Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

A Self-Limited Atomic Layer Deposition of WS2 Based on the Chemisorption and Reduction of Bis(t-butylimino)bis(dimethylamino) Complexes

  • Yanlin Wu
    Yanlin Wu
    Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
    More by Yanlin Wu
  • Muhammad Hamid Raza
    Muhammad Hamid Raza
    Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
  • Yen-Chun Chen
    Yen-Chun Chen
    Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
  • Patrick Amsalem
    Patrick Amsalem
    Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 6, 12489 Berlin, Germany
  • Sebastian Wahl
    Sebastian Wahl
    Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
  • Kai Skrodczky
    Kai Skrodczky
    Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
  • Xiaomin Xu
    Xiaomin Xu
    Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 6, 12489 Berlin, Germany
    More by Xiaomin Xu
  • Kapil Shyam Lokare
    Kapil Shyam Lokare
    Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
  • Medet Zhukush
    Medet Zhukush
    Université de Lyon, Institut de Chimie de Lyon UMR 5265 (CNRS − CPE Lyon − Université Lyon 1), Bâtiment 308 F, 43 Boulevard du 11 Novembre 1918, 69616 Villeurbanne, France
  • Pooja Gaval
    Pooja Gaval
    Université de Lyon, Institut de Chimie de Lyon UMR 5265 (CNRS − CPE Lyon − Université Lyon 1), Bâtiment 308 F, 43 Boulevard du 11 Novembre 1918, 69616 Villeurbanne, France
    More by Pooja Gaval
  • Norbert Koch
    Norbert Koch
    Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 6, 12489 Berlin, Germany
    More by Norbert Koch
  • Elsje Alessandra Quadrelli
    Elsje Alessandra Quadrelli
    Université de Lyon, Institut de Chimie de Lyon UMR 5265 (CNRS − CPE Lyon − Université Lyon 1), Bâtiment 308 F, 43 Boulevard du 11 Novembre 1918, 69616 Villeurbanne, France
  • , and 
  • Nicola Pinna*
    Nicola Pinna
    Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
    *E-mail: [email protected]
    More by Nicola Pinna
Cite this: Chem. Mater. 2019, 31, 6, 1881–1890
Publication Date (Web):February 26, 2019
https://doi.org/10.1021/acs.chemmater.8b03921
Copyright © 2019 American Chemical Society

    Article Views

    1816

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A novel self-terminating chemical approach for the deposition of WS2 by atomic layer deposition based on chemisorption of bis(t-butylimino)bis(dimethylamino)tungsten(VI) followed by sulfurization by H2S is reported. A broad spectrum of reaction parameters including temperatures of the reaction chamber and the precursor and durations of every atomic layer deposition (ALD) step are investigated and optimized to reach a high growth per cycle of 1.7 Å and a high quality of the deposited thin films. The self-terminating behavior of this reaction is determined by the variation of the dose of the precursors. Surface- and bulk-sensitive techniques prove that highly pure and well-defined WS2 layers can be synthesized by ALD. Imaging methods show that WS2 grows as platelets with a thickness of 6–10 nm and diameter of 30 nm, which do not vary dramatically with the number of ALD cycles. A low deposition temperature process followed by a postannealing under H2S is also investigated to produce a conformal WS2 film. Finally, a reaction mechanism could be proposed by studying the chemisorption of bis(t-butylimino)bis(dimethylamino)tungsten(VI) onto silica and the thermal and chemical reactivities of chemisorbed species by small-molecule analyses.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.8b03921.

    • Determination of the growth per cycle, XPS of N 1s, grazing incidence X-ray diffraction, UV–vis absorption spectra, AFM images, high-resolution transmission electron micrographs, hydrogen evolution linear swap voltammetry, 1H NMR spectra, ESI-MS (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 24 publications.

    1. Rayhane Zribi, Simona Crispi, Daniele Giusi, Medet Zhukush, Claudio Ampelli, Chengxu Shen, Muhammad Hamid Raza, Nicola Pinna, Giovanni Neri. Gas Sensing and Electrochemical Properties of CNT/WS2 Core–shell Nanostructures. ACS Applied Nano Materials 2024, 7 (5) , 4998-5008. https://doi.org/10.1021/acsanm.3c05751
    2. Zhipu Li, Xun Zhao, Shiru Wu, Min Lu, Xiaoji Xie, Jiaxu Yan. Atomic Layer Deposition of Transition-Metal Dichalcogenides. Crystal Growth & Design 2024, 24 (5) , 1865-1879. https://doi.org/10.1021/acs.cgd.3c01044
    3. Matthieu Weber, Nils Boysen, Octavio Graniel, Abderrahime Sekkat, Christian Dussarrat, Paulo Wiff, Anjana Devi, David Muñoz-Rojas. Assessing the Environmental Impact of Atomic Layer Deposition (ALD) Processes and Pathways to Lower It. ACS Materials Au 2023, 3 (4) , 274-298. https://doi.org/10.1021/acsmaterialsau.3c00002
    4. Kamesh Mullapudi, Rafik Addou, Charles. L. Dezelah, Daniel F. Moser, Ravindra K. Kanjolia, Jacob H. Woodruff, John. F. Conley, Jr.. Synthesis of Micron-Sized WS2 Crystallites Using Atomic Layer Deposition and Sulfur Annealing. Chemistry of Materials 2023, 35 (12) , 4649-4659. https://doi.org/10.1021/acs.chemmater.3c00013
    5. Ji Young Son, Su Han Kim, Ji Min Seo, Jongsun Lim, Taek-Mo Chung, Bo Keun Park. Synthesis and Characterization of Tungsten Amide Complexes for the Deposition of Tungsten Disulfide Thin Films. ACS Omega 2023, 8 (22) , 19816-19821. https://doi.org/10.1021/acsomega.3c01706
    6. Syed Jazib Abbas Zaidi, Muhammad Abdul Basit, Tae Joo Park. Advances in Atomic Layer Deposition of Metal Sulfides: From a Precursors Perspective. Chemistry of Materials 2022, 34 (16) , 7106-7138. https://doi.org/10.1021/acs.chemmater.2c00954
    7. Biplob Mondal, Pranjal Kumar Gogoi. Nanoscale Heterostructured Materials Based on Metal Oxides for a Chemiresistive Gas Sensor. ACS Applied Electronic Materials 2022, 4 (1) , 59-86. https://doi.org/10.1021/acsaelm.1c00841
    8. Md Samim Reza, Aman Abhishek Tiwari, Deshdeep Sahdev, Madhusudan Singh. Growth of large edge length two-dimensional WS2 using a custom 12-zone atmospheric pressure chemical vapor deposition system. Journal of Vacuum Science & Technology A 2024, 42 (1) https://doi.org/10.1116/6.0002985
    9. Xiangyu Guo, Hanjie Yang, Xichao Mo, Rongxu Bai, Yanrong Wang, Qi Han, Sheng Han, Qingqing Sun, David W. Zhang, Shen Hu, Li Ji. Modulated wafer-scale WS 2 films based on atomic-layer-deposition for various device applications. RSC Advances 2023, 13 (22) , 14841-14848. https://doi.org/10.1039/D3RA00933E
    10. Abdul Kaium Mia, M. Meyyappan, P. K. Giri. Two-Dimensional Transition Metal Dichalcogenide Based Biosensors: From Fundamentals to Healthcare Applications. Biosensors 2023, 13 (2) , 169. https://doi.org/10.3390/bios13020169
    11. Chengxu Shen, Zhigang Yin, Fionn Collins, Nicola Pinna. Atomic Layer Deposition of Metal Oxides and Chalcogenides for High Performance Transistors. Advanced Science 2022, 9 (23) https://doi.org/10.1002/advs.202104599
    12. Chengxu Shen, Ewa Wierzbicka, Thorsten Schultz, Rongbin Wang, Norbert Koch, Nicola Pinna. Atomic Layer Deposition of MoS 2 Decorated TiO 2 Nanotubes for Photoelectrochemical Water Splitting. Advanced Materials Interfaces 2022, 9 (20) https://doi.org/10.1002/admi.202200643
    13. Zhenqiang Liu, Jinhui Lei, Yan Chen, Yang Xia, Jiaheng Feng, Shuaiqiang Ming, Wa Mao, . Application of Adaptive PID Temperature Control Algorithm under Spatial Thermal Model of ALD Reaction Chamber. Journal of Sensors 2022, 2022 , 1-11. https://doi.org/10.1155/2022/1713039
    14. Nitin Babu Shinde, Beo Deul Ryu, Chang-Hee Hong, Bellarmine Francis, S. Chandramohan, Senthil Kumar Eswaran. Growth Behavior, nucleation control and excellent optical properties of atomically thin WS2 thin films processed via Gas-phase chemical vapor deposition. Applied Surface Science 2021, 568 , 150908. https://doi.org/10.1016/j.apsusc.2021.150908
    15. Muhammad Hamid Raza, Navpreet Kaur, Elisabetta Comini, Nicola Pinna. SnO 2 ‐SiO 2 1D Core‐Shell Nanowires Heterostructures for Selective Hydrogen Sensing. Advanced Materials Interfaces 2021, 8 (17) https://doi.org/10.1002/admi.202100939
    16. Jan-Lucas Wree, Jean-Pierre Glauber, Denis Öhl, Alessia Niesen, Aleksander Kostka, Detlef Rogalla, Wolfgang Schuhmann, Anjana Devi. Sensing and electrocatalytic activity of tungsten disulphide thin films fabricated via metal–organic chemical vapour deposition. Journal of Materials Chemistry C 2021, 9 (32) , 10254-10265. https://doi.org/10.1039/D1TC02417E
    17. Siowwoon Ng, Raul Zazpe, Jhonatan Rodriguez-Pereira, Jan Michalička, Jan M. Macak, Martin Pumera. Atomic layer deposition of photoelectrocatalytic material on 3D-printed nanocarbon structures. Journal of Materials Chemistry A 2021, 9 (18) , 11405-11414. https://doi.org/10.1039/D1TA01467F
    18. Miika Mattinen, Markku Leskelä, Mikko Ritala. Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond. Advanced Materials Interfaces 2021, 8 (6) https://doi.org/10.1002/admi.202001677
    19. Deok-Hyun Kim, Rahul Ramesh, Dip K Nandi, Jong-Seong Bae, Soo-Hyun Kim. Atomic layer deposition of tungsten sulfide using a new metal-organic precursor and H 2 S: thin film catalyst for water splitting. Nanotechnology 2021, 32 (7) , 075405. https://doi.org/10.1088/1361-6528/abc50b
    20. Chengxu Shen, Muhammad Hamid Raza, Patrick Amsalem, Thorsten Schultz, Norbert Koch, Nicola Pinna. Morphology-controlled MoS 2 by low-temperature atomic layer deposition. Nanoscale 2020, 12 (39) , 20404-20412. https://doi.org/10.1039/D0NR03863F
    21. Hyojin Song, Yoohan Ma, Dongwook Ko, Sungjin Jo, Dong Choon Hyun, Chang Su Kim, Hyeon-Ju Oh, Jongbok Kim. Influence of humidity for preparing sol-gel ZnO layer: Characterization and optimization for optoelectronic device applications. Applied Surface Science 2020, 512 , 145660. https://doi.org/10.1016/j.apsusc.2020.145660
    22. Ryan Sheil, Jane P. Chang. Synthesis and integration of thin film solid state electrolytes for 3D Li-ion microbatteries. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2020, 38 (3) https://doi.org/10.1116/1.5142859
    23. Ailing Chang, Yichen Mao, Zhiwei Huang, Haiyang Hong, Jianfang Xu, Wei Huang, Songyan Chen, Cheng Li. Low-temperature plasma enhanced atomic layer deposition of large area HfS 2 nanocrystal thin films*. Chinese Physics B 2020, 29 (3) , 038102. https://doi.org/10.1088/1674-1056/ab6c4a
    24. Yukihiro Ikeda, Keiji Ueno. Low-temperature growth of crystalline tungsten disulfide thin films by using organic liquid precursors. Japanese Journal of Applied Physics 2020, 59 (SC) , SCCC04. https://doi.org/10.7567/1347-4065/ab489a