ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Supramolecular Hydrogel Induced by Electrostatic Interactions between Polycation and Phosphorylated-Fmoc-Tripeptide

  • Miryam Criado-Gonzalez
    Miryam Criado-Gonzalez
    Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67034 Strasbourg, France
    Institut National de la Santé et de la Recherche Médicale, UMR-S 1121, “Biomatériaux et Bioingénierie”, 67087 Strasbourg, France
    Université de Strasbourg, Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg and Fédération des Matériaux et Nanoscience d’Alsace, 67000 Strasbourg, France
  • Déborah Wagner
    Déborah Wagner
    Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67034 Strasbourg, France
  • Jennifer Rodon Fores
    Jennifer Rodon Fores
    Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67034 Strasbourg, France
  • Christian Blanck
    Christian Blanck
    Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67034 Strasbourg, France
  • Marc Schmutz
    Marc Schmutz
    Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67034 Strasbourg, France
    More by Marc Schmutz
  • Alain Chaumont
    Alain Chaumont
    Université de Strasbourg, Faculté de Chimie, UMR7140, 67000 Strasbourg, France
  • Morgane Rabineau
    Morgane Rabineau
    Institut National de la Santé et de la Recherche Médicale, UMR-S 1121, “Biomatériaux et Bioingénierie”, 67087 Strasbourg, France
    Université de Strasbourg, Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg and Fédération des Matériaux et Nanoscience d’Alsace, 67000 Strasbourg, France
  • Joseph B. Schlenoff
    Joseph B. Schlenoff
    Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
  • Guillaume Fleith
    Guillaume Fleith
    Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67034 Strasbourg, France
  • Jérôme Combet
    Jérôme Combet
    Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67034 Strasbourg, France
  • Pierre Schaaf*
    Pierre Schaaf
    Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67034 Strasbourg, France
    Institut National de la Santé et de la Recherche Médicale, UMR-S 1121, “Biomatériaux et Bioingénierie”, 67087 Strasbourg, France
    Université de Strasbourg, Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg and Fédération des Matériaux et Nanoscience d’Alsace, 67000 Strasbourg, France
    Ecole de Chimie, Polymères et Matériaux, Université de Strasbourg, 67087 Strasbourg, France
    *E-mail: [email protected]. Phone: +33-3-68-85-33-87 (P.S.).
  • Loïc Jierry
    Loïc Jierry
    Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67034 Strasbourg, France
    Ecole de Chimie, Polymères et Matériaux, Université de Strasbourg, 67087 Strasbourg, France
    More by Loïc Jierry
  • , and 
  • Fouzia Boulmedais*
    Fouzia Boulmedais
    Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67034 Strasbourg, France
    *E-mail: [email protected]. Phone: +33-3-88-41-41-60 (F.B.).
Cite this: Chem. Mater. 2020, 32, 5, 1946–1956
Publication Date (Web):February 26, 2020
https://doi.org/10.1021/acs.chemmater.9b04823
Copyright © 2020 American Chemical Society

    Article Views

    2252

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (5 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Supramolecular hydrogels formed through noncovalent interactions of low-molecular-weight hydrogelators (LMWHs) show great potential applications in different fields, such as delivery of therapeutics, injectable biomaterials, catalysis, or materials chemistry. Generally, the self-assembly of LMWHs is triggered by a sol–gel process through an external stimulus able to switch their solubility, such as temperature, pH, or solvent change and chemical or enzymatic reactions. In this work, we introduced a new strategy to trigger and control the self-assembly of Fmoc-FFpY peptides by direct electrostatic interactions with a polycation without dephosphorylation of the peptides. The resulting hydrogels show enhanced mechanical properties in comparison to gels of Fmoc-FFpY induced by enzymatic dephosphorylation. Peptide self-assembly yields β-sheets, revealed by circular dichroism and infrared spectroscopy. Characteristic distances predicted by geometry optimization in the gas phase are in agreement with X-ray scattering data and transmission electron microscopy observations. It is proposed that core–shell cylinders are formed in which polycation chains decorate the micellar structures of Fmoc-FFpY peptides through electrostatic interactions between the charged amine groups of the polycations and the phosphate groups of the peptides. Because the gels form quickly and have superior mechanical properties, applications as injectable biomaterials are foreseen. This work opens a route toward a new class of self-assembled hydrogels, where Fmoc tripeptides can be self-assembled with specific polycations to obtain, for example, antimicrobial hydrogels.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.chemmater.9b04823.

    • Phase diagram; rheological measurements of Fmoc-FFY hydrogels; PAH/Fmoc-FFpY after 6 days and in contact with culture medium; confocal images of the Fmoc-FFY hydrogel and control experiments; HPLC spectra of PAH/Fmoc-FFpY, Fmoc-FFpY, and Fmoc-FFY; inverted tube tests under several conditions for stability tests; FTIR decomposition of the amide I band of Fmoc-FFY hydrogels and PAH/Fmoc-FFpY; TEM images of the PAH/Fmoc-FFpY and Fmoc-FFY hydrogels; and SAXS fits of the PAH/Fmoc-FFpY hydrogel using different geometrical models (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 35 publications.

    1. Alexis Bigo−Simon, Jennifer Rodon Fores, Miryam Criado-Gonzalez, Lucille Blandin, Jean-Yves Runser, Bernard Senger, Guillaume Fleith, Marc Schmutz, Rachel Schurhammer, Alain Chaumont, Pierre Schaaf, Jérôme Combet, Loïc Jierry. Mechanistic Insights into Hyaluronic Acid Induced Peptide Nanofiber Organization in Supramolecular Hydrogels. Biomacromolecules 2023, 24 (8) , 3794-3805. https://doi.org/10.1021/acs.biomac.3c00445
    2. Maria Godoy-Gallardo, Maria Merino-Gómez, Luisamaria C. Matiz, Miguel A. Mateos-Timoneda, F. Javier Gil, Roman A. Perez. Nucleoside-Based Supramolecular Hydrogels: From Synthesis and Structural Properties to Biomedical and Tissue Engineering Applications. ACS Biomaterials Science & Engineering 2023, 9 (1) , 40-61. https://doi.org/10.1021/acsbiomaterials.2c01051
    3. Miryam Criado-Gonzalez, Eva Espinosa-Cano, Luis Rojo, Fouzia Boulmedais, María Rosa Aguilar, Rebeca Hernández. Injectable Tripeptide/Polymer Nanoparticles Supramolecular Hydrogel: A Candidate for the Treatment of Inflammatory Pathologies. ACS Applied Materials & Interfaces 2022, 14 (8) , 10068-10080. https://doi.org/10.1021/acsami.1c22993
    4. Muskan Sonker, Sushant Bajpai, Mohd Ashhar Khan, Xiaojun Yu, Saurabh Kr Tiwary, Nehil Shreyash. Review of Recent Advances and Their Improvement in the Effectiveness of Hydrogel-Based Targeted Drug Delivery: A Hope for Treating Cancer. ACS Applied Bio Materials 2021, 4 (12) , 8080-8109. https://doi.org/10.1021/acsabm.1c00857
    5. Xiaoli Xie, Wenjing Ma, Meiran Xie, Ruyi Sun. Photoswitchable Ion-Conducting Supramolecular Hydrogel Showing Adverse Photoconductivity Triggered by Anion Exchange. ACS Applied Polymer Materials 2021, 3 (9) , 4563-4571. https://doi.org/10.1021/acsapm.1c00634
    6. Roman Staňo, Peter Košovan, Andrea Tagliabue, Christian Holm. Electrostatically Cross-Linked Reversible Gels—Effects of pH and Ionic Strength. Macromolecules 2021, 54 (10) , 4769-4781. https://doi.org/10.1021/acs.macromol.1c00470
    7. Da-feng Zheng Ling Hu Xue-qing Qiu . Recent Advances in Lignin-Based Hydrogels and Its Synthesis and Applications. 2021, 207-229. https://doi.org/10.1021/bk-2021-1377.ch009
    8. Yaqi Lyu, Yichen Yuan, Helena S. Azevedo. Self-assembling hydrogels based on polymer networks. 2024, 265-291. https://doi.org/10.1016/B978-0-12-823948-3.00010-5
    9. Yuhang Zhang, Zhuofan Wang, Qingqing Sun, Qian Li, Shaohui Li, Xiaomeng Li. Dynamic Hydrogels with Viscoelasticity and Tunable Stiffness for the Regulation of Cell Behavior and Fate. Materials 2023, 16 (14) , 5161. https://doi.org/10.3390/ma16145161
    10. Miryam Criado‐Gonzalez, Nuria Alegret, Alejandro M. Fracaroli, Daniele Mantione, Gregorio Guzmán‐González, Rafael Del Olmo, Kentaro Tashiro, Liliana C. Tomé, Matias L. Picchio, David Mecerreyes. Mixed Conductive, Injectable, and Fluorescent Supramolecular Eutectogel Composites. Angewandte Chemie International Edition 2023, 62 (26) https://doi.org/10.1002/anie.202301489
    11. Miryam Criado‐Gonzalez, Nuria Alegret, Alejandro M. Fracaroli, Daniele Mantione, Gregorio Guzmán‐González, Rafael Del Olmo, Kentaro Tashiro, Liliana C. Tomé, Matias L. Picchio, David Mecerreyes. Mixed Conductive, Injectable, and Fluorescent Supramolecular Eutectogel Composites. Angewandte Chemie 2023, 135 (26) https://doi.org/10.1002/ange.202301489
    12. Xinyu Li, Ping He, Ruoteng Ma, Cuihua Dong, Yong Lv, Lei Dai. Modulation of composite hydrogel consisting of TEMPO-oxidized cellulose nanofibers and cationic guar gum. International Journal of Biological Macromolecules 2023, 241 , 124483. https://doi.org/10.1016/j.ijbiomac.2023.124483
    13. Pooja Sharma, Sangita Roy. Designing ECM-inspired supramolecular scaffolds by utilizing the interactions between a minimalistic neuroactive peptide and heparin. Nanoscale 2023, 15 (16) , 7537-7558. https://doi.org/10.1039/D2NR06221F
    14. Yichen Yuan, Yejiao Shi, Jayati Banerjee, Amin Sadeghpour, Helena S. Azevedo. Structuring supramolecular hyaluronan hydrogels via peptide self-assembly for modulating the cell microenvironment. Materials Today Bio 2023, 19 , 100598. https://doi.org/10.1016/j.mtbio.2023.100598
    15. Maria Merino-Gómez, Maria Godoy-Gallardo, Mathias Wendner, Miguel A. Mateos-Timoneda, F. Javier Gil, Roman A. Perez. Optimization of guanosine-based hydrogels with boric acid derivatives for enhanced long-term stability and cell survival. Frontiers in Bioengineering and Biotechnology 2023, 11 https://doi.org/10.3389/fbioe.2023.1147943
    16. Vivek Prakash, Vibin Ramakrishnan. Bioinspired functional molecular constructs. 2023, 207-254. https://doi.org/10.1016/B978-0-323-99917-5.00003-2
    17. Guhuan Liu, Jiajia Tan, Jie Cen, Guoying Zhang, Jinming Hu, Shiyong Liu. Oscillating the local milieu of polymersome interiors via single input-regulated bilayer crosslinking and permeability tuning. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28227-6
    18. Ping He, Lei Dai, Jiasheng Wei, Xulong Zhu, Jianhui Li, Zhirong Chen, Yonghao Ni. Nanocellulose-based hydrogels as versatile drug delivery vehicles: A review. International Journal of Biological Macromolecules 2022, 222 , 830-843. https://doi.org/10.1016/j.ijbiomac.2022.09.214
    19. Hongyi Cai, Zhongtong Wang, Nyalaliska W. Utomo, Yuval Vidavsky, Meredith N. Silberstein. Highly stretchable ionically crosslinked acrylate elastomers inspired by polyelectrolyte complexes. Soft Matter 2022, 18 (39) , 7679-7688. https://doi.org/10.1039/D2SM00755J
    20. Roya Binaymotlagh, Laura Chronopoulou, Farid Hajareh Haghighi, Ilaria Fratoddi, Cleofe Palocci. Peptide-Based Hydrogels: New Materials for Biosensing and Biomedical Applications. Materials 2022, 15 (17) , 5871. https://doi.org/10.3390/ma15175871
    21. Kelu Zhao, Yawei Liu, Yubin Ren, Bo Li, Jingjing Li, Fan Wang, Chao Ma, Fangfu Ye, Jing Sun, Hongjie Zhang, Kai Liu. Molecular Engineered Crown‐Ether‐Protein with Strong Adhesion over a Wide Temperature Range from −196 to 200 °C. Angewandte Chemie International Edition 2022, 61 (33) https://doi.org/10.1002/anie.202207425
    22. Kelu Zhao, Yawei Liu, Yubin Ren, Bo Li, Jingjing Li, Fan Wang, Chao Ma, Fangfu Ye, Jing Sun, Hongjie Zhang, Kai Liu. Molecular Engineered Crown‐Ether‐Protein with Strong Adhesion over a Wide Temperature Range from −196 to 200 °C. Angewandte Chemie 2022, 134 (33) https://doi.org/10.1002/ange.202207425
    23. Ying Wang, Peng Chen, Qiaojie Luo, Xiaodong Li, Weipu Zhu. Supramolecular polymeric prodrug micelles for efficient anticancer drug delivery. Polymer Chemistry 2022, 13 (20) , 2964-2970. https://doi.org/10.1039/D2PY00332E
    24. Nannan Zhu, Bolin Yang, Shengnan Li, Hailong Yang, Yueyue Miao, Yang Cong, Rui Zhang, Jun Fu. Dynamic and structural studies on synergetic energy dissipation mechanisms of single-, double-, and triple-network hydrogels sequentially crosslinked by multiple non-covalent interactions. Polymer 2022, 250 , 124868. https://doi.org/10.1016/j.polymer.2022.124868
    25. Evelyn L. Bonifazi, Andrea S. Mac Cormack, Verónica M. Busch, M. Laura Japas, Lorenzo Di Bari, Pablo H. Di Chenna. Chiral self-assembly and water effect on a supramolecular organogel stable towards aqueous interfaces. Journal of Sol-Gel Science and Technology 2022, 102 (1) , 30-40. https://doi.org/10.1007/s10971-021-05550-w
    26. M. Ali Aboudzadeh. Supramolecular Ionic Networks: Design and Synthesis. 2022, 1-27. https://doi.org/10.1007/978-3-031-00657-9_1
    27. Souvik Misra, Soumyajit Mukherjee, Anamika Ghosh, Pijush Singh, Sanjoy Mondal, Debes Ray, Gourav Bhattacharya, Debabani Ganguly, Alok Ghosh, V. K. Aswal, Ajit K. Mahapatra, Biswarup Satpati, Jayanta Nanda. Single Amino‐Acid Based Self‐Assembled Biomaterials with Potent Antimicrobial Activity. Chemistry – A European Journal 2021, 27 (67) , 16744-16753. https://doi.org/10.1002/chem.202103071
    28. Santanu Panja, Annela Seddon, Dave J. Adams. Controlling hydrogel properties by tuning non-covalent interactions in a charge complementary multicomponent system. Chemical Science 2021, 12 (33) , 11197-11203. https://doi.org/10.1039/D1SC02854E
    29. Jaini Flora Arokianathan, Koduvayur A. Ramya, Abhijit P. Deshpande, Ambrose Leemarose, Ganesh Shanmugam. Supramolecular organogel based on di-Fmoc functionalized unnatural amino acid: An attempt to develop a correlation between molecular structure and ambidextrous gelation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 618 , 126430. https://doi.org/10.1016/j.colsurfa.2021.126430
    30. Renata Jastrzab, Martyna Nowak, Michał Zabiszak, Akira Odani, Małgorzata T. Kaczmarek. Significance and properties of the complex formation of phosphate and polyphosphate groups in particles present in living cells. Coordination Chemistry Reviews 2021, 435 , 213810. https://doi.org/10.1016/j.ccr.2021.213810
    31. Matthew J. Webber, E. Thomas Pashuck. (Macro)molecular self-assembly for hydrogel drug delivery. Advanced Drug Delivery Reviews 2021, 172 , 275-295. https://doi.org/10.1016/j.addr.2021.01.006
    32. Miryam Criado-Gonzalez, Deborah Wagner, Muhammad Haseeb Iqbal, Aymeric Ontani, Alain Carvalho, Marc Schmutz, Joseph B. Schlenoff, Pierre Schaaf, Loïc Jierry, Fouzia Boulmedais. Supramolecular tripeptide self-assembly initiated at the surface of coacervates by polyelectrolyte exchange. Journal of Colloid and Interface Science 2021, 588 , 580-588. https://doi.org/10.1016/j.jcis.2020.12.066
    33. Junjie Cui, Ji Eon Kwon, Dong Ryeol Whang, Soo Young Park. Deep-red fluorescent poly(acrylic acid) hydrogel: Proton transfer to the water soluble dibasic luminescent dye followed by ion-pair formation. Dyes and Pigments 2021, 188 , 109223. https://doi.org/10.1016/j.dyepig.2021.109223
    34. Apurba K. Das, Pramod K. Gavel. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. Soft Matter 2020, 16 (44) , 10065-10095. https://doi.org/10.1039/D0SM01136C
    35. Miryam Criado-Gonzalez, Muhammad Haseeb Iqbal, Alain Carvalho, Marc Schmutz, Loïc Jierry, Pierre Schaaf, Fouzia Boulmedais. Surface Triggered Self-Assembly of Fmoc-Tripeptide as an Antibacterial Coating. Frontiers in Bioengineering and Biotechnology 2020, 8 https://doi.org/10.3389/fbioe.2020.00938

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect