ACS Publications. Most Trusted. Most Cited. Most Read
Polar–Nonpolar Phase Transition Accompanied by Negative Thermal Expansion in Perovskite-Type Bi1–xPbxNiO3
My Activity
    Article

    Polar–Nonpolar Phase Transition Accompanied by Negative Thermal Expansion in Perovskite-Type Bi1–xPbxNiO3
    Click to copy article linkArticle link copied!

    • Yuki Sakai*
      Yuki Sakai
      Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina 243-0435, Japan
      Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
      *E-mail: [email protected] (Y.S.).
      More by Yuki Sakai
    • Takumi Nishikubo
      Takumi Nishikubo
      Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
    • Takahiro Ogata
      Takahiro Ogata
      Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
    • Hayato Ishizaki
      Hayato Ishizaki
      Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
    • Takashi Imai
      Takashi Imai
      Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
      More by Takashi Imai
    • Masaichiro Mizumaki
      Masaichiro Mizumaki
      Japan Synchrotron Radiation Research Institute, SPring-8, Sayo-gun, Hyogo 679-5198, Japan
    • Takashi Mizokawa
      Takashi Mizokawa
      Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
    • Akihiko Machida
      Akihiko Machida
      Synchrotron Radiation Research Center, National Institutes for Quantum and Radiological Science and Technology, Sayo, Hyogo 679-5148, Japan
    • Tetsu Watanuki
      Tetsu Watanuki
      Synchrotron Radiation Research Center, National Institutes for Quantum and Radiological Science and Technology, Sayo, Hyogo 679-5148, Japan
    • Keisuke Yokoyama
      Keisuke Yokoyama
      Department of Chemistry, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
    • Yoichi Okimoto
      Yoichi Okimoto
      Department of Chemistry, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
    • Shin-ya Koshihara
      Shin-ya Koshihara
      Department of Chemistry, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
    • Hena Das
      Hena Das
      Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
      World Research Hub Initiative, Institute of Innovative Research (IIR), Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
      More by Hena Das
    • Masaki Azuma*
      Masaki Azuma
      Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina 243-0435, Japan
      Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
      *E-mail: [email protected] (M.A.).
      More by Masaki Azuma
    Other Access OptionsSupporting Information (1)

    Chemistry of Materials

    Cite this: Chem. Mater. 2019, 31, 13, 4748–4758
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.9b00929
    Published May 29, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Perovskite-oxide Bi1–xPbxNiO3 for 0.60 ≤ x ≤ 0.80 was found to show a polar orthorhombic-to-nonpolar orthorhombic phase transition accompanied by negative thermal expansion. Bi1–xPbxNiO3 showed successive crystal structure changes depending on the amount of Pb. As the amount of Pb increased, the crystal structure changed from a triclinic one with Bi3+/Bi5+ long-range ordering to an orthorhombic one with Bi3+/Bi5+ short-range ordering; then, it changed into a polar orthorhombic structure without Bi3+/Bi5+ ordering and finally to a polar LiNbO3-type one. The key to the inversion symmetry breaking in PbNiO3, where both 6s2 lone-pair and Jahn–Teller active cations are absent, is the high-valency state of Pb4+. Our results suggest that the polar orthorhombic phase can be realized by using high-valence A-site cations in addition to controlling the tolerance factor.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.9b00929.

    • Computed G-type antiferromagnetic density of states for the R3c phase; computed total energy versus cell volume per formula unit for R3c, Pbn21, and Pbnm phases; calculated enthalpy as a function of applied pressure for R3c, Pbn21, and Pbnm phases; the magnetization curves at 100 K for Bi1–xPbxNiO3; optimized structural parameters for PbNiO3 for the ground-state R3c structure and low-energy Pbn21 and Pbnm structures; and structural parameters for perovskite-type Bi1–xPbxNiO3 at 100 K (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 23 publications.

    1. Qiumin Liu, Hena Das, Takumi Nishikubo, Yuki Sakai, Ko Mibu, Tomoko Onoue, Takateru Kawakami, Tetsu Watanuki, Akihiko Machida, Xubin Ye, Jianhong Dai, Zhao Pan, Lei Hu, Satoshi Nakano, Masayuki Fukuda, Shiori Kihara, Koomok Lee, Takehiro Koike, Youwen Long, Masaki Azuma. Pressure Induced Amorphization of Pb2+ and Pb4+ in Perovskite PbFeO3. Chemistry of Materials 2024, 36 (4) , 1899-1907. https://doi.org/10.1021/acs.chemmater.3c02569
    2. Yuki Sakai, Kana Matsuno, Takumi Nishikubo, Masayuki Fukuda, Shogo Wakazaki, Masahito Ikeda, Kazuki Takahashi, Zhao Pan, Lei Hu, Masaki Azuma. Two Types of Negative Thermal Expansion Observed in PbCr1–xTixO3. Chemistry of Materials 2023, 35 (3) , 1008-1015. https://doi.org/10.1021/acs.chemmater.2c02896
    3. Takumi Nishikubo, Takashi Imai, Yuki Sakai, Masaichiro Mizumaki, Shogo Kawaguchi, Norihiro Oshime, Ayumu Shimada, Kento Sugawara, Kenji Ohwada, Akihiko Machida, Tetsu Watanuki, Kosuke Kurushima, Shigeo Mori, Takashi Mizokawa, Masaki Azuma. Polar–Nonpolar Transition-Type Negative Thermal Expansion with 11.1% Volume Shrinkage by Design. Chemistry of Materials 2023, 35 (3) , 870-878. https://doi.org/10.1021/acs.chemmater.2c02304
    4. Ryo Ohtani, Junichi Yanagisawa, Yuudai Iwai, Benjamin Le Ouay, Masaaki Ohba. Negative Thermal Expansion of Undulating Coordination Layers through Interlayer Interaction. Inorganic Chemistry 2022, 61 (51) , 21123-21130. https://doi.org/10.1021/acs.inorgchem.2c03780
    5. Shiori Kihara, Yuki Sakai, Shogo Wakazaki, Takumi Nishikubo, Takehiro Koike, Ko Mibu, Hongwu Yu, Yoichi Okimoto, Shin-ya Koshihara, Masaki Azuma. Bi0.5Pb0.5FeO3 with Unusual Pb Charge Disproportionation: Indication of a Systematic Charge Distribution Change in Bi0.5Pb0.5MO3 (M: 3d Transition Metal). Inorganic Chemistry 2022, 61 (32) , 12822-12827. https://doi.org/10.1021/acs.inorgchem.2c01911
    6. Qiang Li, Kun Lin, Zhanning Liu, Lei Hu, Yili Cao, Jun Chen, Xianran Xing. Chemical Diversity for Tailoring Negative Thermal Expansion. Chemical Reviews 2022, 122 (9) , 8438-8486. https://doi.org/10.1021/acs.chemrev.1c00756
    7. Takahiro Ogata, Yuki Sakai, Takumi Nishikubo, Takashi Mizokawa, Masaichiro Mizumaki, Koomok Lee, Qiumin Liu, Masaki Azuma. Intermetallic Charge Transfer in V-Substituted PbCrO3. Inorganic Chemistry 2021, 60 (13) , 9427-9431. https://doi.org/10.1021/acs.inorgchem.1c00460
    8. Takumi Nishikubo, Takahiro Ogata, Lalitha Kodumudi Venkataraman, Daniel Isaia, Zhao Pan, Yuki Sakai, Lei Hu, Shogo Kawaguchi, Akihiko Machida, Tetsu Watanuki, Hongwu Yu, Yoichi Okimoto, Shin-ya Koshihara, Shigeo Mori, Jürgen Rödel, Masaki Azuma. Polarization- and Strain-Mediated Control of Negative Thermal Expansion and Ferroelasticity in BiInO3–BiZn1/2Ti1/2O3. Chemistry of Materials 2021, 33 (4) , 1498-1505. https://doi.org/10.1021/acs.chemmater.0c04049
    9. Shogo Wakazaki, Takumi Nishikubo, Yuki Sakai, Kei Shigematsu, Hena Das, Depei Zhang, Qiang Zhang, Masaaki Matsuda, Masaki Azuma. Stabilized Charge, Spin, and Orbital Ordering by the 6s2 Lone Pair in Bi0.5Pb0.5MnO3. Inorganic Chemistry 2020, 59 (18) , 13390-13397. https://doi.org/10.1021/acs.inorgchem.0c01748
    10. Masayuki Fukuda, Ikuya Yamada, Hidenobu Murata, Hajime Hojo, Olivier J. Hernandez, Clemens Ritter, Katsuhisa Tanaka, Koji Fujita. Perovskite-Type CuNbO3 Exhibiting Unusual Noncollinear Ferrielectric to Collinear Ferroelectric Dipole Order Transition. Chemistry of Materials 2020, 32 (12) , 5016-5027. https://doi.org/10.1021/acs.chemmater.0c00444
    11. Hayato Ishizaki, Yuki Sakai, Takumi Nishikubo, Zhao Pan, Kengo Oka, Hajime Yamamoto, Masaki Azuma. Negative Thermal Expansion in Lead-Free La-Substituted Bi0.5Na0.5VO3. Chemistry of Materials 2020, 32 (11) , 4832-4837. https://doi.org/10.1021/acs.chemmater.0c01709
    12. Md Saiduzzaman, Shuhei Akutsu, Nobuhiro Kumada, Takahiro Takei, Sayaka Yanagida, Hisanori Yamane, Yoshihiro Kusano. Hydrothermal Synthesis and Crystal Structure of a Mixed-Valence Bismuthate, Na3Bi3O8. Inorganic Chemistry 2020, 59 (7) , 4950-4960. https://doi.org/10.1021/acs.inorgchem.0c00213
    13. Takumi Nishikubo, Yuki Sakai, Kengo Oka, Tetsu Watanuki, Akihiko Machida, Masaichiro Mizumaki, Koki Maebayashi, Takashi Imai, Takahiro Ogata, Keisuke Yokoyama, Yoichi Okimoto, Shin-ya Koshihara, Hajime Hojo, Takashi Mizokawa, Masaki Azuma. Enhanced Negative Thermal Expansion Induced by Simultaneous Charge Transfer and Polar–Nonpolar Transitions. Journal of the American Chemical Society 2019, 141 (49) , 19397-19403. https://doi.org/10.1021/jacs.9b10336
    14. Tatsuya Yamaguchi, Mizuki Furo, Yuki Sakai, Takumi Nishikubo, Hajime Hojo, Masaki Azuma, Kengo Oka, Daisuke Mori, Yoshiyuki Inaguma, Masaichiro Mizumaki, Kento Yamamoto, Jan Kuneš, Takashi Mizokawa, Atsushi Hariki. Mechanism of intermetallic charge transfer and bond disproportionation in BiNiO 3 and PbNiO 3 revealed by hard x-ray photoemission spectroscopy. Physical Review B 2024, 109 (20) https://doi.org/10.1103/PhysRevB.109.205131
    15. Yuki SAKAI. Unusual Charge Distribution in Pb- and Bi-Based Perovskite-Type Oxides. The Review of High Pressure Science and Technology 2023, 33 (4) , 271-271. https://doi.org/10.4131/jshpreview.33.271
    16. Masaki Azuma, Ikuya Yamada, Kazunari Yamaura, Alexei A. Belik, Takafumi Yamamoto, Masayuki Fukuda. High pressure studies of transition metal oxides. 2023, 681-718. https://doi.org/10.1016/B978-0-12-823144-9.00141-2
    17. Masaki AZUMA, Kengo OKA, Hajime YAMAMOTO, Yuki SAKAI. Quest for Colossal Negative Thermal Expansion Materials. Journal of the Japan Society of Powder and Powder Metallurgy 2022, 69 (8) , 356-361. https://doi.org/10.2497/jjspm.69.356
    18. Takehiro Koike, Takumi Nishikubo, Yuki Sakai, Hirofumi Ishii, Masaki Azuma. Negative thermal expansion in PbTiO3-type perovskites oxide Bi0.5+xNa0.5−xVO3. Journal of the Ceramic Society of Japan 2022, 130 (8) , 691-695. https://doi.org/10.2109/jcersj2.22059
    19. Qi-Yao Li, Mao-Fan Li, Xiao-Xian Chen, Ya-Ping Gong, De-Xuan Liu, Wei-Jian Xu, Wei-Xiong Zhang. Near-room-temperature dielectric switch and thermal expansion anomaly in a new hybrid crystal: (Me 2 NH 2 )[CsFe(CN) 5 (NO)]. CrystEngComm 2022, 24 (27) , 4864-4868. https://doi.org/10.1039/D2CE00754A
    20. Xubin Ye, Jianfa Zhao, Hena Das, Denis Sheptyakov, Junye Yang, Yuki Sakai, Hajime Hojo, Zhehong Liu, Long Zhou, Lipeng Cao, Takumi Nishikubo, Shogo Wakazaki, Cheng Dong, Xiao Wang, Zhiwei Hu, Hong-Ji Lin, Chien-Te Chen, Christoph Sahle, Anna Efiminko, Huibo Cao, Stuart Calder, Ko Mibu, Michel Kenzelmann, Liu Hao Tjeng, Runze Yu, Masaki Azuma, Changqing Jin, Youwen Long. Observation of novel charge ordering and spin reorientation in perovskite oxide PbFeO3. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-22064-9
    21. Atsunori Doi, Satoshi Shimano, Takuya Matsunaga, Yoshinori Tokura, Yasujiro Taguchi. Tunable giant negative thermal expansion in Ti 2 O 3 -based polycrystalline materials. Applied Physics Express 2021, 14 (10) , 107001. https://doi.org/10.35848/1882-0786/ac251e
    22. Masaki Azuma, Hajime Hojo, Kengo Oka, Hajime Yamamoto, Keisuke Shimizu, Kei Shigematsu, Yuki Sakai. Functional Transition Metal Perovskite Oxides with 6 s 2 Lone Pair Activity Stabilized by High-Pressure Synthesis. Annual Review of Materials Research 2021, 51 (1) , 329-349. https://doi.org/10.1146/annurev-matsci-080819-011831
    23. Yuki SAKAI, Takumi NISHIKUBO, Masaki AZUMA. Negative Thermal Expansion Induced by Simultaneous Charge Transfer and Polar-Nonpolar Transitions. Nihon Kessho Gakkaishi 2020, 62 (3) , 135-136. https://doi.org/10.5940/jcrsj.62.135

    Chemistry of Materials

    Cite this: Chem. Mater. 2019, 31, 13, 4748–4758
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.9b00929
    Published May 29, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    1714

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.