ACS Publications. Most Trusted. Most Cited. Most Read
Hydrogen Bonding versus Entropy: Revealing the Underlying Thermodynamics of the Hybrid Organic–Inorganic Perovskite [CH3NH3]PbBr3
My Activity
    Article

    Hydrogen Bonding versus Entropy: Revealing the Underlying Thermodynamics of the Hybrid Organic–Inorganic Perovskite [CH3NH3]PbBr3
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Chemistry of Materials

    Cite this: Chem. Mater. 2018, 30, 24, 8782–8788
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.8b03164
    Published November 2, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The enormous research efforts dedicated to hybrid organic–inorganic perovskites have led to a deep understanding of these materials; however, the role of entropy and its ramifications for the properties of the materials have been only sparsely explored. In this study, we quantify the phase transition mechanism in the hybrid organic–inorganic perovskite [CH3NH3]PbBr3 by studying low-energy collective phonon modes using a combination of inelastic neutron scattering and ab initio lattice dynamics. We demonstrate that a delicate interplay among hydrogen bonding interactions, lattice vibrational entropy, and configurational disorder determines the thermodynamics and results in the rich phase evolution of [CH3NH3]PbBr3 as a function of temperature. Our results have important implications for the manipulation of macroscopic properties and provide a blueprint for future studies that will focus on unravelling phase transition mechanisms in hybrid perovskites and related materials such as dense and porous coordination polymers.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.8b03164.

    • Plot of vibrational entropy, description of the origins of configurational entropy, description of calculations of hydrogen bond strength, methods for and results of calculation of thermal expansion and anharmonicity, methods for and results of calculation of imaginary modes, technical details of all calculation setups, a description of synthesis, and details of characterization (X-ray diffraction and inelastic neutron scattering) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 30 publications.

    1. Ariel Nonato, Juan S. Rodríguez-Hernández, Dieric S. Abreu, Cássio C. S. Soares, Mayra A. P. Gómez, Alberto García-Fernández, María A. Señarís-Rodríguez, Manuel Sánchez Andújar, Alejandro P. Ayala, Rosivaldo Xavier da Silva, Carlos W.A. Paschoal. Strong Electron–Phonon Coupling and Lattice Dynamics in One-Dimensional [(CH3)2NH2]PbI3 Hybrid Perovskite. Chemistry of Materials 2025, 37 (3) , 1013-1026. https://doi.org/10.1021/acs.chemmater.4c02670
    2. Wei Wang, Cheng-Dong Liu, Chang-Chun Fan, Xiao-Bin Fu, Chang-Qing Jing, Ming-Liang Jin, Yu-Meng You, Wen Zhang. Rational Design of 2D Metal Halide Perovskites with Low Congruent Melting Temperature and Large Melt-Processable Window. Journal of the American Chemical Society 2024, 146 (13) , 9272-9284. https://doi.org/10.1021/jacs.4c00768
    3. Cameron J. G. Wilson, Jan Plesniar, Heike Kuhn, Jeff Armstrong, Peter A. Wood, Simon Parsons. The Advantages of Flexibility: The Role of Entropy in Crystal Structures Containing C–H···F Interactions. Crystal Growth & Design 2024, 24 (5) , 2217-2225. https://doi.org/10.1021/acs.cgd.4c00042
    4. Mario Gutiérrez, Yang Zhang, Jin-Chong Tan. Confinement of Luminescent Guests in Metal–Organic Frameworks: Understanding Pathways from Synthesis and Multimodal Characterization to Potential Applications of LG@MOF Systems. Chemical Reviews 2022, 122 (11) , 10438-10483. https://doi.org/10.1021/acs.chemrev.1c00980
    5. Kai Li, Zhi-Gang Li, Jun Xu, Yan Qin, Wei Li, Alessandro Stroppa, Keith T. Butler, Christopher J. Howard, Martin T. Dove, Anthony K. Cheetham, Xian-He Bu. Origin of Ferroelectricity in Two Prototypical Hybrid Organic–Inorganic Perovskites. Journal of the American Chemical Society 2022, 144 (2) , 816-823. https://doi.org/10.1021/jacs.1c10188
    6. Menno Bokdam, Jonathan Lahnsteiner, D. D. Sarma. Exploring Librational Pathways with on-the-Fly Machine-Learning Force Fields: Methylammonium Molecules in MAPbX3 (X = I, Br, Cl) Perovskites. The Journal of Physical Chemistry C 2021, 125 (38) , 21077-21086. https://doi.org/10.1021/acs.jpcc.1c06835
    7. Tim W. J. van de Goor, Yun Liu, Sascha Feldmann, Sean A. Bourelle, Timo Neumann, Thomas Winkler, Nicola D. Kelly, Cheng Liu, Michael A. Jones, Steffen P. Emge, Richard H. Friend, Bartomeu Monserrat, Felix Deschler, Siân E. Dutton. Impact of Orientational Glass Formation and Local Strain on Photo-Induced Halide Segregation in Hybrid Metal-Halide Perovskites. The Journal of Physical Chemistry C 2021, 125 (27) , 15025-15034. https://doi.org/10.1021/acs.jpcc.1c03169
    8. Jeff Armstrong, Samya Banerjee, Volker Schünemann, Juliusz A. Wolny, Peter J. Sadler. Vibrational Motions Make Significant Contributions to Sequential Methyl C–H Activations in an Organometallic Complex. The Journal of Physical Chemistry Letters 2021, 12 (1) , 658-662. https://doi.org/10.1021/acs.jpclett.0c03292
    9. David Bodesheim, Gregor Kieslich, Mike Johnson, Keith T. Butler. Understanding the Balance of Entropy and Enthalpy in Hydrogen–Halide Noncovalent Bonding. The Journal of Physical Chemistry Letters 2020, 11 (9) , 3495-3500. https://doi.org/10.1021/acs.jpclett.0c00817
    10. Maciej Ptak, Katrine L. Svane, Ines E. Collings, Waldeci Paraguassu. Effect of Alkali and Trivalent Metal Ions on the High-Pressure Phase Transition of [C2H5NH3]MI0.5MIII0.5(HCOO)3 (MI = Na, K and MIII = Cr, Al) Heterometallic Perovskites. The Journal of Physical Chemistry C 2020, 124 (11) , 6337-6348. https://doi.org/10.1021/acs.jpcc.0c00372
    11. Keith T. Butler, Pia Vervoorts, Michael G. Ehrenreich, Jeff Armstrong, Jonathan M. Skelton, Gregor Kieslich. Experimental Evidence for Vibrational Entropy as Driving Parameter of Flexibility in the Metal–Organic Framework ZIF-4(Zn). Chemistry of Materials 2019, 31 (20) , 8366-8372. https://doi.org/10.1021/acs.chemmater.9b01908
    12. Shivani Grover, Stefan Burger, Keith T. Butler, Karina Hemmer, Pia Vervoorts, Gregor Kieslich, Ricardo Grau-Crespo. Tuning the mechanical properties of dicyanamide-based molecular perovskites. CrystEngComm 2023, 25 (23) , 3439-3444. https://doi.org/10.1039/D3CE00009E
    13. Gregor Kieslich. Materialdesign von Festkörpern. Nachrichten aus der Chemie 2023, 71 (4) , 74-75. https://doi.org/10.1002/nadc.20234133002
    14. Juan S. Rodríguez-Hernández, Mayra A. P. Gómez, D. S. Abreu, Ariel Nonato, Rosivaldo Xavier da Silva, Alberto García-Fernández, María A. Señarís-Rodríguez, Manuel Sánchez-Andújar, A. P. Ayala, C. W. A. Paschoal. Uniaxial negative thermal expansion in the [(CH 3 ) 2 NH 2 ]PbBr 3 hybrid perovskite. Journal of Materials Chemistry C 2022, 10 (46) , 17567-17576. https://doi.org/10.1039/D2TC02708A
    15. Kasper Tolborg, Johan Klarbring, Alex M. Ganose, Aron Walsh. Free energy predictions for crystal stability and synthesisability. Digital Discovery 2022, 1 (5) , 586-595. https://doi.org/10.1039/D2DD00050D
    16. Young-Kwang Jung, Mayami Abdulla, Richard H. Friend, Samuel D. Stranks, Aron Walsh. Pressure-induced non-radiative losses in halide perovskite light-emitting diodes. Journal of Materials Chemistry C 2022, 10 (35) , 12560-12568. https://doi.org/10.1039/D2TC01490D
    17. Giovanni Romanelli, Carla Andreani, Laura Fazi, Arthur Ishteev, Kamilla Konstantinova, Enrico Preziosi, Roberto Senesi, Aldo Di Carlo. Changes in the hydrogen nuclear kinetic energy across the several phases of methylammonium lead tribromide. The Journal of Chemical Physics 2022, 157 (9) https://doi.org/10.1063/5.0104917
    18. Jeff Armstrong, Xiao Wang, Felix Fernandez-Alonso. The unlocking of high-pressure science with broadband neutron spectroscopy at the ISIS Pulsed Neutron & Muon Source. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2022, 1039 , 167097. https://doi.org/10.1016/j.nima.2022.167097
    19. Sebastian A. Hallweger, Clemens Kaußler, Gregor Kieslich. The structural complexity of perovskites. Physical Chemistry Chemical Physics 2022, 24 (16) , 9196-9202. https://doi.org/10.1039/D2CP01123A
    20. Feray Ünlü, Eunhwan Jung, Senol Öz, Heechae Choi, Thomas Fischer, Sanjay Mathur. Chemical Processing of Mixed‐Cation Hybrid Perovskites: Stabilizing Effects of Configurational Entropy. 2021, 1-31. https://doi.org/10.1002/9783527825790.ch1
    21. Stefan Burger, Shivani Grover, Keith T. Butler, Hanna L. B. Boström, Ricardo Grau-Crespo, Gregor Kieslich. Tilt and shift polymorphism in molecular perovskites. Materials Horizons 2021, 8 (9) , 2444-2450. https://doi.org/10.1039/D1MH00578B
    22. F. Cordero, F. Trequattrini, F. Craciun, A.M. Paoletti, G. Pennesi, G. Zanotti. Cation reorientation and octahedral tilting in the metal-organic perovskites MAPI and FAPI. Journal of Alloys and Compounds 2021, 867 , 158210. https://doi.org/10.1016/j.jallcom.2020.158210
    23. Keith T Butler, Manh Duc Le, Jeyan Thiyagalingam, Toby G Perring. Interpretable, calibrated neural networks for analysis and understanding of inelastic neutron scattering data. Journal of Physics: Condensed Matter 2021, 33 (19) , 194006. https://doi.org/10.1088/1361-648X/abea1c
    24. Kacper Drużbicki, Mattia Gaboardi, Felix Fernandez-Alonso. Dynamics & Spectroscopy with Neutrons—Recent Developments & Emerging Opportunities. Polymers 2021, 13 (9) , 1440. https://doi.org/10.3390/polym13091440
    25. A. Bonadio, C. A. Escanhoela, F. P. Sabino, G. Sombrio, V. G. de Paula, F. F. Ferreira, A. Janotti, G. M. Dalpian, J. A. Souza. Entropy-driven stabilization of the cubic phase of MaPbI 3 at room temperature. Journal of Materials Chemistry A 2021, 9 (2) , 1089-1099. https://doi.org/10.1039/D0TA10492B
    26. Jeff Armstrong, Alexander J O’Malley, Matthew R Ryder, Keith T Butler. Understanding dynamic properties of materials using neutron spectroscopy and atomistic simulation. Journal of Physics Communications 2020, 4 (7) , 072001. https://doi.org/10.1088/2399-6528/ab9c2e
    27. Jonathan M Skelton. Lattice dynamics of Pnma Sn(S 1–x Se x ) solid solutions: energetics, phonon spectra and thermal transport. Journal of Physics: Energy 2020, 2 (2) , 025006. https://doi.org/10.1088/2515-7655/ab7839
    28. Claire Greenland, Adam Shnier, Sai K. Rajendran, Joel A. Smith, Onkar S. Game, Daniel Wamwangi, Graham A. Turnbull, Ifor D. W. Samuel, David G. Billing, David G. Lidzey. Correlating Phase Behavior with Photophysical Properties in Mixed‐Cation Mixed‐Halide Perovskite Thin Films. Advanced Energy Materials 2020, 10 (4) https://doi.org/10.1002/aenm.201901350
    29. Thomas W. Kasel, Zeyu Deng, Austin M. Mroz, Christopher H. Hendon, Keith T. Butler, Pieremanuele Canepa. Metal-free perovskites for non linear optical materials. Chemical Science 2019, 10 (35) , 8187-8194. https://doi.org/10.1039/C9SC03378E
    30. Fedwa El-Mellouhi, Sergey N. Rashkeev, Asma Marzouk, Lara Kabalan, Abdelhak Belaidi, Belabbes Merzougui, Nouar Tabet, Fahhad H. Alharbi. Intrinsic stability enhancement and ionic migration reduction by fluorinated cations incorporated in hybrid lead halide perovskites. Journal of Materials Chemistry C 2019, 7 (18) , 5299-5306. https://doi.org/10.1039/C8TC06308G

    Chemistry of Materials

    Cite this: Chem. Mater. 2018, 30, 24, 8782–8788
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.8b03164
    Published November 2, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    2653

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.