ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Free-Base and Protonated Nicotine in Electronic Cigarette Liquids and Aerosols

View Author Information
Chemistry Department, Faculty of Arts and Sciences, and Mechanical Engineering Department, Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
§ Center for the Study of Tobacco Products, Virginia Commonwealth University, 821 West Franklin Street, Richmond, Virginia 23284, United States
*Tel: +-961 1 350000/3992. E-mail: [email protected]
Cite this: Chem. Res. Toxicol. 2015, 28, 8, 1532–1537
Publication Date (Web):July 9, 2015
https://doi.org/10.1021/acs.chemrestox.5b00107
Copyright © 2015 American Chemical Society

    Article Views

    2966

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    As with other tobacco aerosols, nicotine delivery from e-cigarettes (ECIG) depends on the total nicotine and its partitioning between free-base (Nic) and protonated (NicH+) forms. Previous studies of ECIG nicotine emissions have generally reported “nicotine yield” without attention to whether the methods employed resulted in quantification of the total nicotine or only one of its forms, making reported results difficult to compare across studies or to evaluate against reported blood exposure. This study reports a convenient solvent extraction method for determining total nicotine and its partitioning in ECIG liquids and aerosols by gas chromatography. Commercial ECIG liquids and aerosols were analyzed, and it was found that most of the nicotine was in the Nic form, with aerosols exhibiting higher Nic fraction than the parent liquids. Apparent pH was found to correlate with nicotine partitioning and can provide a useful indirect measure when chromatography is unavailable. Finally, labeled ECIG liquid nicotine concentration in commercial products was often inconsistent with measured nicotine.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Mechanism of selective extraction of nicotine by toluene at different pHs. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemrestox.5b00107.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 81 publications.

    1. Amira Yassine, Cynthia Antossian, Rachel El-Hage, Najat A. Saliba. A Quick Method for the Determination of the Fraction of Freebase Nicotine in Electronic Cigarettes. Chemical Research in Toxicology 2023, 36 (7) , 1021-1027. https://doi.org/10.1021/acs.chemrestox.2c00371
    2. Chaya Weeraratna, Xiaochen Tang, Oleg Kostko, Vi H. Rapp, Lara A. Gundel, Hugo Destaillats, Musahid Ahmed. Fraction of Free-Base Nicotine in Simulated Vaping Aerosol Particles Determined by X-ray Spectroscopies. The Journal of Physical Chemistry Letters 2023, 14 (5) , 1279-1287. https://doi.org/10.1021/acs.jpclett.2c03748
    3. Masato Miyauchi, Shinkichi Ishikawa, Takeshi Kurachi, Kazutami Sakamoto, Hideki Sakai. Oral Absorption across Organotypic Culture Models of the Human Buccal Epithelium after E-cigarette Aerosol Exposure. ACS Omega 2022, 7 (49) , 45574-45581. https://doi.org/10.1021/acsomega.2c06304
    4. Etienne Bourgart, Lara Leclerc, Jérémie Pourchez, Mohamad Sleiman. Toward Better Characterization of a Free-Base Nicotine Fraction in e-Liquids and Aerosols. Chemical Research in Toxicology 2022, 35 (7) , 1234-1243. https://doi.org/10.1021/acs.chemrestox.2c00041
    5. Li Li, Hongfei Zhang, Jing Wen, Yi Shen, Dongliang Li, Cheng Luo, Jian Zheng, Juan Yang. Direct Determination of Free Nicotine Content in Tobacco. ACS Omega 2022, 7 (27) , 23061-23068. https://doi.org/10.1021/acsomega.2c00089
    6. Judith N. Currano, Madeleine M. Joullié. The Changing Face of Research: The Use of Chemical Information Skills to Identify Novel Research Areas. Journal of Chemical Education 2021, 98 (10) , 3110-3117. https://doi.org/10.1021/acs.jchemed.1c00677
    7. Cara Gallo, Suma S. Thomas, Allison J. Selinger, Fraser Hof, Cornelia Bohne. Mechanism of a Disassembly-Driven Sensing System Studied by Stopped-Flow Kinetics. The Journal of Organic Chemistry 2021, 86 (15) , 10782-10787. https://doi.org/10.1021/acs.joc.1c00959
    8. Yichen Li, Amanda E. Burns, Lillian N. Tran, Karizza A. Abellar, Morgan Poindexter, Xiaohan Li, Amy K. Madl, Kent E. Pinkerton, Tran B. Nguyen. Impact of e-Liquid Composition, Coil Temperature, and Puff Topography on the Aerosol Chemistry of Electronic Cigarettes. Chemical Research in Toxicology 2021, 34 (6) , 1640-1654. https://doi.org/10.1021/acs.chemrestox.1c00070
    9. Rachel El-Hage, Ahmad El-Hellani, Rola Salman, Soha Talih, Alan Shihadeh, Najat Aoun Saliba. Vaped Humectants in E-Cigarettes Are a Source of Phenols. Chemical Research in Toxicology 2020, 33 (9) , 2374-2380. https://doi.org/10.1021/acs.chemrestox.0c00132
    10. James F. Pankow, Anna K. Duell, David H. Peyton. Free-Base Nicotine Fraction αfb in Non-Aqueous versus Aqueous Solutions: Electronic Cigarette Fluids Without versus With Dilution with Water. Chemical Research in Toxicology 2020, 33 (7) , 1729-1735. https://doi.org/10.1021/acs.chemrestox.0c00008
    11. Patrick A. Robertson, Luigi Villani, Evan G. Robertson. Conformer Specific Ultraviolet and Infrared Detection of Nicotine in the Vapor Phase. The Journal of Physical Chemistry A 2019, 123 (46) , 10152-10157. https://doi.org/10.1021/acs.jpca.9b09113
    12. Jiries Meehan-Atrash, Anna K. Duell, Kevin J. McWhirter, Wentai Luo, David H. Peyton, Robert M. Strongin. Free-Base Nicotine Is Nearly Absent in Aerosol from IQOS Heat-Not-Burn Devices, As Determined by 1H NMR Spectroscopy. Chemical Research in Toxicology 2019, 32 (6) , 974-976. https://doi.org/10.1021/acs.chemrestox.9b00076
    13. Anna K. Duell, James F. Pankow, David H. Peyton. Free-Base Nicotine Determination in Electronic Cigarette Liquids by 1H NMR Spectroscopy. Chemical Research in Toxicology 2018, 31 (6) , 431-434. https://doi.org/10.1021/acs.chemrestox.8b00097
    14. Ahmad EL-Hellani, Rachel El-Hage, Rola Salman, Soha Talih, Alan Shihadeh, and Najat A. Saliba . Carboxylate Counteranions in Electronic Cigarette Liquids: Influence on Nicotine Emissions. Chemical Research in Toxicology 2017, 30 (8) , 1577-1581. https://doi.org/10.1021/acs.chemrestox.7b00090
    15. Yantao Zuo, Kiran Kumar Solingapuram Sai, Aeva Jazic, Avinash H. Bansode, Jed E. Rose, Alexey G. Mukhin. Comparison of brain nicotine accumulation from traditional combustible cigarettes and electronic cigarettes with different formulations. Neuropsychopharmacology 2024, 49 (4) , 740-746. https://doi.org/10.1038/s41386-024-01800-x
    16. Mert Metin, Tomonori Kawano. Utilizing molecular geometry, pKa, NMR, and IR data to assess the accuracy of quantum mechanics-derived thermodynamic parameters in evaluating antioxidant activity. Results in Chemistry 2024, 7 , 101263. https://doi.org/10.1016/j.rechem.2023.101263
    17. Jed E. Rose, Arkadiusz K. Kuczaj, Alexey G. Mukhin, Julia Hoeng, Kiran Kumar Solingapuram Sai. Deposition of 11 C-radiolabeled nicotine-containing aerosol in an airway cast model using positron emission tomography (PET). Aerosol Science and Technology 2023, 57 (11) , 1057-1068. https://doi.org/10.1080/02786826.2023.2242901
    18. Paul I. C. Richardson, Adam Burke, Nigel Gotts, Royston Goodacre. Quantifying PG : VG ratio and nicotine content in commercially available e-liquids using handheld Raman spectroscopy. The Analyst 2023, 148 (17) , 4002-4011. https://doi.org/10.1039/D3AN00888F
    19. Maximilian Heide, Carsten Engelhard. Chemical analysis of electronic cigarette liquids (e-liquids) and direct nicotine quantitation using surface-assisted flowing atmospheric-pressure afterglow desorption/ionization mass spectrometry (SA-FAPA-MS). RSC Advances 2023, 13 (34) , 24150-24161. https://doi.org/10.1039/D3RA03931E
    20. Kiran K Solingapuram Sai, Jed E Rose, Alexey G Mukhin. Effect of Electronic Cigarette Liquid pH on Retention of 11C-Nicotine in a Respiratory Tract Model. Nicotine and Tobacco Research 2023, 25 (7) , 1406-1410. https://doi.org/10.1093/ntr/ntad039
    21. Sana Hosseini, Vinit Gholap, Matthew S. Halquist, Laleh Golshahi. Effects of device settings and e-liquid characteristics on mouth-throat losses of nicotine delivered with electronic nicotine delivery systems (ENDS). Journal of Aerosol Science 2023, 171 , 106178. https://doi.org/10.1016/j.jaerosci.2023.106178
    22. Paweł Kubica. Determination of Glycerol, Propylene Glycol, and Nicotine as the Main Components in Refill Liquids for Electronic Cigarettes. Molecules 2023, 28 (11) , 4425. https://doi.org/10.3390/molecules28114425
    23. Ivana Kosarac, Guru P. Katuri, Cariton Kubwabo, Shabana Siddique, Trevor K. Mischki. Quantitation and Stability of Nicotine in Canadian Vaping Liquids. Toxics 2023, 11 (4) , 378. https://doi.org/10.3390/toxics11040378
    24. Huanhuan Jiang, Xiang Gao, Yong Gao, Yatao Liu. Current Knowledge and Challenges of Particle Size Measurements of Mainstream E-Cigarette Aerosols and Their Implication on Respiratory Dosimetry. Journal of Respiration 2023, 3 (1) , 7-28. https://doi.org/10.3390/jor3010003
    25. Shulei Han, Huan Chen, Yue Su, Lili Cui, Pengxia Feng, Ya'ning Fu, Yushan Tian, Tong Liu, Hongwei Hou, Qingyuan Hu. Simultaneous quantification of nicotine salts in e-liquids by LC-MS/MS and GC-MS. Analytical Methods 2022, 14 (42) , 4185-4192. https://doi.org/10.1039/D2AY00799A
    26. Amira Yassine, Rachel El Hage, Ahmad El-Hellani, Rola Salman, Soha Talih, Thomas Eissenberg, Alan Shihadeh, Najat Saliba. Levels of menthol, nicotine and cooling agents measured in JUUL products purchased across a three-year period. Tobacco Control 2022, 31 (Suppl 3) , s234-s237. https://doi.org/10.1136/tc-2022-057506
    27. Soha Talih, Rola Salman, Eric Soule, Rachel El-Hage, Ebrahim Karam, Nareg Karaoghlanian, Ahmad El-Hellani, Najat Saliba, Alan Shihadeh. Electrical features, liquid composition and toxicant emissions from ‘pod-mod’-like disposable electronic cigarettes. Tobacco Control 2022, 31 (5) , 667-670. https://doi.org/10.1136/tobaccocontrol-2020-056362
    28. Ebrahim Karam, Soha Talih, Rola Salman, Rachel El-Hage, Nareg Karaoghlanian, Ahmad El-Hellani, Najat Saliba, Alan Shihadeh. JUUL ‘new technology’ pods exhibit greater electrical power and nicotine output than previous devices. Tobacco Control 2022, 31 (5) , 630-634. https://doi.org/10.1136/tobaccocontrol-2020-056427
    29. Micah O. Omare, Joshua K. Kibet, Jackson K. Cherutoi, Fredrick O. Kengara. A review of tobacco abuse and its epidemiological consequences. Journal of Public Health 2022, 30 (6) , 1485-1500. https://doi.org/10.1007/s10389-020-01443-4
    30. Melanie J. Young, Ming Tang, Derek J. Richard, Donald S.A. McLeod, Michael C. d’Emden, Kerry Richard. Nicotine binds to the transthyretin-thyroxine complex and reduces its uptake by placental trophoblasts. Molecular and Cellular Endocrinology 2022, 549 , 111642. https://doi.org/10.1016/j.mce.2022.111642
    31. Aleksandr B. Stefaniak, Anand C. Ranpara, Mohammed Abbas Virji, Ryan F. LeBouf. Influence of E-Liquid Humectants, Nicotine, and Flavorings on Aerosol Particle Size Distribution and Implications for Modeling Respiratory Deposition. Frontiers in Public Health 2022, 10 https://doi.org/10.3389/fpubh.2022.782068
    32. Anders Wall, Sara Roslin, Beatrice Borg, Simon McDermott, Tanvir Walele, Thomas Nahde, Grant O’Connell, Joseph Thompson, Mark Lubberink, Gunnar Antoni. E-Cigarette Aerosol Deposition and Disposition of [11C]Nicotine Using Positron Emission Tomography: A Comparison of Nicotine Uptake in Lungs and Brain Using Two Different Nicotine Formulations. Pharmaceuticals 2022, 15 (3) , 367. https://doi.org/10.3390/ph15030367
    33. Lehua Lu, Menghui Xiang, Haoran Lu, Zhixin Tian, Yihan Gao. Progress in quantification of nicotine content and form distribution in electronic cigarette liquids and aerosols. Analytical Methods 2022, 14 (4) , 359-377. https://doi.org/10.1039/D1AY01679B
    34. Yvonne Staal, Anne Havermans, Lotte van Nierop, Wouter Visser, Susan Wijnhoven, Wieneke Bil, Reinskje Talhout. Conceptual model for the evaluation of attractiveness, addictiveness and toxicity of tobacco and related products: The example of JUUL e-cigarettes. Regulatory Toxicology and Pharmacology 2021, 127 , 105077. https://doi.org/10.1016/j.yrtph.2021.105077
    35. Anand Ranpara, Aleksandr B. Stefaniak, Elizabeth Fernandez, Ryan F. LeBouf. Effect of Puffing Behavior on Particle Size Distributions and Respiratory Depositions From Pod-Style Electronic Cigarette, or Vaping, Products. Frontiers in Public Health 2021, 9 https://doi.org/10.3389/fpubh.2021.750402
    36. Emily Bonner, Yvonne Chang, Emerson Christie, Victoria Colvin, Brittany Cunningham, Daniel Elson, Christine Ghetu, Juliana Huizenga, Sara J. Hutton, Siva K. Kolluri, Stephanie Maggio, Ian Moran, Bethany Parker, Yvonne Rericha, Brianna N. Rivera, Samantha Samon, Trever Schwichtenberg, Prarthana Shankar, Michael T. Simonich, Lindsay B. Wilson, Robyn L. Tanguay. The chemistry and toxicology of vaping. Pharmacology & Therapeutics 2021, 225 , 107837. https://doi.org/10.1016/j.pharmthera.2021.107837
    37. Edward C. Hensel, Nathan C. Eddingsaas, Qutaiba M. Saleh, Shehan Jayasekera, S. Emma Sarles, Mahagani Thomas, Bryan T. Myers, Gary DiFrancesco, Risa J. Robinson. Nominal Operating Envelope of Pod and Pen Style Electronic Cigarettes. Frontiers in Public Health 2021, 9 https://doi.org/10.3389/fpubh.2021.705099
    38. Neal L. Benowitz, Gideon St.Helen, Evangelia Liakoni. Clinical Pharmacology of Electronic Nicotine Delivery Systems (ENDS): Implications for Benefits and Risks in the Promotion of the Combusted Tobacco Endgame. The Journal of Clinical Pharmacology 2021, 61 (S2) https://doi.org/10.1002/jcph.1915
    39. Aleksandr B. Stefaniak, Ryan F. LeBouf, Anand C. Ranpara, Stephen S. Leonard. Toxicology of flavoring- and cannabis-containing e-liquids used in electronic delivery systems. Pharmacology & Therapeutics 2021, 224 , 107838. https://doi.org/10.1016/j.pharmthera.2021.107838
    40. Amelia Taylor, Keeley Dunn, Sophie Turfus. A review of nicotine‐containing electronic cigarettes—Trends in use, effects, contents, labelling accuracy and detection methods. Drug Testing and Analysis 2021, 13 (2) , 242-260. https://doi.org/10.1002/dta.2998
    41. Nevriye A. Yesil. Welche legalen Drogen machen süchtig?. 2021, 29-69. https://doi.org/10.1007/978-3-662-62490-6_3
    42. Soha Talih, Rola Salman, Rachel El-Hage, Ebrahim Karam, Sally Salam, Nareg Karaoghlanian, Ahmad El-Hellani, Najat Saliba, Alan Shihadeh. A comparison of the electrical characteristics, liquid composition, and toxicant emissions of JUUL USA and JUUL UK e-cigarettes. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-64414-5
    43. Grégory David, Evelyne A. Parmentier, Irene Taurino, Ruth Signorell. Tracing the composition of single e-cigarette aerosol droplets in situ by laser-trapping and Raman scattering. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-64886-5
    44. Soha Talih, Rola Salman, Rachel El-Hage, Nareg Karaoghlanian, Ahmad El-Hellani, Najat Saliba, Alan Shihadeh. Effect of free-base and protonated nicotine on nicotine yield from electronic cigarettes with varying power and liquid vehicle. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-73385-6
    45. Vinit V Gholap, Leon Kosmider, Laleh Golshahi, Matthew S Halquist. Nicotine forms: why and how do they matter in nicotine delivery from electronic cigarettes?. Expert Opinion on Drug Delivery 2020, 17 (12) , 1727-1736. https://doi.org/10.1080/17425247.2020.1814736
    46. Liqiao Li, Eon S. Lee, Charlene Nguyen, Yifang Zhu. Effects of propylene glycol, vegetable glycerin, and nicotine on emissions and dynamics of electronic cigarette aerosols. Aerosol Science and Technology 2020, 54 (11) , 1270-1281. https://doi.org/10.1080/02786826.2020.1771270
    47. Arit M Harvanko, Christopher M Havel, Peyton Jacob, Neal L Benowitz. Characterization of Nicotine Salts in 23 Electronic Cigarette Refill Liquids. Nicotine & Tobacco Research 2020, 22 (7) , 1239-1243. https://doi.org/10.1093/ntr/ntz232
    48. Jessica L. Barrington-Trimis, Zhi Yang, Sara Schiff, Jennifer Unger, Tess Boley Cruz, Robert Urman, Junhan Cho, Jonathan M. Samet, Adam M. Leventhal, Kiros Berhane, Rob McConnell. E-cigarette Product Characteristics and Subsequent Frequency of Cigarette Smoking. Pediatrics 2020, 145 (5) https://doi.org/10.1542/peds.2019-1652
    49. Vinit V. Gholap, Rodrigo S. Heyder, Leon Kosmider, Matthew S. Halquist. An Analytical Perspective on Determination of Free Base Nicotine in E-Liquids. Journal of Analytical Methods in Chemistry 2020, 2020 , 1-12. https://doi.org/10.1155/2020/6178570
    50. Natalie Voos, Danielle Smith, Lisa Kaiser, Martin C. Mahoney, Clara M. Bradizza, Lynn T. Kozlowski, Neal L. Benowitz, Richard J. O’Connor, Maciej L. Goniewicz. Effect of e-cigarette flavors on nicotine delivery and puffing topography: results from a randomized clinical trial of daily smokers. Psychopharmacology 2020, 237 (2) , 491-502. https://doi.org/10.1007/s00213-019-05386-x
    51. Yan-Jun Huang, Qi-Xin Deng, Hong-Qiao Lan, Zheng-Zhong Fang, Hui Chen, Yan Lin, Han-Chun Xu, Tony D. James, Wei Xie. Colorimetric assay for the rapid determination of free-base nicotine in e-liquid. Analytical Methods 2020, 12 (2) , 193-199. https://doi.org/10.1039/C9AY02280E
    52. Kimberly G Wagoner, Micah Berman, Shyanika W Rose, Eunyoung Song, Jennifer Cornacchione Ross, Elizabeth G Klein, Dannielle E Kelley, Jessica L King, Mark Wolfson, Erin L Sutfin. Health claims made in vape shops: an observational study and content analysis. Tobacco Control 2019, 28 (e2) , e119-e125. https://doi.org/10.1136/tobaccocontrol-2018-054537
    53. Natalie Voos, Maciej L. Goniewicz, Thomas Eissenberg. What is the nicotine delivery profile of electronic cigarettes?. Expert Opinion on Drug Delivery 2019, 16 (11) , 1193-1203. https://doi.org/10.1080/17425247.2019.1665647
    54. Soha Talih, Rola Salman, Rachel El-Hage, Ebrahim Karam, Nareg Karaoghlanian, Ahmad El-Hellani, Najat Saliba, Alan Shihadeh. Characteristics and toxicant emissions of JUUL electronic cigarettes. Tobacco Control 2019, 28 (6) , 678-680. https://doi.org/10.1136/tobaccocontrol-2018-054616
    55. Samuel Chung, Nathalie Baumlin, John S. Dennis, Robert Moore, Sebastian F. Salathe, Phillip L. Whitney, Juan Sabater, William M. Abraham, Michael D. Kim, Matthias Salathe. Electronic Cigarette Vapor with Nicotine Causes Airway Mucociliary Dysfunction Preferentially via TRPA1 Receptors. American Journal of Respiratory and Critical Care Medicine 2019, 200 (9) , 1134-1145. https://doi.org/10.1164/rccm.201811-2087OC
    56. Alison Breland, Andrea McCubbin, Kristin Ashford. Electronic nicotine delivery systems and pregnancy: Recent research on perceptions, cessation, and toxicant delivery. Birth Defects Research 2019, 111 (17) , 1284-1293. https://doi.org/10.1002/bdr2.1561
    57. Alexa R. Romberg, Erin J. Miller Lo, Alison F. Cuccia, Jeffrey G. Willett, Haijun Xiao, Elizabeth C. Hair, Donna M. Vallone, Kristy Marynak, Brian A. King. Patterns of nicotine concentrations in electronic cigarettes sold in the United States, 2013-2018. Drug and Alcohol Dependence 2019, 203 , 1-7. https://doi.org/10.1016/j.drugalcdep.2019.05.029
    58. Rola Salman, Soha Talih, Rachel El-Hage, Christina Haddad, Nareg Karaoghlanian, Ahmad El-Hellani, Najat A Saliba, Alan Shihadeh. Free-Base and Total Nicotine, Reactive Oxygen Species, and Carbonyl Emissions From IQOS, a Heated Tobacco Product. Nicotine & Tobacco Research 2019, 21 (9) , 1285-1288. https://doi.org/10.1093/ntr/nty235
    59. Samuel J. P. Marlton, Benjamin I. McKinnon, Boris Ucur, Alan T. Maccarone, William A. Donald, Stephen J. Blanksby, Adam J. Trevitt. Selecting and identifying gas-phase protonation isomers of nicotineH + using combined laser, ion mobility and mass spectrometry techniques. Faraday Discussions 2019, 217 , 453-475. https://doi.org/10.1039/C8FD00212F
    60. Alex Choi, Megan Le, Tissa Rahim, Caren Rose, Tom Kosatsky. Electronic cigarette exposures reported to the British Columbia Drug and Poison Information Centre: an observational case series. CMAJ Open 2019, 7 (3) , E462-E471. https://doi.org/10.9778/cmajo.20180203
    61. Robert Bals, Jeanette Boyd, Susanna Esposito, Robert Foronjy, Pieter S. Hiemstra, Carlos A. Jiménez-Ruiz, Paraskevi Katsaounou, Anne Lindberg, Carlos Metz, Wolfgang Schober, Avrum Spira, Francesco Blasi. Electronic cigarettes: a task force report from the European Respiratory Society. European Respiratory Journal 2019, 53 (2) , 1801151. https://doi.org/10.1183/13993003.01151-2018
    62. Philippe Bertrand, Vincent Bonnarme, Antoine Piccirilli, Philippe Ayrault, Laurent Lemée, Gilles Frapper, Jérémie Pourchez. Physical and chemical assessment of 1,3 Propanediol as a potential substitute of propylene glycol in refill liquid for electronic cigarettes. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-29066-6
    63. Risa J. Robinson, Nathan C. Eddingsaas, A. Gary DiFrancesco, Shehan Jayasekera, Edward C. Hensel, . A framework to investigate the impact of topography and product characteristics on electronic cigarette emissions. PLOS ONE 2018, 13 (11) , e0206341. https://doi.org/10.1371/journal.pone.0206341
    64. Natalie Hemsing, Lorraine Greaves. New Challenges: Developing Gendered and Equitable Responses to Involuntary Exposures to Electronic Nicotine Delivery Systems (ENDS) and Cannabis Vaping. International Journal of Environmental Research and Public Health 2018, 15 (10) , 2097. https://doi.org/10.3390/ijerph15102097
    65. Ryan F. LeBouf, Dru A. Burns, Anand Ranpara, Kathleen Attfield, Leonard Zwack, Aleksandr B. Stefaniak. Headspace analysis for screening of volatile organic compound profiles of electronic juice bulk material. Analytical and Bioanalytical Chemistry 2018, 410 (23) , 5951-5960. https://doi.org/10.1007/s00216-018-1215-3
    66. E. C. Hensel, S. Jayasekera, R. J. Robinson. Accounting for effects of system dynamics to improve accuracy of emissions reported in e-cig vaping machines. Inhalation Toxicology 2018, 30 (9-10) , 343-353. https://doi.org/10.1080/08958378.2018.1526232
    67. Gideon St.Helen, Marian Shahid, Sherman Chu, Neal L. Benowitz. Impact of e-liquid flavors on e-cigarette vaping behavior. Drug and Alcohol Dependence 2018, 189 , 42-48. https://doi.org/10.1016/j.drugalcdep.2018.04.032
    68. Tobias Rüther, Dieter Hagedorn, Konstantin Schiela, Thomas Schettgen, Helga Osiander-Fuchs, Wolfgang Schober. Nicotine delivery efficiency of first- and second-generation e-cigarettes and its impact on relief of craving during the acute phase of use. International Journal of Hygiene and Environmental Health 2018, 221 (2) , 191-198. https://doi.org/10.1016/j.ijheh.2017.10.012
    69. William E Stephens. Comparing the cancer potencies of emissions from vapourised nicotine products including e-cigarettes with those of tobacco smoke. Tobacco Control 2018, 27 (1) , 10-17. https://doi.org/10.1136/tobaccocontrol-2017-053808
    70. Jean-François Etter, Aurélie Bugey. E-cigarette liquids: Constancy of content across batches and accuracy of labeling. Addictive Behaviors 2017, 73 , 137-143. https://doi.org/10.1016/j.addbeh.2017.05.012
    71. Nicolas Beauval, Sébastien Antherieu, Mélissa Soyez, Nicolas Gengler, Nathalie Grova, Michael Howsam, Emilie M Hardy, Marc Fischer, Brice M.R. Appenzeller, Jean-François Goossens, Delphine Allorge, Guillaume Garçon, Jean-Marc Lo-Guidice, Anne Garat. Chemical Evaluation of Electronic Cigarettes: Multicomponent Analysis of Liquid Refills and their Corresponding Aerosols. Journal of Analytical Toxicology 2017, 41 (8) , 670-678. https://doi.org/10.1093/jat/bkx054
    72. Michal Ryszka, Elahe Alizadeh, Zhou Li, Sylwia Ptasińska. Low-energy electron-induced dissociation in gas-phase nicotine, pyridine, and methyl-pyrrolidine. The Journal of Chemical Physics 2017, 147 (9) https://doi.org/10.1063/1.4994679
    73. Aline Sabrina Rau, Viktorija Reinikovaite, Eric P. Schmidt, Laima Taraseviciene-Stewart, Frederic White-Brown Deleyiannis. Electronic Cigarettes Are as Toxic to Skin Flap Survival as Tobacco Cigarettes. Annals of Plastic Surgery 2017, 79 (1) , 86-91. https://doi.org/10.1097/SAP.0000000000000998
    74. Alison Breland, Eric Soule, Alexa Lopez, Carolina Ramôa, Ahmad El‐Hellani, Thomas Eissenberg. Electronic cigarettes: what are they and what do they do?. Annals of the New York Academy of Sciences 2017, 1394 (1) , 5-30. https://doi.org/10.1111/nyas.12977
    75. Allison M. Glasser, Lauren Collins, Jennifer L. Pearson, Haneen Abudayyeh, Raymond S. Niaura, David B. Abrams, Andrea C. Villanti. Overview of Electronic Nicotine Delivery Systems: A Systematic Review. American Journal of Preventive Medicine 2017, 52 (2) , e33-e66. https://doi.org/10.1016/j.amepre.2016.10.036
    76. Soha Talih, Zainab Balhas, Rola Salman, Rachel El-Hage, Nareg Karaoghlanian, Ahmad El-Hellani, Mohamad Baassiri, Ezzat Jaroudi, Thomas Eissenberg, Najat Saliba, Alan Shihadeh. Transport phenomena governing nicotine emissions from electronic cigarettes: Model formulation and experimental investigation. Aerosol Science and Technology 2017, 51 (1) , 1-11. https://doi.org/10.1080/02786826.2016.1257853
    77. Mumiye A. Ogunwale, Yizheng Chen, Whitney S. Theis, Michael H. Nantz, Daniel J. Conklin, Xiao-An Fu. A novel method of nicotine quantification in electronic cigarette liquids and aerosols. Analytical Methods 2017, 9 (29) , 4261-4266. https://doi.org/10.1039/C7AY00501F
    78. Ahmad EL-Hellani, Rola Salman, Rachel El-Hage, Soha Talih, Nathalie Malek, Rima Baalbaki, Nareg Karaoghlanian, Rima Nakkash, Alan Shihadeh, Najat A. Saliba. Nicotine and Carbonyl Emissions From Popular Electronic Cigarette Products: Correlation to Liquid Composition and Design Characteristics. Nicotine & Tobacco Research 2016, 17 , ntw280. https://doi.org/10.1093/ntr/ntw280
    79. Christopher M. Havel, Neal L. Benowitz, Peyton Jacob, Gideon St.Helen. An Electronic Cigarette Vaping Machine for the Characterization of Aerosol Delivery and Composition. Nicotine & Tobacco Research 2016, 64 , ntw147. https://doi.org/10.1093/ntr/ntw147
    80. Jean-François Etter. A longitudinal study of cotinine in long-term daily users of e-cigarettes. Drug and Alcohol Dependence 2016, 160 , 218-221. https://doi.org/10.1016/j.drugalcdep.2016.01.003
    81. . IN THIS ISSUE/RESEARCH WATCH/NEWS IN BRIEF/NEWS FROM THE IASLC TOBACCO CONTROL COMMITTEE. Journal of Thoracic Oncology 2015, 1659-1665. https://doi.org/10.1016/S1556-0864(15)35084-X

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect