ACS Publications. Most Trusted. Most Cited. Most Read
Anisotropic Polaron Delocalization in Conjugated Homopolymers and Donor–Acceptor Copolymers
My Activity
    Article

    Anisotropic Polaron Delocalization in Conjugated Homopolymers and Donor–Acceptor Copolymers
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Chemistry of Materials

    Cite this: Chem. Mater. 2019, 31, 17, 7033–7045
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.9b01704
    Published July 12, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The shape of the mid-IR absorption spectrum provides valuable information about the “hole” polaron coherence length in doped and undoped conjugated polymer films. In poly(3-hexylthiophene) (P3HT) films, the spectrum generally consists of a narrow, low-energy peak A (700–1000 cm–1) followed by a much broader, higher-energy peak B (2500–5000 cm–1). By using a theory based on the Holstein Hamiltonian for mobile holes in P3HT, the IR line-shape is successfully reproduced for several recently measured spectra recorded in doped and undoped films, confirming the association of an enhanced peak ratio (A/B) with extended polaron coherence. Emphasis is placed on the origin of components polarized along the intra- and interchain directions and their dependence on the spatial distribution of disorder as well as the position of the dopant relative to the π-stack. The model is further adapted to treat donor–acceptor copolymers where the local HOMO energy varies periodically from donor unit to acceptor unit. The calculated line shape for a diketopyrrolopyrrole-based copolymer agrees well with the recently measured spectrum.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.9b01704.

    • Hamiltonians for homopolymers and copolymers, expressions for IR absorption spectrum and coherence numbers (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 44 publications.

    1. Garrett LeCroy, Raja Ghosh, Parker Sommerville, Colm Burke, Hesam Makki, Kalee Rozylowicz, Christina Cheng, Mark Weber, Wissem Khelifi, Natalie Stingelin, Alessandro Troisi, Christine Luscombe, Frank C. Spano, Alberto Salleo. Using Molecular Structure to Tune Intrachain and Interchain Charge Transport in Indacenodithiophene-Based Copolymers. Journal of the American Chemical Society 2024, 146 (31) , 21778-21790. https://doi.org/10.1021/jacs.4c06006
    2. Yutong Wu, Charlene Z. Salamat, Alex León Ruiz, Alexander F. Simafranca, Nesibe Akmanşen-Kalayci, Eric C. Wu, Evan Doud, Zerina Mehmedović, Jeffrey R. Lindemuth, Minh D. Phan, Alexander M. Spokoyny, Benjamin J. Schwartz, Sarah H. Tolbert. Using Bulky Dodecaborane-Based Dopants to Produce Mobile Charge Carriers in Amorphous Semiconducting Polymers. Chemistry of Materials 2024, 36 (11) , 5552-5562. https://doi.org/10.1021/acs.chemmater.4c00502
    3. D. Eric Shen, Callie L. Goins, Austin L. Jones, Anna M. Österholm, John R. Reynolds. Design Rules for High Contrast Mid-Infrared Electrochromism in Conjugated Polymers. ACS Materials Letters 2024, 6 (2) , 528-534. https://doi.org/10.1021/acsmaterialslett.3c01437
    4. Yutong Wu, Quynh M. Duong, Alexander F. Simafranca, Charlene Z. Salamat, Benjamin J. Schwartz, Sarah H. Tolbert. Crystal Structure Control of the Energetics of Chemical Doping in Rub-Aligned P3HT Films. ACS Materials Letters 2024, 6 (2) , 489-497. https://doi.org/10.1021/acsmaterialslett.3c01543
    5. Yuanhui Pan, Ching-Hwa Ho, Francesco Paesani, Raja Ghosh. Engineering Flat and Dispersive Bands in 2D Layered COFs via Interlayer Stacking and Donor–Acceptor Strategy. Chemistry of Materials 2023, 35 (16) , 6235-6245. https://doi.org/10.1021/acs.chemmater.3c00510
    6. Angela Montanaro, Kyu Hyung Park, Francesca Fassioli, Francesca Giusti, Daniele Fausti, Gregory D. Scholes. Manipulation of Charge Delocalization in a Bulk Heterojunction Material Using a Mid-Infrared Push Pulse. The Journal of Physical Chemistry C 2023, 127 (28) , 13712-13722. https://doi.org/10.1021/acs.jpcc.3c02938
    7. Lucas Q. Flagg, Jonathan W. Onorato, Christine K. Luscombe, Vinayak Bhat, Chad Risko, Ben Levy-Wendt, Michael F. Toney, Christopher R. McNeill, Guillaume Freychet, Mikhail Zhernenkov, Ruipeng Li, Lee J. Richter. Resonant X-ray Diffraction Reveals the Location of Counterions in Doped Organic Mixed Ionic Conductors. Chemistry of Materials 2023, 35 (10) , 3960-3967. https://doi.org/10.1021/acs.chemmater.3c00180
    8. Vinh Van Tran, Ganghoon Jeong, Eunsol Wi, Daeho Lee, Mincheol Chang. Design and Fabrication of Ultrathin Nanoporous Donor–Acceptor Copolymer-Based Organic Field-Effect Transistors for Enhanced VOC Sensing Performance. ACS Applied Materials & Interfaces 2023, 15 (17) , 21270-21283. https://doi.org/10.1021/acsami.3c00105
    9. Mohammad Balooch Qarai, Raja Ghosh, Nicholas J. Hestand, Frank C. Spano. Multipolaron Complexes in Conducting Polymers: The Importance of Hole–Hole Repulsion in Charge Delocalization. The Journal of Physical Chemistry C 2023, 127 (13) , 6414-6424. https://doi.org/10.1021/acs.jpcc.3c00289
    10. Karnati Narasimha, Shine K. Albert, Jongwook Kim, Hyojung Kang, Sungsu Kang, Jungwon Park, JaeHong Park, So-Jung Park. Charge-Transfer-Induced Self-Assembly of Doped Conjugated Block Copolymer Nanofibers. ACS Macro Letters 2023, 12 (3) , 382-388. https://doi.org/10.1021/acsmacrolett.2c00752
    11. Parker J. W. Sommerville, Alex H. Balzer, Garrett Lecroy, Lorenzo Guio, Yunfei Wang, Jonathan W. Onorato, Nadzeya A. Kukhta, Xiaodan Gu, Alberto Salleo, Natalie Stingelin, Christine K. Luscombe. Influence of Side Chain Interdigitation on Strain and Charge Mobility of Planar Indacenodithiophene Copolymers. ACS Polymers Au 2023, 3 (1) , 59-69. https://doi.org/10.1021/acspolymersau.2c00034
    12. Yongzhen Chen, Han-Yan Wu, Chi-Yuan Yang, Nagesh B. Kolhe, Samson A. Jenekhe, Xianjie Liu, Slawomir Braun, Simone Fabiano, Mats Fahlman. In Situ Spectroscopic and Electrical Investigations of Ladder-type Conjugated Polymers Doped with Alkali Metals. Macromolecules 2022, 55 (16) , 7294-7302. https://doi.org/10.1021/acs.macromol.2c01190
    13. Mohammad Balooch Qarai, Raja Ghosh, Frank C. Spano. Understanding Bipolarons in Conjugated Polymers Using a Multiparticle Holstein Approach. The Journal of Physical Chemistry C 2021, 125 (44) , 24487-24497. https://doi.org/10.1021/acs.jpcc.1c06767
    14. Dane A. Stanfield, Zerina Mehmedović, Benjamin J. Schwartz. Vibrational Stark Effect Mapping of Polaron Delocalization in Chemically Doped Conjugated Polymers. Chemistry of Materials 2021, 33 (21) , 8489-8500. https://doi.org/10.1021/acs.chemmater.1c02934
    15. Raja Ghosh, Francesco Paesani. Topology-Mediated Enhanced Polaron Coherence in Covalent Organic Frameworks. The Journal of Physical Chemistry Letters 2021, 12 (39) , 9442-9448. https://doi.org/10.1021/acs.jpclett.1c02454
    16. Meera Madhu, Remya Ramakrishnan, Vishnu Vijay, Mahesh Hariharan. Free Charge Carriers in Homo-Sorted π-Stacks of Donor–Acceptor Conjugates. Chemical Reviews 2021, 121 (13) , 8234-8284. https://doi.org/10.1021/acs.chemrev.1c00078
    17. Yongzhen Chen, Sarbani Ghosh, Xianjie Liu, Igor V. Zozoulenko, Mats Fahlman, Slawomir Braun. Experimental and Theoretical Investigation into the Polaron Structure of K-Doped Polyfluorene Films. The Journal of Physical Chemistry C 2021, 125 (1) , 937-945. https://doi.org/10.1021/acs.jpcc.0c08442
    18. Raja Ghosh, Frank C. Spano. Excitons and Polarons in Organic Materials. Accounts of Chemical Research 2020, 53 (10) , 2201-2211. https://doi.org/10.1021/acs.accounts.0c00349
    19. Malavika Arvind, Claudia E. Tait, Michele Guerrini, Jannis Krumland, Ana M. Valencia, Caterina Cocchi, Ahmed E. Mansour, Norbert Koch, Stephen Barlow, Seth R. Marder, Jan Behrends, Dieter Neher. Quantitative Analysis of Doping-Induced Polarons and Charge-Transfer Complexes of Poly(3-hexylthiophene) in Solution. The Journal of Physical Chemistry B 2020, 124 (35) , 7694-7708. https://doi.org/10.1021/acs.jpcb.0c03517
    20. Viktoriia Untilova, Jonna Hynynen, Anna I. Hofmann, Dorothea Scheunemann, Yadong Zhang, Stephen Barlow, Martijn Kemerink, Seth R. Marder, Laure Biniek, Christian Müller, Martin Brinkmann. High Thermoelectric Power Factor of Poly(3-hexylthiophene) through In-Plane Alignment and Doping with a Molybdenum Dithiolene Complex. Macromolecules 2020, 53 (15) , 6314-6321. https://doi.org/10.1021/acs.macromol.0c01223
    21. Alessia Arrigoni, Luigi Brambilla, Chiara Bertarelli, Carlo Saporiti, Chiara Castiglioni. Conducting Electrospun Poly(3-hexylthiophene-2,5-diyl) Nanofibers: New Strategies for Effective Chemical Doping and its Assessment Using Infrared Spectroscopy. Applied Spectroscopy 2024, 78 (12) , 1279-1294. https://doi.org/10.1177/00037028241265140
    22. Samuele Giannini, Daniel J.C. Sowood, Jesús Cerdá, Siebe Frederix, Jeannine Grüne, Giacomo Londi, Thomas Marsh, Pratyush Ghosh, Ivan Duchemin, Neil C. Greenham, Koen Vandewal, Gabriele D’Avino, Alexander J. Gillett, David Beljonne. On the role of charge transfer excitations in non-fullerene acceptors for organic photovoltaics. Materials Today 2024, 80 , 308-326. https://doi.org/10.1016/j.mattod.2024.09.009
    23. Samuele Giannini, Jesús Cerdá, Giacomo Prampolini, Fabrizio Santoro, David Beljonne. Dissecting the nature and dynamics of electronic excitations in a solid-state aggregate of a representative non-fullerene acceptor. Journal of Materials Chemistry C 2024, 12 (27) , 10009-10028. https://doi.org/10.1039/D4TC01716A
    24. Garrett LeCroy, Raja Ghosh, Viktoriia Untilova, Lorenzo Guio, Kevin H. Stone, Martin Brinkmann, Christine Luscombe, Frank C. Spano, Alberto Salleo. Polaron absorption in aligned conjugated polymer films: breakdown of adiabatic treatments and going beyond the conventional mid-gap state model. Materials Horizons 2024, 11 (2) , 545-553. https://doi.org/10.1039/D3MH01278F
    25. Tucker L. Murrey, Melissa Berteau-Rainville, Goktug Gonel, Jan Saska, Nikolay E. Shevchenko, Alice S. Fergerson, Rachel M. Talbot, Nichole L. Yacoub, Fengyu Zhang, Antoine Kahn, Mark Mascal, Ingo Salzmann, Adam J. Moulé. Quantifying polaron densities in sequentially doped conjugated polymers: exploring the upper limits of molecular doping and conductivity. Journal of Materials Chemistry C 2023, 11 (42) , 14884-14895. https://doi.org/10.1039/D3TC01569F
    26. Thanh Ngoc Nguyen, Viet-Duc Phung, Vinh Van Tran. Recent Advances in Conjugated Polymer-Based Biosensors for Virus Detection. Biosensors 2023, 13 (6) , 586. https://doi.org/10.3390/bios13060586
    27. Eric C. Wu, Charlene Z. Salamat, Omar León Ruiz, Thomas Qu, Alexis Kim, Sarah H. Tolbert, Benjamin J. Schwartz. Counterion Control and the Spectral Signatures of Polarons, Coupled Polarons, and Bipolarons in Doped P3HT Films. Advanced Functional Materials 2023, 33 (19) https://doi.org/10.1002/adfm.202213652
    28. Weifeng Zhang, Keli Shi, Jing Lai, Yankai Zhou, Xuyang Wei, Qian Che, Jinbei Wei, Liping Wang, Gui Yu. Record‐High Electron Mobility Exceeding 16 cm 2 V − 1 s − 1 in Bisisoindigo‐Based Polymer Semiconductor with a Fully Locked Conjugated Backbone. Advanced Materials 2023, 35 (17) https://doi.org/10.1002/adma.202300145
    29. Zhifan Ke, Mustafa H. Ahmed, Ashkan Abtahi, Shih‐Hsin Hsu, Wenting Wu, Michael F. Espenship, Kyle N. Baustert, Kenneth R. Graham, Julia Laskin, Liang Pan, Jianguo Mei. Thermally Activated Aromatic Ionic Dopants (TA‐AIDs) Enabling Stable Doping, Orthogonal Processing and Direct Patterning. Advanced Functional Materials 2023, 33 (8) https://doi.org/10.1002/adfm.202211522
    30. Raja Ghosh, Francesco Paesani. Connecting the dots for fundamental understanding of structure–photophysics–property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chemical Science 2023, 14 (5) , 1040-1064. https://doi.org/10.1039/D2SC03793A
    31. Seong Hyeon Kim, Hyunwoo Yook, Woong Sung, Jinhyeok Choi, Hyungsub Lim, Sein Chung, Jeong Woo Han, Kilwon Cho. Extremely Suppressed Energetic Disorder in a Chemically Doped Conjugated Polymer. Advanced Materials 2023, 35 (1) https://doi.org/10.1002/adma.202207320
    32. Yang Liu, Shengtao Gao, Xinyu Zhang, John H. Xin, Chao Zhang. Probing the nature of charge carriers in one-dimensional conjugated polymers: a review of the theoretical models, experimental trends, and thermoelectric applications. Journal of Materials Chemistry C 2022, 11 (1) , 12-47. https://doi.org/10.1039/D2TC03574J
    33. Dennis Derewjanko, Dorothea Scheunemann, Emmy Järsvall, Anna I. Hofmann, Christian Müller, Martijn Kemerink. Delocalization Enhances Conductivity at High Doping Concentrations. Advanced Functional Materials 2022, 32 (20) https://doi.org/10.1002/adfm.202112262
    34. Yan-Cheng Lin, Wei-Chen Yang, Yun-Chi Chiang, Wen-Chang Chen. Recent Advances in Organic Phototransistors: Nonvolatile Memory, Artificial Synapses, and Photodetectors. Small Science 2022, 2 (4) https://doi.org/10.1002/smsc.202100109
    35. Adam J. Moulé, Goktug Gonel, Tucker L. Murrey, Raja Ghosh, Jan Saska, Nikolay E. Shevchenko, Ilaria Denti, Alice S. Fergerson, Rachel M. Talbot, Nichole L. Yacoub, Mark Mascal, Alberto Salleo, Frank C. Spano. Quantifying Polaron Mole Fractions and Interpreting Spectral Changes in Molecularly Doped Conjugated Polymers. Advanced Electronic Materials 2022, 8 (4) https://doi.org/10.1002/aelm.202100888
    36. Jan Saska, Nikolay E. Shevchenko, Goktug Gonel, Zaira I. Bedolla-Valdez, Rachel M. Talbot, Adam J. Moulé, Mark Mascal. Synthesis and characterization of solution processable, high electron affinity molecular dopants. Journal of Materials Chemistry C 2021, 9 (44) , 15990-15997. https://doi.org/10.1039/D1TC03951B
    37. Valentina Rohnacher, Michael Tzschoppe, Vipilan Sivanesan, Annemarie Pucci. Infrared Spectral Analysis of Plasmonic Polarons in Doped P3HT Films. physica status solidi (b) 2021, 258 (10) https://doi.org/10.1002/pssb.202100237
    38. Raja Ghosh, Francesco Paesani. Unraveling the effect of defects, domain size, and chemical doping on photophysics and charge transport in covalent organic frameworks. Chemical Science 2021, 12 (24) , 8373-8384. https://doi.org/10.1039/D1SC01262B
    39. Matthew G. Voss, J. Reddy Challa, D. Tyler Scholes, Patrick Y. Yee, Eric C. Wu, Xiao Liu, Sanghyun J. Park, Omar León Ruiz, Selvam Subramaniyan, Mengdan Chen, Samson A. Jenekhe, Xiaolin Wang, Sarah H. Tolbert, Benjamin J. Schwartz. Driving Force and Optical Signatures of Bipolaron Formation in Chemically Doped Conjugated Polymers. Advanced Materials 2021, 33 (3) https://doi.org/10.1002/adma.202000228
    40. Sang Eun Yoon, Jaehong Park, Ji Eon Kwon, Sang Yeon Lee, Ji Min Han, Chae Young Go, Siku Choi, Ki Chul Kim, Hyungtak Seo, Jong H. Kim, Bong‐Gi Kim. Improvement of Electrical Conductivity in Conjugated Polymers through Cascade Doping with Small‐Molecular Dopants. Advanced Materials 2020, 32 (49) https://doi.org/10.1002/adma.202005129
    41. Elayne M. Thomas, Kelly A. Peterson, Alex H. Balzer, Dakota Rawlings, Natalie Stingelin, Rachel A. Segalman, Michael L. Chabinyc. Effects of Counter‐Ion Size on Delocalization of Carriers and Stability of Doped Semiconducting Polymers. Advanced Electronic Materials 2020, 6 (12) https://doi.org/10.1002/aelm.202000595
    42. Shuichi Nagamatsu, Shyam S. Pandey. Ordered arrangement of F4TCNQ anions in three-dimensionally oriented P3HT thin films. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-77022-0
    43. Peter A. Finn, Ian E. Jacobs, John Armitage, Ruiheng Wu, Bryan D. Paulsen, Mark Freeley, Matteo Palma, Jonathan Rivnay, Henning Sirringhaus, Christian B. Nielsen. Effect of polar side chains on neutral and p-doped polythiophene. Journal of Materials Chemistry C 2020, 8 (45) , 16216-16223. https://doi.org/10.1039/D0TC04290K
    44. Taylor J. Aubry, K. J. Winchell, Charlene Z. Salamat, Victoria M. Basile, Jeffrey R. Lindemuth, Julia M. Stauber, Jonathan C. Axtell, Rebecca M. Kubena, Minh D. Phan, Matthew J. Bird, Alexander M. Spokoyny, Sarah H. Tolbert, Benjamin J. Schwartz. Tunable Dopants with Intrinsic Counterion Separation Reveal the Effects of Electron Affinity on Dopant Intercalation and Free Carrier Production in Sequentially Doped Conjugated Polymer Films. Advanced Functional Materials 2020, 30 (28) https://doi.org/10.1002/adfm.202001800

    Chemistry of Materials

    Cite this: Chem. Mater. 2019, 31, 17, 7033–7045
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.9b01704
    Published July 12, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    2529

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.