ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Electronic Structure and Performance Bottlenecks of CuFeO2 Photocathodes

  • Chang-Ming Jiang
    Chang-Ming Jiang
    Joint Center for Artificial Photosynthesis  and  Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    Walter Schottky Institut and Physik Department, Technische Universität München, Garching 85748, Germany
  • Sebastian E. Reyes-Lillo
    Sebastian E. Reyes-Lillo
    Departmento de Ciencias Físicas, Universidad Andres Bello, Santiago 837-0136, Chile
  • Yufeng Liang
    Yufeng Liang
    The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    More by Yufeng Liang
  • Yi-Sheng Liu
    Yi-Sheng Liu
    Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    More by Yi-Sheng Liu
  • Guiji Liu
    Guiji Liu
    Joint Center for Artificial Photosynthesis  and  Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    More by Guiji Liu
  • Francesca M. Toma
    Francesca M. Toma
    Joint Center for Artificial Photosynthesis  and  Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
  • David Prendergast
    David Prendergast
    The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
  • Ian D. Sharp*
    Ian D. Sharp
    Walter Schottky Institut and Physik Department, Technische Universität München, Garching 85748, Germany
    *E-mail: [email protected] (I.D.S.).
    More by Ian D. Sharp
  • , and 
  • Jason K. Cooper*
    Jason K. Cooper
    Joint Center for Artificial Photosynthesis  and  Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    *E-mail: [email protected] (J.K.C.).
Cite this: Chem. Mater. 2019, 31, 7, 2524–2534
Publication Date (Web):March 11, 2019
https://doi.org/10.1021/acs.chemmater.9b00009
Copyright © 2019 American Chemical Society

    Article Views

    3404

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The path to realizing low-cost, stable, and earth-abundant photoelectrodes can be enabled through a detailed understanding of the optoelectronic properties of these materials by combining theory and experimental techniques. Of the limited set of oxide photocathode materials currently available, CuFeO2 has emerged as a promising candidate warranting detailed attention. In this work, highly compact thin films of rhombohedral (3R) CuFeO2 were prepared via reactive co-sputtering. Despite its 1.43 eV indirect band gap, a cathodic photocurrent of 0.85 mA/cm2 was obtained at 0.4 V versus reversible hydrogen electrode in the presence of a sacrificial electron acceptor. This unexpected performance was related to inefficient bulk charge separation because of the ultrafast (<1 ps) self-trapping of photogenerated free carriers. The electronic structure of 3R-CuFeO2 was elucidated through a combination of optical and X-ray spectroscopic techniques and further complemented by first-principles computational methods including a many-body approach for computing the O K-edge X-ray absorption spectrum. Through resonant inelastic X-ray scattering spectroscopy, the visible absorption edges of CuFeO2 were found to correspond to Cu → Fe metal-to-metal charge transfer, which exhibits a high propensity toward self-trapping. Findings of the present work enable us to understand the performance bottlenecks of CuFeO2 photocathodes and suggest feasible strategies for improving material limitations.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.9b00009.

    • XRD patterns, Raman spectra, variable angle spectroscopic ellipsometry data and fit results, JE characteristics of CuFeO2 thin films with different Cu/Fe ratios, theoretical cumulative photocurrent, calculated PDOS by DFT + U using different Fe U values, XAS spectra at the O K-edge and Fe and Cu L-edges, XPS spectra of Cu 2p, Fe 2p, and O 1s levels, and work function measurement result (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 43 publications.

    1. Tengfei Jiang, Jingying Wei, Jianyang Li, Huaiguo Xue, Jingqi Tian, Romain Gautier. Rapid Identification of Efficient Photocatalysts by Visualizing the Spatial Distribution of Photoinduced Charge Carriers. ACS Catalysis 2023, 13 (7) , 4168-4177. https://doi.org/10.1021/acscatal.3c00149
    2. Shaun O’Donnell, Reinhard K. Kremer, Paul A. Maggard. Metastability and Photoelectrochemical Properties of Cu2SnO3 and Cu2–xLixTiO3: Two Cu(I)-Based Oxides with Delafossite Structures. Chemistry of Materials 2023, 35 (3) , 1404-1416. https://doi.org/10.1021/acs.chemmater.2c03563
    3. Somnath Biswas, L. Robert Baker. Extreme Ultraviolet Reflection–Absorption Spectroscopy: Probing Dynamics at Surfaces from a Molecular Perspective. Accounts of Chemical Research 2022, 55 (6) , 893-903. https://doi.org/10.1021/acs.accounts.1c00765
    4. Taehun Lee, Matteo Ferri, Simone Piccinin, Annabella Selloni. Structure, Electronic Properties, and Defect Chemistry of Delafossite CuRhO2 Bulk and Surfaces. Chemistry of Materials 2022, 34 (4) , 1567-1577. https://doi.org/10.1021/acs.chemmater.1c03248
    5. Florent Boudoire, Yongpeng Liu, Florian Le Formal, Néstor Guijarro, Charles R. Lhermitte, Kevin Sivula. Spray Synthesis of CuFeO2 Photocathodes and In-Operando Assessment of Charge Carrier Recombination. The Journal of Physical Chemistry C 2021, 125 (20) , 10883-10890. https://doi.org/10.1021/acs.jpcc.1c02282
    6. Haiwan Xu, Rui Wu, Jia-Ye Zhang, Wenqiao Han, Lang Chen, Xuan Liang, Choon Y. Haw, Piero Mazzolini, Oliver Bierwagen, Dong-Chen Qi, Kelvin H. L. Zhang. Revealing the Electronic Structure and Optical Properties of CuFeO2 as a p-Type Oxide Semiconductor. ACS Applied Electronic Materials 2021, 3 (4) , 1834-1841. https://doi.org/10.1021/acsaelm.1c00090
    7. Matteo Ferri, Joshua David Elliott, Matteo Farnesi Camellone, Stefano Fabris, Simone Piccinin. CuFeO2–Water Interface under Illumination: Structural, Electronic, and Catalytic Implications for the Hydrogen Evolution Reaction. ACS Catalysis 2021, 11 (4) , 1897-1910. https://doi.org/10.1021/acscatal.0c05066
    8. Jason K. Cooper, Zemin Zhang, Subhayan Roychoudhury, Chang-Ming Jiang, Sheraz Gul, Yi-Sheng Liu, Rohan Dhall, Alejandro Ceballos, Junko Yano, David Prendergast, Sebastian E. Reyes-Lillo. CuBi2O4: Electronic Structure, Optical Properties, and Photoelectrochemical Performance Limitations of the Photocathode. Chemistry of Materials 2021, 33 (3) , 934-945. https://doi.org/10.1021/acs.chemmater.0c03930
    9. Can Lu, Zili Ma, Jakob Jäger, Tetyana M. Budnyak, Richard Dronskowski, Anna Rokicińska, Piotr Kuśtrowski, Frank Pammer, Adam Slabon. NiO/Poly(4-alkylthiazole) Hybrid Interface for Promoting Spatial Charge Separation in Photoelectrochemical Water Reduction. ACS Applied Materials & Interfaces 2020, 12 (26) , 29173-29180. https://doi.org/10.1021/acsami.0c03975
    10. Matteo Ferri, Joshua Elliott, Matteo Farnesi Camellone, Stefano Fabris, Simone Piccinin. Thermodynamic Stability and Native Point Defects of CuFeO2 Photocathodes in Dry and Electrochemical Environments. The Journal of Physical Chemistry C 2019, 123 (49) , 29589-29598. https://doi.org/10.1021/acs.jpcc.9b08957
    11. Margaret A. Lumley, Andjela Radmilovic, Youn Jeong Jang, Ann E. Lindberg, Kyoung-Shin Choi. Perspectives on the Development of Oxide-Based Photocathodes for Solar Fuel Production. Journal of the American Chemical Society 2019, 141 (46) , 18358-18369. https://doi.org/10.1021/jacs.9b07976
    12. Wen-Rong Fu, Jian Yang, Zong-Yan Zhao. Enhancing the photoelectrochemical performance of CuFeO2 photocathode through copper foam substrate with integrating trap light and conductivity. Materials Science in Semiconductor Processing 2024, 174 , 108233. https://doi.org/10.1016/j.mssp.2024.108233
    13. A. Písaříková, J. Olejníček, I. Venkrbcová, L. Nožka, S. Cichoň, A. Azinfar, R. Hippler, C. A. Helm, M. Mašláň, L. Machala, Z. Hubička. CuFeO2 prepared by electron cyclotron wave resonance-assisted reactive HiPIMS with two magnetrons and radio frequency magnetron sputtering. Journal of Vacuum Science & Technology A 2023, 41 (6) https://doi.org/10.1116/6.0002902
    14. D. Prasad, G. Anitha, L. Megalan Leo, Atul Kumar. Theoretical analysis of earth-abundant solar cell based on green absorber CuFeO2. Optical and Quantum Electronics 2023, 55 (14) https://doi.org/10.1007/s11082-023-05499-w
    15. Yi-Hsuan Lai, Pei-Wen Yeh, Meng-Jyun Jhong, Ping-Chang Chuang. Solar-driven hydrogen evolution in alkaline seawater over earth-abundant g-C3N4/CuFeO2 heterojunction photocatalyst using microplastic as a feedstock. Chemical Engineering Journal 2023, 475 , 146413. https://doi.org/10.1016/j.cej.2023.146413
    16. Lei Zhang, Zeya Li, Ying Deng, Li Li, Zhansheng Gao, Jiabiao Chen, Zhengyang Zhou, Junwei Huang, Weigao Xu, Xuewen Fu, Hongtao Yuan, Feng Luo, Jinxiong Wu. Temperature-driven reversible structural transformation and conductivity switching in ultrathin Cu9S5 crystals. Nano Research 2023, 16 (7) , 10515-10521. https://doi.org/10.1007/s12274-023-5805-9
    17. Hoki Son, Periyayya Uthirakumar, Jae Hong Park, Jung-Hwan Park, Seungwan Woo, Chi Yeop Kim. Investigation of non-stoichiometric delafossite photoelectrodes composed of cuprous oxide and iron oxide for enhanced water-splitting. Journal of Alloys and Compounds 2023, 948 , 169781. https://doi.org/10.1016/j.jallcom.2023.169781
    18. Tsutomu Shinagawa, Wataru Tachibori, Tomoya Nishii, Atsushi Ohtaka. One-pot hydrothermal synthesis of orientated delafossite CuFeO 2 films from a mildly acidic solution on substrates. Journal of Materials Chemistry C 2023, 11 (25) , 8616-8625. https://doi.org/10.1039/D3TC01300F
    19. Guangxing Liang, Zhidong Li, Muhammad Ishaq, Zhuanghao Zheng, Zhenghua Su, Hongli Ma, Xianghua Zhang, Ping Fan, Shuo Chen. Charge Separation Enhancement Enables Record Photocurrent Density in Cu 2 ZnSn(S,Se) 4 Photocathodes for Efficient Solar Hydrogen Production. Advanced Energy Materials 2023, 13 (19) https://doi.org/10.1002/aenm.202300215
    20. Rui-Ping Li, Bao-Feng Shan, Zong-Yan Zhao. Delafossite CuFeO2 nanosheets with highly exposed {0 0 1} crystal facets for enhancing charge separation efficiency. Applied Surface Science 2023, 618 , 156594. https://doi.org/10.1016/j.apsusc.2023.156594
    21. Fei Han, Wei Xu, Chun-Xu Jia, Xiang-Tao Chen, Ying-Peng Xie, Chao Zhen, Gang Liu. Triggering heteroatomic interdiffusion in one-pot-oxidation synthesized NiO/CuFeO2 heterojunction photocathodes for efficient solar hydrogen production from water splitting. Rare Metals 2023, 42 (3) , 853-861. https://doi.org/10.1007/s12598-022-02177-w
    22. Adrian Iulian Borhan, Alexandra Raluca Iordan, Mircea Nicolae Palamaru, Daniel Ghercă. Ferrites and their composites as visible-light-driven photocatalysts for water splitting and decontamination. 2023, 83-102. https://doi.org/10.1016/B978-0-443-18874-9.00003-5
    23. Amal Bouich, Joeluis Cerutti Torres, Hasnae Chfii, Julia Marí-Guaita, Yousaf Hameed Khattak, Faisal Baig, Bernabé Marí Soucase, Pablo Palacios. Delafossite as hole transport layer a new pathway for efficient perovskite-based solar sells: Insight from experimental, DFT and numerical analysis. Solar Energy 2023, 250 , 18-32. https://doi.org/10.1016/j.solener.2022.12.022
    24. Shaun O’Donnell, Jessica Chestnut, Magnus Pauly, Paul A. Maggard. Photoelectrochemical materials for solar energy conversion. 2023, 594-627. https://doi.org/10.1016/B978-0-12-823144-9.00087-X
    25. Ian Lorenzo E. Gonzaga, Candy C. Mercado. Copper ternary oxides as photocathodes for solar-driven CO 2 reduction. REVIEWS ON ADVANCED MATERIALS SCIENCE 2022, 61 (1) , 430-457. https://doi.org/10.1515/rams-2022-0043
    26. María Isabel Díez‐García, Roberto Gómez. Progress in Ternary Metal Oxides as Photocathodes for Water Splitting Cells: Optimization Strategies. Solar RRL 2022, 6 (4) https://doi.org/10.1002/solr.202100871
    27. Daniel A Grave, Gideon Segev. Non-unity photogeneration yield of mobile charge carriers in transition metal-oxides. Journal of Physics D: Applied Physics 2022, 55 (2) , 023001. https://doi.org/10.1088/1361-6463/ac2640
    28. N. Ziani, E. Aubry, N. Martin, L. Hirsinger, A. Billard, P. Briois, M.S. Belkaid, M. Arab Pour Yazdi. Influence of substrate temperature on delafossite CuFeO2 films synthesized by reactive magnetron sputtering. Journal of Alloys and Compounds 2021, 876 , 160169. https://doi.org/10.1016/j.jallcom.2021.160169
    29. Liang-Wei Tu, Kao-Shuo Chang. Hydrothermal fabrication and photocatalytic study of delafossite (CuFeO2) thin films on fluorine-doped tin oxide substrates. Materials Chemistry and Physics 2021, 267 , 124620. https://doi.org/10.1016/j.matchemphys.2021.124620
    30. Sijun Luo, George F. Harrington, Kuan-Ting Wu, Daniele Pergolesi, Thomas Lippert. Heteroepitaxial Hexagonal (00.1) CuFeO 2 Thin Film Grown on Cubic (001) SrTiO 3 Substrate Through Translational and Rotational Domain Matching. physica status solidi (RRL) – Rapid Research Letters 2021, 15 (6) https://doi.org/10.1002/pssr.202100002
    31. Fatemeh Aqaei, Maryam Zare, Azizollah Shafiekhani. Role of plasmonic Au nanoparticles embedded in the diamond-like carbon overlayer in the performance of CuFeO2 solar photocathodes. Journal of Solid State Electrochemistry 2021, 25 (4) , 1139-1150. https://doi.org/10.1007/s10008-020-04876-9
    32. Can Lu, Andreas Drichel, Jianhong Chen, Florian Enders, Anna Rokicińska, Piotr Kuśtrowski, Richard Dronskowski, Klaus Boldt, Adam Slabon. Sensibilization of p -NiO with ZnSe/CdS and CdS/ZnSe quantum dots for photoelectrochemical water reduction. Nanoscale 2021, 13 (2) , 869-877. https://doi.org/10.1039/D0NR06993K
    33. Changli Li, Jingfu He, Yequan Xiao, Yanbo Li, Jean-Jacques Delaunay. Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting. Energy & Environmental Science 2020, 13 (10) , 3269-3306. https://doi.org/10.1039/D0EE02397C
    34. Shyamashis Das, Paul Fourmont, Daniele Benetti, Sylvain G. Cloutier, Riad Nechache, Zhiming M. Wang, Federico Rosei. High performance BiFeO3 ferroelectric nanostructured photocathodes. The Journal of Chemical Physics 2020, 153 (8) https://doi.org/10.1063/5.0013192
    35. Jeong Hun Kim, Hyo Eun Kim, Jin Hyun Kim, Jae Sung Lee. Ferrites: emerging light absorbers for solar water splitting. Journal of Materials Chemistry A 2020, 8 (19) , 9447-9482. https://doi.org/10.1039/D0TA01554G
    36. Matteo Ferri, Joshua Elliott, Stefano Fabris, Simone Piccinin. Establishing best practices to model the electronic structure of CuFeO 2 from first principles. Physical Review B 2020, 101 (15) https://doi.org/10.1103/PhysRevB.101.155201
    37. Yannick Hermans, Andreas Klein, Hori Pada Sarker, Mohammad N. Huda, Henrik Junge, Thierry Toupance, Wolfram Jaegermann. Pinning of the Fermi Level in CuFeO 2 by Polaron Formation Limiting the Photovoltage for Photochemical Water Splitting. Advanced Functional Materials 2020, 30 (10) https://doi.org/10.1002/adfm.201910432
    38. Zdenek Hubička, Martin Zlámal, Jiri Olejníček, Drahoslav Tvarog, Martin Čada, Josef Krýsa. Semiconducting p-Type Copper Iron Oxide Thin Films Deposited by Hybrid Reactive-HiPIMS + ECWR and Reactive-HiPIMS Magnetron Plasma System. Coatings 2020, 10 (3) , 232. https://doi.org/10.3390/coatings10030232
    39. Sijun Luo, Aline Fluri, Song Zhang, Xue Liu, Max Döbeli, George F. Harrington, Rong Tu, Daniele Pergolesi, Tasumi Ishihara, Thomas Lippert. Thickness-dependent microstructural properties of heteroepitaxial (00.1) CuFeO2 thin films on (00.1) sapphire by pulsed laser deposition. Journal of Applied Physics 2020, 127 (6) https://doi.org/10.1063/1.5140451
    40. Zhentao Du, Dingfa Fu, Jie Teng, Lin Wang, Fengmei Gao, Weiyou Yang, Hui Zhang, Xiaosheng Fang. CsPbI 3 Nanotube Photodetectors with High Detectivity. Small 2019, 15 (52) https://doi.org/10.1002/smll.201905253
    41. Wooseok Yang, Jooho Moon. Rapid advances in antimony triselenide photocathodes for solar hydrogen generation. Journal of Materials Chemistry A 2019, 7 (36) , 20467-20477. https://doi.org/10.1039/C9TA07990D
    42. Tengfei Jiang, Yu Zhao, Huaiguo Xue. Boosting the performance of delafossite photocathode through constructing a CuFeO2/CuO heterojunction for photoelectrochemical water reduction. Journal of Materials Science 2019, 54 (18) , 11951-11958. https://doi.org/10.1007/s10853-019-03747-7
    43. Elizabeth A. Fugate, Somnath Biswas, Mathew C. Clement, Minkyu Kim, Dongjoon Kim, Aravind Asthagiri, L. Robert Baker. The role of phase impurities and lattice defects on the electron dynamics and photochemistry of CuFeO2 solar photocathodes. Nano Research 2019, 12 (9) , 2390-2399. https://doi.org/10.1007/s12274-019-2493-6

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect