ACS Publications. Most Trusted. Most Cited. Most Read
Anomalous H2 Desorption Rate of NaAlH4 Confined in Nitrogen-Doped Nanoporous Carbon Frameworks
My Activity
    Article

    Anomalous H2 Desorption Rate of NaAlH4 Confined in Nitrogen-Doped Nanoporous Carbon Frameworks
    Click to copy article linkArticle link copied!

    • Christopher L. Carr
      Christopher L. Carr
      Center for Nanoscience and Department of Physics and Astronomy, University of Missouri−Saint Louis, One University Boulevard, Saint Louis, Missouri 63121, United States
    • Waruni Jayawardana
      Waruni Jayawardana
      Center for Nanoscience and Department of Physics and Astronomy, University of Missouri−Saint Louis, One University Boulevard, Saint Louis, Missouri 63121, United States
    • Hongyang Zou
      Hongyang Zou
      Department of Physics, Washington University, One Brookings Drive, Saint Louis, Missouri 63130, United States
      More by Hongyang Zou
    • James L. White
      James L. White
      Sandia National Laboratories, Livermore, California 94550, United States
    • Farid El Gabaly
      Farid El Gabaly
      Sandia National Laboratories, Livermore, California 94550, United States
    • Mark S. Conradi
      Mark S. Conradi
      Department of Physics, Washington University, One Brookings Drive, Saint Louis, Missouri 63130, United States
      ABQMR Inc., Albuquerque, New Mexico 87106, United States
    • Vitalie Stavila
      Vitalie Stavila
      Sandia National Laboratories, Livermore, California 94550, United States
    • Mark D. Allendorf
      Mark D. Allendorf
      Sandia National Laboratories, Livermore, California 94550, United States
    • Eric H. Majzoub*
      Eric H. Majzoub
      Center for Nanoscience and Department of Physics and Astronomy  and  Department of Chemistry and Biochemistry, University of Missouri−Saint Louis, One University Boulevard, Saint Louis, Missouri 63121, United States
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Chemistry of Materials

    Cite this: Chem. Mater. 2018, 30, 9, 2930–2938
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.8b00305
    Published April 4, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Confining NaAlH4 in nanoporous carbon scaffolds is known to alter the sorption kinetics and/or pathways of the characteristic bulk hydride reactions through interaction with the framework at the interface, increased specific surface area of the resulting nanoparticles, decreased hydrogen diffusion distances, and prevention of phase segregation. Although the nanosize effects have been well studied, the influence of the carbon scaffold surface chemistry remains unclear. Here we compare the hydrogen sorption characteristics of NaAlH4 confined by melt infiltration in nitrogen-doped/undoped ordered nanoporous carbon of two different geometries. 23Na and 27Al MAS NMR, N2 sorption, and PXRD verify NaAlH4 was successfully confined and remains intact in the carbon nanopores after infiltration. Both the N-doped/undoped nanoconfined systems demonstrate improved reversibility in relation to the bulk hydride during hydrogen desorption/absorption cycling. Isothermal kinetic measurements indicate a lowering of the activation energy for H2 desorption by as much as 70 kJ/mol in N-doped frameworks, far larger than the reduction in carbon-only frameworks. Most interestingly, this dramatic lowering of the activation energy is accompanied by an unexpected and anomalously low NaAlH4 desorption rate in the N-doped frameworks. This suggests that the framework surface chemistry plays an important role in the desorption process and that the rate limiting step for desorption may be associated with interactions of the hydride and host surface. Our results indicate that functionalization of carbon scaffold surface chemistry with heteroatoms provides a powerful method of altering the characteristic hydrogen sorption properties of confined metal hydride systems. This technique may prove beneficial in the path to a viable metal hydride-based hydrogen storage system.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.8b00305.

    • Detailed carbon scaffold synthesis procedures, additional N2 sorption isotherms, and PXRD and NMR spectra (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 47 publications.

    1. HyeonJi Kim, Seunghyuck Chi, ShinYoung Kang, Brandon C. Wood, Minkee Choi, Eun Seon Cho. Elucidating the Interfacial Effects of Nonmetallic Elements on the Dehydrogenation Behavior of Nanoconfined NaAlH4 in Zeolite-Templated Carbon. ACS Applied Nano Materials 2025, Article ASAP.
    2. Mohana Shivanna, Timothy A. Elmslie, Catalin D. Spataru, Sakun Duwal, Nicholas Porcellino, Sergio Mouzaya, Christopher P. Pakhanyan, Farid El Gabaly, Saori Kawaguchi-Imada, Jinghua Guo, Zengqing Zhuo, Min-Jae Kim, Blake T. Sturtevant, Joseph Anthony Teprovich, Mark D. Allendorf, Peter A. Sharma, Vitalie Stavila. Nanoconfinement of High Hydrogen-to-Metal Ratio Lanthanum Hydrides in Functionalized Carbon Hosts. ACS Applied Energy Materials 2025, 8 (1) , 7-15. https://doi.org/10.1021/acsaem.4c02100
    3. YongJun Cho, Hyun Cho, Eun Seon Cho. Nanointerface Engineering of Metal Hydrides for Advanced Hydrogen Storage. Chemistry of Materials 2023, 35 (2) , 366-385. https://doi.org/10.1021/acs.chemmater.2c02628
    4. Chulaluck Pratthana, Kondo-Francois Aguey-Zinsou. LiAlH4 Nanoparticles Encapsulated within Metallic Titanium Shells for Enhanced Hydrogen Storage. ACS Applied Nano Materials 2022, 5 (11) , 16413-16422. https://doi.org/10.1021/acsanm.2c03483
    5. YongJun Cho, ShinYoung Kang, Brandon C. Wood, Eun Seon Cho. Heteroatom-Doped Graphenes as Actively Interacting 2D Encapsulation Media for Mg-Based Hydrogen Storage. ACS Applied Materials & Interfaces 2022, 14 (18) , 20823-20834. https://doi.org/10.1021/acsami.1c23837
    6. YongJun Cho, Sichi Li, Jonathan L. Snider, Maxwell A. T. Marple, Nicholas A. Strange, Joshua D. Sugar, Farid El Gabaly, Andreas Schneemann, Sungsu Kang, Min-ho Kang, Hayoung Park, Jungwon Park, Liwen F. Wan, Harris E. Mason, Mark D. Allendorf, Brandon C. Wood, Eun Seon Cho, Vitalie Stavila. Reversing the Irreversible: Thermodynamic Stabilization of LiAlH4 Nanoconfined Within a Nitrogen-Doped Carbon Host. ACS Nano 2021, 15 (6) , 10163-10174. https://doi.org/10.1021/acsnano.1c02079
    7. Yijing Huang, Yonghong Cheng, Jinying Zhang. A Review of High Density Solid Hydrogen Storage Materials by Pyrolysis for Promising Mobile Applications. Industrial & Engineering Chemistry Research 2021, 60 (7) , 2737-2771. https://doi.org/10.1021/acs.iecr.0c04387
    8. Andreas Schneemann, Liwen F. Wan, Andrew S. Lipton, Yi-Sheng Liu, Jonathan L. Snider, Alexander A. Baker, Joshua D. Sugar, Catalin D. Spataru, Jinghua Guo, Tom S. Autrey, Mathias Jørgensen, Torben R. Jensen, Brandon C. Wood, Mark D. Allendorf, Vitalie Stavila. Nanoconfinement of Molecular Magnesium Borohydride Captured in a Bipyridine-Functionalized Metal–Organic Framework. ACS Nano 2020, 14 (8) , 10294-10304. https://doi.org/10.1021/acsnano.0c03764
    9. James L. White, Nicholas A. Strange, Joshua D. Sugar, Jonathan L. Snider, Andreas Schneemann, Andrew S. Lipton, Michael F. Toney, Mark D. Allendorf, Vitalie Stavila. Melting of Magnesium Borohydride under High Hydrogen Pressure: Thermodynamic Stability and Effects of Nanoconfinement. Chemistry of Materials 2020, 32 (13) , 5604-5615. https://doi.org/10.1021/acs.chemmater.0c01050
    10. Aurelien Gasnier, Guillermina Amica, Julián Juan, Horacio Troiani, Fabiana C. Gennari. N-Doped Graphene-Rich Aerogels Decorated with Nickel and Cobalt Nanoparticles: Effect on Hydrogen Storage Properties of Nanoconfined LiBH4. The Journal of Physical Chemistry C 2020, 124 (1) , 115-125. https://doi.org/10.1021/acs.jpcc.9b09510
    11. Andreas Schneemann, James L. White, ShinYoung Kang, Sohee Jeong, Liwen F. Wan, Eun Seon Cho, Tae Wook Heo, David Prendergast, Jeffrey J. Urban, Brandon C. Wood, Mark D. Allendorf, Vitalie Stavila. Nanostructured Metal Hydrides for Hydrogen Storage. Chemical Reviews 2018, 118 (22) , 10775-10839. https://doi.org/10.1021/acs.chemrev.8b00313
    12. Amanuel Gidey Gebretatios, Fawzi Banat, Chin Kui Cheng. A critical review of hydrogen storage: toward the nanoconfinement of complex hydrides from the synthesis and characterization perspectives. Sustainable Energy & Fuels 2024, 8 (22) , 5091-5130. https://doi.org/10.1039/D4SE00353E
    13. Yuxiao Jia, Panpan Zhou, Xuezhang Xiao, Xuancheng Wang, Bo Han, Jianchuan Wang, Fen Xu, Lixian Sun, Lixin Chen. Synergetic action of 0D/2D/3D N-doped carbon nanocages and NbB2 nanocatalyst on reversible hydrogen storage performance of lithium borohydride. Chemical Engineering Journal 2024, 485 , 150090. https://doi.org/10.1016/j.cej.2024.150090
    14. Yunting Wang, Yudong Xue, Andreas Züttel. Nanoscale engineering of solid-state materials for boosting hydrogen storage. Chemical Society Reviews 2024, 53 (2) , 972-1003. https://doi.org/10.1039/D3CS00706E
    15. Ho Seok Yoon, Bo Young Lim, Hee Young Park, Soo-Kil Kim, Won Suk Jung. Modifying electronic and physical properties of Fe-NSC catalyst for oxygen reduction reaction via sulfur doping process. Journal of Electroanalytical Chemistry 2023, 948 , 117813. https://doi.org/10.1016/j.jelechem.2023.117813
    16. Chulaluck Pratthana, Kondo-Francois Aguey-Zinsou. Tuning the hydrogen thermodynamics of NaAlH4 by encapsulation within a titanium shell. International Journal of Hydrogen Energy 2023, 48 (75) , 29240-29255. https://doi.org/10.1016/j.ijhydene.2023.04.028
    17. Yongfeng Liu, Wenxuan Zhang, Xin Zhang, Limei Yang, Zhenguo Huang, Fang Fang, Wenping Sun, Mingxia Gao, Hongge Pan. Nanostructured light metal hydride: Fabrication strategies and hydrogen storage performance. Renewable and Sustainable Energy Reviews 2023, 184 , 113560. https://doi.org/10.1016/j.rser.2023.113560
    18. Prasanta Kumar Panda, Benudhar Sahoo, Seeram Ramakrishna. Hydrogen Production, Purification, Storage, Transportation, and Their Applications: A Review. Energy Technology 2023, 11 (7) https://doi.org/10.1002/ente.202201434
    19. Zeeshan Abid, Huma Naeem, Faiza Wahad, Sughra Gulzar, Tabassum Shahzad, Munazza Shahid, Muhammad Altaf, Raja Shahid Ashraf. High‐Density Solids as Hydrogen Storage Materials. 2023, 681-705. https://doi.org/10.1002/9781119829584.ch22
    20. Cezar Comanescu. Paving the Way to the Fuel of the Future—Nanostructured Complex Hydrides. International Journal of Molecular Sciences 2023, 24 (1) , 143. https://doi.org/10.3390/ijms24010143
    21. Esmeralda Muñoz-Cortés, Olga L. Ibryaeva, Miguel Manso Silvan, Borja Zabala, Eduardo Flores, Almudena Gutierrez, Jose Ramon Ares, Roman Nevshupa. Tribochemically driven dehydrogenation of undoped sodium alanate under room temperature. Physical Chemistry Chemical Physics 2022, 25 (1) , 494-508. https://doi.org/10.1039/D2CP04681D
    22. Chulaluck Pratthana, Yuwei Yang, Aditya Rawal, Kondo-Francois Aguey-Zinsou. Nanoconfinement of lithium alanate for hydrogen storage. Journal of Alloys and Compounds 2022, 926 , 166834. https://doi.org/10.1016/j.jallcom.2022.166834
    23. Cezar Comanescu. Recent Development in Nanoconfined Hydrides for Energy Storage. International Journal of Molecular Sciences 2022, 23 (13) , 7111. https://doi.org/10.3390/ijms23137111
    24. Wei Chen, Shunlong Ju, Yahui Sun, Tianren Zhang, Juan Wang, Jikai Ye, Guanglin Xia, Xuebin Yu. Thermodynamically favored stable hydrogen storage reversibility of NaBH 4 inside of bimetallic nanoporous carbon nanosheets. Journal of Materials Chemistry A 2022, 10 (13) , 7122-7129. https://doi.org/10.1039/D1TA10361J
    25. Zhijie Chen, Kent O. Kirlikovali, Karam B. Idrees, Megan C. Wasson, Omar K. Farha. Porous materials for hydrogen storage. Chem 2022, 8 (3) , 693-716. https://doi.org/10.1016/j.chempr.2022.01.012
    26. Vitalie Stavila, Sichi Li, Chaochao Dun, Maxwell A. T. Marple, Harris E. Mason, Jonathan L. Snider, Joseph E. Reynolds, Farid El Gabaly, Joshua D. Sugar, Catalin D. Spataru, Xiaowang Zhou, Brennan Dizdar, Eric H. Majzoub, Ruchira Chatterjee, Junko Yano, Hendrik Schlomberg, Bettina V. Lotsch, Jeffrey J. Urban, Brandon C. Wood, Mark D. Allendorf. Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. Angewandte Chemie 2021, 133 (49) , 26019-26028. https://doi.org/10.1002/ange.202107507
    27. Vitalie Stavila, Sichi Li, Chaochao Dun, Maxwell A. T. Marple, Harris E. Mason, Jonathan L. Snider, Joseph E. Reynolds, Farid El Gabaly, Joshua D. Sugar, Catalin D. Spataru, Xiaowang Zhou, Brennan Dizdar, Eric H. Majzoub, Ruchira Chatterjee, Junko Yano, Hendrik Schlomberg, Bettina V. Lotsch, Jeffrey J. Urban, Brandon C. Wood, Mark D. Allendorf. Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. Angewandte Chemie International Edition 2021, 60 (49) , 25815-25824. https://doi.org/10.1002/anie.202107507
    28. Uiseok Jeong, HyeonJi Kim, Sreerangappa Ramesh, Nesibe A. Dogan, Sirinapa Wongwilawan, Sungsu Kang, Jungwon Park, Eun Seon Cho, Cafer T. Yavuz. Rapid Access to Ordered Mesoporous Carbons for Chemical Hydrogen Storage. Angewandte Chemie 2021, 133 (41) , 22652-22660. https://doi.org/10.1002/ange.202109215
    29. Uiseok Jeong, HyeonJi Kim, Sreerangappa Ramesh, Nesibe A. Dogan, Sirinapa Wongwilawan, Sungsu Kang, Jungwon Park, Eun Seon Cho, Cafer T. Yavuz. Rapid Access to Ordered Mesoporous Carbons for Chemical Hydrogen Storage. Angewandte Chemie International Edition 2021, 60 (41) , 22478-22486. https://doi.org/10.1002/anie.202109215
    30. Hyung Wan Do, HyeonJi Kim, Eun Seon Cho. Enhanced hydrogen storage kinetics and air stability of nanoconfined NaAlH 4 in graphene oxide framework. RSC Advances 2021, 11 (52) , 32533-32540. https://doi.org/10.1039/D1RA05111C
    31. Wei Chen, Lei You, Guanglin Xia, Xuebin Yu. A balance between catalysis and nanoconfinement towards enhanced hydrogen storage performance of NaAlH4. Journal of Materials Science & Technology 2021, 79 , 205-211. https://doi.org/10.1016/j.jmst.2020.11.052
    32. Li Zhao, Fen Xu, Chenchen Zhang, Zhenyue Wang, Hanyu Ju, Xu Gao, Xiaoxu Zhang, Lixian Sun, Zongwen Liu. Enhanced hydrogen storage of alanates: Recent progress and future perspectives. Progress in Natural Science: Materials International 2021, 31 (2) , 165-179. https://doi.org/10.1016/j.pnsc.2021.01.007
    33. Xiaohong Chen, Zhiyong Xue, Kai Niu, Xundao Liu, Wei lv, Bao Zhang, Zhongyu Li, Hong Zeng, Yu Ren, Ying Wu, Yongming Zhang. Li–fluorine codoped electrospun carbon nanofibers for enhanced hydrogen storage. RSC Advances 2021, 11 (7) , 4053-4061. https://doi.org/10.1039/D0RA06500E
    34. Chuan Liu, Pan Guo, Yulong Qiao, Shengli Zhang. A first-principle study on the formation and migration of AlH3 defect on (1 1 2) NaAlH4 surface. Chemical Physics 2020, 538 , 110871. https://doi.org/10.1016/j.chemphys.2020.110871
    35. Yike Huang, Huaxu Shao, Qiuyu Zhang, Lei Zang, Huinan Guo, Yafei Liu, Lifang Jiao, Huatang Yuan, Yijing Wang. Layer-by-layer uniformly confined Graphene-NaAlH4 composites and hydrogen storage performance. International Journal of Hydrogen Energy 2020, 45 (52) , 28116-28122. https://doi.org/10.1016/j.ijhydene.2020.03.241
    36. Dong Ju Han, Ki Ryuk Bang, Hyun Cho, Eun Seon Cho. Effect of carbon nanoscaffolds on hydrogen storage performance of magnesium hydride. Korean Journal of Chemical Engineering 2020, 37 (8) , 1306-1316. https://doi.org/10.1007/s11814-020-0630-2
    37. Zhenluo Yuan, Yanping Fan, Yumei Chen, Xianyun Liu, Baozhong Liu, Shumin Han. Two-dimensional C@TiO2/Ti3C2 composite with superior catalytic performance for NaAlH4. International Journal of Hydrogen Energy 2020, 45 (41) , 21666-21675. https://doi.org/10.1016/j.ijhydene.2020.05.243
    38. Y. Luo, Q. Wang, J. Li, F. Xu, L. Sun, Y. Zou, H. Chu, B. Li, K. Zhang. Enhanced hydrogen storage/sensing of metal hydrides by nanomodification. Materials Today Nano 2020, 9 , 100071. https://doi.org/10.1016/j.mtnano.2019.100071
    39. D. Pukazhselvan, K.S. Sandhya, Duncan Paul Fagg. Nanostructured advanced materials for hydrogen storage. 2020, 97-163. https://doi.org/10.1016/B978-0-12-819355-6.00005-4
    40. Julián Puszkiel, Aurelien Gasnier, Guillermina Amica, Fabiana Gennari. Tuning LiBH4 for Hydrogen Storage: Destabilization, Additive, and Nanoconfinement Approaches. Molecules 2020, 25 (1) , 163. https://doi.org/10.3390/molecules25010163
    41. Teng He, Hujun Cao, Ping Chen. Complex Hydrides for Energy Storage, Conversion, and Utilization. Advanced Materials 2019, 31 (50) https://doi.org/10.1002/adma.201902757
    42. Li Li, Yike Huang, Cuihua An, Yijing Wang. Lightweight hydrides nanocomposites for hydrogen storage: Challenges, progress and prospects. Science China Materials 2019, 62 (11) , 1597-1625. https://doi.org/10.1007/s40843-019-9556-1
    43. Karina Suárez-Alcántara, Juan Rogelio Tena-Garcia, Ricardo Guerrero-Ortiz. Alanates, a Comprehensive Review. Materials 2019, 12 (17) , 2724. https://doi.org/10.3390/ma12172724
    44. R. Guerrero-Ortiz, J.R. Tena-García, A. Flores-Jacobo, K. Suárez-Alcántara. From the can to the tank: NaAlH4 from recycled aluminum. International Journal of Hydrogen Energy 2019, 44 (36) , 20183-20190. https://doi.org/10.1016/j.ijhydene.2019.06.033
    45. Aurélien Gasnier, Margaux Luguet, Amaru González Pereira, Horacio Troiani, Guillermo Zampieri, Fabiana C. Gennari. Entanglement of N-doped graphene in resorcinol-formaldehyde: Effect over nanoconfined LiBH4 for hydrogen storage. Carbon 2019, 147 , 284-294. https://doi.org/10.1016/j.carbon.2019.02.090
    46. C. Milanese, T.R. Jensen, B.C. Hauback, C. Pistidda, M. Dornheim, H. Yang, L. Lombardo, A. Zuettel, Y. Filinchuk, P. Ngene, P.E. de Jongh, C.E. Buckley, E.M. Dematteis, M. Baricco. Complex hydrides for energy storage. International Journal of Hydrogen Energy 2019, 44 (15) , 7860-7874. https://doi.org/10.1016/j.ijhydene.2018.11.208
    47. Waruni Jayawardana, Christopher L. Carr, Dongxue Zhao, Eric H. Majzoub. Voltage-Relaxation GITT and Reverse Monte Carlo to Determine Lithium Diffusion and Distribution in TiO 2 and Highly-Ordered Nanoporous Hard Carbons. Journal of The Electrochemical Society 2018, 165 (11) , A2824-A2832. https://doi.org/10.1149/2.1121811jes

    Chemistry of Materials

    Cite this: Chem. Mater. 2018, 30, 9, 2930–2938
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.8b00305
    Published April 4, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    1126

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.