ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Two-Dimensional CsAg5Te3–xSx Semiconductors: Multi-anion Chalcogenides with Dynamic Disorder and Ultralow Thermal Conductivity

Cite this: Chem. Mater. 2018, 30, 20, 7245–7254
Publication Date (Web):September 12, 2018
https://doi.org/10.1021/acs.chemmater.8b03306
Copyright © 2018 American Chemical Society

    Article Views

    1441

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (4)»

    Abstract

    Abstract Image

    Metal chalcogenides underpin a wide variety of energy-related applications and are ideal systems for probing lattice dynamics and fundamental transport phenomena. Here we describe the synthesis and transport properties of CsAg5TeS2 and its solid solution CsAg5Te3–xSx (x = 1–2), new semiconductors with tunable band gaps ranging from 0.17 to 0.30 eV. CsAg5TeS2 has a fully ordered two-dimensional structure that includes a group of Ag atoms in a heteroleptic tetrahedral coordination geometry (AgTe2S2). Single-crystal X-ray diffraction indicates that the compounds crystallize in the tetragonal space group P4/mmm, while pair distribution function (PDF) analysis reveals off-centering at the heteroleptic Ag sites, signifying the lower-symmetry I4/mcm space group. The underlying disorder acts as a phonon-blocking mechanism that helps facilitate an ultralow lattice thermal conductivity below 0.40 W·m–1·K–1 at ∼300 K , highlighting the importance of local disorder in thermal transport. Density functional theory provides additional insight into the electronic and thermal properties of the materials, which are good candidates for p-type thermoelectrics.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.8b03306.

    • X-ray crystallographic data for CsAg5TeS2 at 298 K (CIF)

    • Crystal data and structure refinement parameters, displacement parameters, anisotropic displacement parameters, bond lengths, and bond angles; Tauc plots; DTA curves; temperature-dependent pXRD patterns for CsAg5TeS2; crystal structure of CsAg5Te2S; comparison of the CsAg5TeS2 structures with space groups P4/mmm and I4/mcm; pXRD pattern for an SPS-pressed CsAg5TeS2 pellet; temperature-dependent Seebeck coefficient, thermal diffusivity, and total thermal conductivity of CsAg5TeS2; DFT-calculated phonon dispersions for CsAg5TeS2 with space group P4/mmm; electronic pDOS for CsAg5TeS2 (PDF)

    • X-ray crystallographic data for CsAg5TeS2 at 100 K (CIF)

    • X-ray crystallographic data for CsAg5Te2S at 293 K (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 16 publications.

    1. Ni Ma, Chong Xiao, Yi Xie. Multilayer Approach for Ultralow Lattice Thermal Conductivity in Low-Dimensional Solids. Accounts of Materials Research 2024, 5 (3) , 286-294. https://doi.org/10.1021/accountsmr.3c00089
    2. Lvzhou Li, Lijun Wang, Xu Dong, Yaoyao Jiang, Jianning Ding, Ningyi Yuan. New Nanofibrous Structured CsAg5Te3 Exhibiting Ultralow Thermal Conductivity and High Figure of Merit. ACS Omega 2023, 8 (48) , 46182-46189. https://doi.org/10.1021/acsomega.3c07284
    3. Tingting Zhang, Tian Yu, Suiting Ning, Ziye Zhang, Ning Qi, Man Jiang, Zhiquan Chen. Extremely Low Lattice Thermal Conductivity Leading to Superior Thermoelectric Performance in Cu4TiSe4. ACS Applied Materials & Interfaces 2023, 15 (27) , 32453-32462. https://doi.org/10.1021/acsami.3c05602
    4. Rebecca McClain, Craig C. Laing, Jiahong Shen, Christopher Wolverton, Mercouri G. Kanatzidis. Mixed Anion Semiconductor In8S2.82Te6.18(Te2)3. Inorganic Chemistry 2022, 61 (24) , 9040-9046. https://doi.org/10.1021/acs.inorgchem.2c00265
    5. Tian Xu, Abubakar-Yakubu Haruna, Zheng Ma, Wang Li, Jinmeng Li, Yubo Luo, Dan Zhang, Junyou Yang. High Power Factor and Thermoelectric Figure of Merit in Sb2Si2Te6 through Synergetic Effect of Ca Doping. Chemistry of Materials 2021, 33 (20) , 8097-8105. https://doi.org/10.1021/acs.chemmater.1c02895
    6. James M. Hodges, Yi Xia, Christos D. Malliakas, Tyler J. Slade, Chris Wolverton, Mercouri G. Kanatzidis. Mixed-Valent Copper Chalcogenides: Tuning Structures and Electronic Properties Using Multiple Anions. Chemistry of Materials 2020, 32 (23) , 10146-10154. https://doi.org/10.1021/acs.chemmater.0c03620
    7. Debattam Sarkar, Animesh Bhui, Ivy Maria, Moinak Dutta, Kanishka Biswas. Hidden structures: a driving factor to achieve low thermal conductivity and high thermoelectric performance. Chemical Society Reviews 2024, 296 https://doi.org/10.1039/D4CS00038B
    8. Hitarth Choubisa, Md Azimul Haque, Tong Zhu, Lewei Zeng, Maral Vafaie, Derya Baran, Edward H. Sargent. Closed‐Loop Error‐Correction Learning Accelerates Experimental Discovery of Thermoelectric Materials. Advanced Materials 2023, 35 (40) https://doi.org/10.1002/adma.202302575
    9. Xiuquan Zhou, Brandon Wilfong, Xinglong Chen, Craig Laing, Indra R. Pandey, Ying‐Pin Chen, Yu‐Sheng Chen, Duck‐Young Chung, Mercouri G. Kanatzidis. Sr(Ag 1− x Li x ) 2 Se 2 and [Sr 3 Se 2 ][(Ag 1− x Li x ) 2 Se 2 ] Tunable Direct Band Gap Semiconductors. Angewandte Chemie 2023, 135 (14) https://doi.org/10.1002/ange.202301191
    10. Xiuquan Zhou, Brandon Wilfong, Xinglong Chen, Craig Laing, Indra R. Pandey, Ying‐Pin Chen, Yu‐Sheng Chen, Duck‐Young Chung, Mercouri G. Kanatzidis. Sr(Ag 1− x Li x ) 2 Se 2 and [Sr 3 Se 2 ][(Ag 1− x Li x ) 2 Se 2 ] Tunable Direct Band Gap Semiconductors. Angewandte Chemie International Edition 2023, 62 (14) https://doi.org/10.1002/anie.202301191
    11. Jiang-Jiang Ma, Qing-Yi Liu, Peng-Fei Liu, Ping Zhang, Biplab Sanyal, Tao Ouyang, Bao-Tian Wang. Ultralow thermal conductivity and anisotropic thermoelectric performance in layered materials LaMOCh (M = Cu, Ag; Ch = S, Se). Physical Chemistry Chemical Physics 2022, 24 (35) , 21261-21269. https://doi.org/10.1039/D2CP02067J
    12. Un-Gi Jong, Chung-Jin Kang, Su-Yong Kim, Hyon-Chol Kim, Chol-Jun Yu. Superior thermoelectric properties of ternary chalcogenides CsAg 5 Q 3 (Q = Te, Se) predicted using first-principles calculations. Physical Chemistry Chemical Physics 2022, 24 (9) , 5729-5737. https://doi.org/10.1039/D1CP05796K
    13. Ju Zhang, Shiqi Zhong, San-Huang Ke. Enhanced thermoelectric performance in Sb–Br codoped Bi 2 Se 3 with complex electronic structure and chemical bond softening. RSC Advances 2022, 12 (3) , 1653-1662. https://doi.org/10.1039/D1RA08726F
    14. Chunfeng Cui, Qingyi Liu, Tao Ouyang, Jin Li, Chaoyu He, Chunxiao Zhang, Chao Tang, Jianxin Zhong. KP15: Natural van der Waals material with ultra-low thermal conductivity and excellent thermoelectric performance. Journal of Applied Physics 2021, 130 (19) https://doi.org/10.1063/5.0074283
    15. Yun Zheng, Tyler J. Slade, Lei Hu, Xian Yi Tan, Yubo Luo, Zhong-Zhen Luo, Jianwei Xu, Qingyu Yan, Mercouri G. Kanatzidis. Defect engineering in thermoelectric materials: what have we learned?. Chemical Society Reviews 2021, 50 (16) , 9022-9054. https://doi.org/10.1039/D1CS00347J
    16. Fei Zhou, Weston Nielson, Yi Xia, Vidvuds Ozoliņš. Compressive sensing lattice dynamics. I. General formalism. Physical Review B 2019, 100 (18) https://doi.org/10.1103/PhysRevB.100.184308

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect