, Storage, Transportation, and Their Applications: A Review. Energy Technology 2023, 11
(7)
https://doi.org/10.1002/ente.202201434
- Zeeshan Abid, Huma Naeem, Faiza Wahad, Sughra Gulzar, Tabassum Shahzad, Munazza Shahid, Muhammad Altaf, Raja Shahid Ashraf. High‐Density Solids as Hydrogen Storage Materials. 2023, 681-705. https://doi.org/10.1002/9781119829584.ch22
- Cezar Comanescu. Paving the Way to the Fuel of the Future—Nanostructured Complex Hydrides. International Journal of Molecular Sciences 2023, 24
(1)
, 143. https://doi.org/10.3390/ijms24010143
- Esmeralda Muñoz-Cortés, Olga L. Ibryaeva, Miguel Manso Silvan, Borja Zabala, Eduardo Flores, Almudena Gutierrez, Jose Ramon Ares, Roman Nevshupa. Tribochemically driven dehydrogenation of undoped sodium alanate under room temperature. Physical Chemistry Chemical Physics 2022, 25
(1)
, 494-508. https://doi.org/10.1039/D2CP04681D
- Chulaluck Pratthana, Yuwei Yang, Aditya Rawal, Kondo-Francois Aguey-Zinsou. Nanoconfinement of lithium alanate for hydrogen storage. Journal of Alloys and Compounds 2022, 926 , 166834. https://doi.org/10.1016/j.jallcom.2022.166834
- Cezar Comanescu. Recent Development in Nanoconfined Hydrides for Energy Storage. International Journal of Molecular Sciences 2022, 23
(13)
, 7111. https://doi.org/10.3390/ijms23137111
- Wei Chen, Shunlong Ju, Yahui Sun, Tianren Zhang, Juan Wang, Jikai Ye, Guanglin Xia, Xuebin Yu. Thermodynamically favored stable hydrogen storage reversibility of NaBH
4
inside of bimetallic nanoporous carbon nanosheets. Journal of Materials Chemistry A 2022, 10
(13)
, 7122-7129. https://doi.org/10.1039/D1TA10361J
- Zhijie Chen, Kent O. Kirlikovali, Karam B. Idrees, Megan C. Wasson, Omar K. Farha. Porous materials for hydrogen storage. Chem 2022, 8
(3)
, 693-716. https://doi.org/10.1016/j.chempr.2022.01.012
- Vitalie Stavila, Sichi Li, Chaochao Dun, Maxwell A. T. Marple, Harris E. Mason, Jonathan L. Snider, Joseph E. Reynolds, Farid El Gabaly, Joshua D. Sugar, Catalin D. Spataru, Xiaowang Zhou, Brennan Dizdar, Eric H. Majzoub, Ruchira Chatterjee, Junko Yano, Hendrik Schlomberg, Bettina V. Lotsch, Jeffrey J. Urban, Brandon C. Wood, Mark D. Allendorf. Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. Angewandte Chemie 2021, 133
(49)
, 26019-26028. https://doi.org/10.1002/ange.202107507
- Vitalie Stavila, Sichi Li, Chaochao Dun, Maxwell A. T. Marple, Harris E. Mason, Jonathan L. Snider, Joseph E. Reynolds, Farid El Gabaly, Joshua D. Sugar, Catalin D. Spataru, Xiaowang Zhou, Brennan Dizdar, Eric H. Majzoub, Ruchira Chatterjee, Junko Yano, Hendrik Schlomberg, Bettina V. Lotsch, Jeffrey J. Urban, Brandon C. Wood, Mark D. Allendorf. Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. Angewandte Chemie International Edition 2021, 60
(49)
, 25815-25824. https://doi.org/10.1002/anie.202107507
- Uiseok Jeong, HyeonJi Kim, Sreerangappa Ramesh, Nesibe A. Dogan, Sirinapa Wongwilawan, Sungsu Kang, Jungwon Park, Eun Seon Cho, Cafer T. Yavuz. Rapid Access to Ordered Mesoporous Carbons for Chemical Hydrogen Storage. Angewandte Chemie 2021, 133
(41)
, 22652-22660. https://doi.org/10.1002/ange.202109215
- Uiseok Jeong, HyeonJi Kim, Sreerangappa Ramesh, Nesibe A. Dogan, Sirinapa Wongwilawan, Sungsu Kang, Jungwon Park, Eun Seon Cho, Cafer T. Yavuz. Rapid Access to Ordered Mesoporous Carbons for Chemical Hydrogen Storage. Angewandte Chemie International Edition 2021, 60
(41)
, 22478-22486. https://doi.org/10.1002/anie.202109215
- Hyung Wan Do, HyeonJi Kim, Eun Seon Cho. Enhanced hydrogen storage kinetics and air stability of nanoconfined NaAlH
4
in graphene oxide framework. RSC Advances 2021, 11
(52)
, 32533-32540. https://doi.org/10.1039/D1RA05111C
- Wei Chen, Lei You, Guanglin Xia, Xuebin Yu. A balance between catalysis and nanoconfinement towards enhanced hydrogen storage performance of NaAlH4. Journal of Materials Science & Technology 2021, 79 , 205-211. https://doi.org/10.1016/j.jmst.2020.11.052
- Li Zhao, Fen Xu, Chenchen Zhang, Zhenyue Wang, Hanyu Ju, Xu Gao, Xiaoxu Zhang, Lixian Sun, Zongwen Liu. Enhanced hydrogen storage of alanates: Recent progress and future perspectives. Progress in Natural Science: Materials International 2021, 31
(2)
, 165-179. https://doi.org/10.1016/j.pnsc.2021.01.007
- Xiaohong Chen, Zhiyong Xue, Kai Niu, Xundao Liu, Wei lv, Bao Zhang, Zhongyu Li, Hong Zeng, Yu Ren, Ying Wu, Yongming Zhang. Li–fluorine codoped electrospun carbon nanofibers for enhanced hydrogen storage. RSC Advances 2021, 11
(7)
, 4053-4061. https://doi.org/10.1039/D0RA06500E
- Chuan Liu, Pan Guo, Yulong Qiao, Shengli Zhang. A first-principle study on the formation and migration of AlH3 defect on (1 1 2) NaAlH4 surface. Chemical Physics 2020, 538 , 110871. https://doi.org/10.1016/j.chemphys.2020.110871
- Yike Huang, Huaxu Shao, Qiuyu Zhang, Lei Zang, Huinan Guo, Yafei Liu, Lifang Jiao, Huatang Yuan, Yijing Wang. Layer-by-layer uniformly confined Graphene-NaAlH4 composites and hydrogen storage performance. International Journal of Hydrogen Energy 2020, 45
(52)
, 28116-28122. https://doi.org/10.1016/j.ijhydene.2020.03.241
- Dong Ju Han, Ki Ryuk Bang, Hyun Cho, Eun Seon Cho. Effect of carbon nanoscaffolds on hydrogen storage performance of magnesium hydride. Korean Journal of Chemical Engineering 2020, 37
(8)
, 1306-1316. https://doi.org/10.1007/s11814-020-0630-2
- Zhenluo Yuan, Yanping Fan, Yumei Chen, Xianyun Liu, Baozhong Liu, Shumin Han. Two-dimensional C@TiO2/Ti3C2 composite with superior catalytic performance for NaAlH4. International Journal of Hydrogen Energy 2020, 45
(41)
, 21666-21675. https://doi.org/10.1016/j.ijhydene.2020.05.243
- Y. Luo, Q. Wang, J. Li, F. Xu, L. Sun, Y. Zou, H. Chu, B. Li, K. Zhang. Enhanced hydrogen storage/sensing of metal hydrides by nanomodification. Materials Today Nano 2020, 9 , 100071. https://doi.org/10.1016/j.mtnano.2019.100071
- D. Pukazhselvan, K.S. Sandhya, Duncan Paul Fagg. Nanostructured advanced materials for hydrogen storage. 2020, 97-163. https://doi.org/10.1016/B978-0-12-819355-6.00005-4
- Julián Puszkiel, Aurelien Gasnier, Guillermina Amica, Fabiana Gennari. Tuning LiBH4 for Hydrogen Storage: Destabilization, Additive, and Nanoconfinement Approaches. Molecules 2020, 25
(1)
, 163. https://doi.org/10.3390/molecules25010163
- Teng He, Hujun Cao, Ping Chen. Complex Hydrides for Energy Storage, Conversion, and Utilization. Advanced Materials 2019, 31
(50)
https://doi.org/10.1002/adma.201902757
- Li Li, Yike Huang, Cuihua An, Yijing Wang. Lightweight hydrides nanocomposites for hydrogen storage: Challenges, progress and prospects. Science China Materials 2019, 62
(11)
, 1597-1625. https://doi.org/10.1007/s40843-019-9556-1
- Karina Suárez-Alcántara, Juan Rogelio Tena-Garcia, Ricardo Guerrero-Ortiz. Alanates, a Comprehensive Review. Materials 2019, 12
(17)
, 2724. https://doi.org/10.3390/ma12172724
- R. Guerrero-Ortiz, J.R. Tena-García, A. Flores-Jacobo, K. Suárez-Alcántara. From the can to the tank: NaAlH4 from recycled aluminum. International Journal of Hydrogen Energy 2019, 44
(36)
, 20183-20190. https://doi.org/10.1016/j.ijhydene.2019.06.033
- Aurélien Gasnier, Margaux Luguet, Amaru González Pereira, Horacio Troiani, Guillermo Zampieri, Fabiana C. Gennari. Entanglement of N-doped graphene in resorcinol-formaldehyde: Effect over nanoconfined LiBH4 for hydrogen storage. Carbon 2019, 147 , 284-294. https://doi.org/10.1016/j.carbon.2019.02.090
- C. Milanese, T.R. Jensen, B.C. Hauback, C. Pistidda, M. Dornheim, H. Yang, L. Lombardo, A. Zuettel, Y. Filinchuk, P. Ngene, P.E. de Jongh, C.E. Buckley, E.M. Dematteis, M. Baricco. Complex hydrides for energy storage. International Journal of Hydrogen Energy 2019, 44
(15)
, 7860-7874. https://doi.org/10.1016/j.ijhydene.2018.11.208
- Waruni Jayawardana, Christopher L. Carr, Dongxue Zhao, Eric H. Majzoub. Voltage-Relaxation GITT and Reverse Monte Carlo to Determine Lithium Diffusion and Distribution in TiO
2
and Highly-Ordered Nanoporous Hard Carbons. Journal of The Electrochemical Society 2018, 165
(11)
, A2824-A2832. https://doi.org/10.1149/2.1121811jes
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.