ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Microkinetic Modeling: A Tool for Rational Catalyst Design

Cite this: Chem. Rev. 2021, 121, 2, 1049–1076
Publication Date (Web):November 18, 2020
https://doi.org/10.1021/acs.chemrev.0c00394
Copyright © 2020 American Chemical Society
Article Views
7393
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (5 MB)

Abstract

Abstract Image

The design of heterogeneous catalysts relies on understanding the fundamental surface kinetics that controls catalyst performance, and microkinetic modeling is a tool that can help the researcher in streamlining the process of catalyst design. Microkinetic modeling is used to identify critical reaction intermediates and rate-determining elementary reactions, thereby providing vital information for designing an improved catalyst. In this review, we summarize general procedures for developing microkinetic models using reaction kinetics parameters obtained from experimental data, theoretical correlations, and quantum chemical calculations. We examine the methods required to ensure the thermodynamic consistency of the microkinetic model. We describe procedures required for parameter adjustments to account for the heterogeneity of the catalyst and the inherent errors in parameter estimation. We discuss the analysis of microkinetic models to determine the rate-determining reactions using the degree of rate control and reversibility of each elementary reaction. We introduce incorporation of Brønsted–Evans–Polanyi relations and scaling relations in microkinetic models and the effects of these relations on catalytic performance and formation of volcano curves are discussed. We review the analysis of reaction schemes in terms of the maximum rate of elementary reactions, and we outline a procedure to identify kinetically significant transition states and adsorbed intermediates. We explore the application of generalized rate expressions for the prediction of optimal binding energies of important surface intermediates and to estimate the extent of potential rate improvement. We also explore the application of microkinetic modeling in homogeneous catalysis, electro-catalysis, and transient reaction kinetics. We conclude by highlighting the challenges and opportunities in the application of microkinetic modeling for catalyst design.

Cited By


This article is cited by 57 publications.

  1. Enrique A. Paredes-Salazar, Alfredo Calderón-Cárdenas, Hamilton Varela. Sensitivity Analysis in the Microkinetic Description of Electrocatalytic Reactions. The Journal of Physical Chemistry A 2022, 126 (17) , 2746-2749. https://doi.org/10.1021/acs.jpca.2c00624
  2. Wenbo Xie, Jiayan Xu, Jianfu Chen, Haifeng Wang, P. Hu. Achieving Theory–Experiment Parity for Activity and Selectivity in Heterogeneous Catalysis Using Microkinetic Modeling. Accounts of Chemical Research 2022, 55 (9) , 1237-1248. https://doi.org/10.1021/acs.accounts.2c00058
  3. Yao Yang, Cheyenne R. Peltier, Rui Zeng, Roberto Schimmenti, Qihao Li, Xin Huang, Zhifei Yan, Georgia Potsi, Ryan Selhorst, Xinyao Lu, Weixuan Xu, Mariel Tader, Alexander V. Soudackov, Hanguang Zhang, Mihail Krumov, Ellen Murray, Pengtao Xu, Jeremy Hitt, Linxi Xu, Hsin-Yu Ko, Brian G. Ernst, Colin Bundschu, Aileen Luo, Danielle Markovich, Meixue Hu, Cheng He, Hongsen Wang, Jiye Fang, Robert A. DiStasio, , Lena F. Kourkoutis, Andrej Singer, Kevin J. T. Noonan, Li Xiao, Lin Zhuang, Bryan S. Pivovar, Piotr Zelenay, Enrique Herrero, Juan M. Feliu, Jin Suntivich, Emmanuel P. Giannelis, Sharon Hammes-Schiffer, Tomás Arias, Manos Mavrikakis, Thomas E. Mallouk, Joel D. Brock, David A. Muller, Francis J. DiSalvo, Geoffrey W. Coates, Héctor D. Abruña. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews 2022, 122 (6) , 6117-6321. https://doi.org/10.1021/acs.chemrev.1c00331
  4. Grant Marsden, Pavlo Kostetskyy, Ryoh-Suke Sekiya, Alexander Hoffman, Songhyun Lee, Rajamani Gounder, David Hibbitts, Linda J. Broadbelt. Quantifying Effects of Active Site Proximity on Rates of Methanol Dehydration to Dimethyl Ether over Chabazite Zeolites through Microkinetic Modeling. ACS Materials Au 2022, 2 (2) , 163-175. https://doi.org/10.1021/acsmaterialsau.1c00057
  5. Robert E. Warburton, Alexander V. Soudackov, Sharon Hammes-Schiffer. Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer. Chemical Reviews 2022, Article ASAP.
  6. Florian Göltl. Three Grand Challenges for the Computational Design of Heterogeneous Catalysts. The Journal of Physical Chemistry C 2022, 126 (7) , 3305-3313. https://doi.org/10.1021/acs.jpcc.1c10291
  7. Verena Streibel, Hassan A. Aljama, An-Chih Yang, Tej S. Choksi, Roel S. Sánchez-Carrera, Ansgar Schäfer, Yuejin Li, Matteo Cargnello, Frank Abild-Pedersen. Microkinetic Modeling of Propene Combustion on a Stepped, Metallic Palladium Surface and the Importance of Oxygen Coverage. ACS Catalysis 2022, 12 (3) , 1742-1757. https://doi.org/10.1021/acscatal.1c03699
  8. Lang Xu, Eric Stangland, James A. Dumesic, Manos Mavrikakis. Mechanistic Study of 1,2-Dichloroethane Hydrodechlorination on Cu-Rich Pt–Cu Alloys: Combining Reaction Kinetics Experiments with DFT Calculations and Microkinetic Modeling. ACS Sustainable Chemistry & Engineering 2022, 10 (4) , 1509-1523. https://doi.org/10.1021/acssuschemeng.1c06899
  9. Xin Wang, Yuwei Zhang, Jing Wu, Zheng Zhang, Qingliang Liao, Zhuo Kang, Yue Zhang. Single-Atom Engineering to Ignite 2D Transition Metal Dichalcogenide Based Catalysis: Fundamentals, Progress, and Beyond. Chemical Reviews 2022, 122 (1) , 1273-1348. https://doi.org/10.1021/acs.chemrev.1c00505
  10. Zhenshan Li, Jinzhi Cai, Lei Liu. A First-Principles Microkinetic Rate Equation Theory for Heterogeneous Reactions: Application to Reduction of Fe2O3 in Chemical Looping. Industrial & Engineering Chemistry Research 2021, 60 (43) , 15514-15524. https://doi.org/10.1021/acs.iecr.1c03214
  11. Wan-Lu Li, Christianna N. Lininger, Kaixuan Chen, Valerie Vaissier Welborn, Elliot Rossomme, Alexis T. Bell, Martin Head-Gordon, Teresa Head-Gordon. Critical Role of Thermal Fluctuations for CO Binding on Electrocatalytic Metal Surfaces. JACS Au 2021, 1 (10) , 1708-1718. https://doi.org/10.1021/jacsau.1c00300
  12. Katrín Blöndal, Khachik Sargsyan, David H. Bross, Branko Ruscic, C. Franklin Goldsmith. Adsorbate Partition Functions via Phase Space Integration: Quantifying the Effect of Translational Anharmonicity on Thermodynamic Properties. The Journal of Physical Chemistry C 2021, 125 (37) , 20249-20260. https://doi.org/10.1021/acs.jpcc.1c04009
  13. Huijie Tian, Srinivas Rangarajan. Machine-Learned Corrections to Mean-Field Microkinetic Models at the Fast Diffusion Limit. The Journal of Physical Chemistry C 2021, 125 (37) , 20275-20285. https://doi.org/10.1021/acs.jpcc.1c04495
  14. Sara L. Younas, Jan Streuff. Kinetic Analysis Uncovers Hidden Autocatalysis and Inhibition Pathways in Titanium(III)-Catalyzed Ketone-Nitrile Couplings. ACS Catalysis 2021, 11 (18) , 11451-11458. https://doi.org/10.1021/acscatal.1c02870
  15. Xiao-Yan Li, Beien Zhu, Yi Gao. Exploration of Dynamic Structure–Activity Relationship of a Platinum Nanoparticle in the CO Oxidation Reaction. The Journal of Physical Chemistry C 2021, 125 (36) , 19756-19762. https://doi.org/10.1021/acs.jpcc.1c05339
  16. Gerhard R. Wittreich, Geun Ho Gu, Daniel J. Robinson, Markos A. Katsoulakis, Dionisios G. Vlachos. Uncertainty Quantification and Error Propagation in the Enthalpy and Entropy of Surface Reactions Arising from a Single DFT Functional. The Journal of Physical Chemistry C 2021, 125 (33) , 18187-18196. https://doi.org/10.1021/acs.jpcc.1c04754
  17. Ruitao Wu, Kaitlyn R. Wiegand, Longmei Ge, Lichang Wang. Role of Oxygen Species toward the C–C Bond Cleavage in Steam Reforming of C2+ Alkanes: DFT Studies of Ethane on Ir(100). The Journal of Physical Chemistry C 2021, 125 (26) , 14275-14286. https://doi.org/10.1021/acs.jpcc.1c02775
  18. Luca Legnani, Andrea Darù, Alexander X. Jones, Donna G. Blackmond. Mechanistic Insight into the Origin of Stereoselectivity in the Ribose-Mediated Strecker Synthesis of Alanine. Journal of the American Chemical Society 2021, 143 (20) , 7852-7858. https://doi.org/10.1021/jacs.1c03552
  19. Damjan Lašič Jurković, Andrii Kostyniuk, Blaž Likozar. Mechanisms, reaction micro-kinetics and modelling of hydrocracking of aromatic biomass tar model compounds into benzene, toluene and xylenes (BTX) over H-ZSM-5 catalyst. Chemical Engineering Journal 2022, 445 , 136898. https://doi.org/10.1016/j.cej.2022.136898
  20. Yalan Wang, Yanying Qi, Jia Yang, Yi-An Zhu, De Chen. A new approach of kinetic modeling: Kinetically consistent energy profile and rate expression analysis. Chemical Engineering Journal 2022, 444 , 136685. https://doi.org/10.1016/j.cej.2022.136685
  21. Rufang Zhao, Yang Wang. Revisiting the mechanism of highly efficient CO oxidation by single iron atom catalysis on Pt(100). Materials Today Communications 2022, 31 , 103609. https://doi.org/10.1016/j.mtcomm.2022.103609
  22. Qingxin Yang, Vita A. Kondratenko, Sergey A. Petrov, Dmitry E. Doronkin, Erisa Saraçi, Henrik Lund, Aleks Arinchtein, Ralph Kraehnert, Andrey S. Skrypnik, Alexander A. Matvienko, Evgenii V. Kondratenko. Bestimmung von Performance‐Deskriptoren für die CO 2 ‐Hydrierung an alkalimetallpromotierten Katalysatoren auf Eisenbasis. Angewandte Chemie 2022, 134 (22) https://doi.org/10.1002/ange.202116517
  23. Qingxin Yang, Vita A. Kondratenko, Sergey A. Petrov, Dmitry E. Doronkin, Erisa Saraçi, Henrik Lund, Aleks Arinchtein, Ralph Kraehnert, Andrey S. Skrypnik, Alexander A. Matvienko, Evgenii V. Kondratenko. Identifying Performance Descriptors in CO 2 Hydrogenation over Iron‐Based Catalysts Promoted with Alkali Metals. Angewandte Chemie International Edition 2022, 61 (22) https://doi.org/10.1002/anie.202116517
  24. Xuan Wang, Yawen Tang, Jong-Min Lee, Gengtao Fu. Recent advances in rare-earth-based materials for electrocatalysis. Chem Catalysis 2022, 2 (5) , 967-1008. https://doi.org/10.1016/j.checat.2022.02.007
  25. Ruitao Wu, Lichang Wang. Insight and Activation Energy Surface of the Dehydrogenation of C2HxO Species in Ethanol Oxidation Reaction on Ir(100). ChemPhysChem 2022, https://doi.org/10.1002/cphc.202200132
  26. Wenyao Chen, Junbo Cao, Wenzhao Fu, Jing Zhang, Gang Qian, Jia Yang, De Chen, Xinggui Zhou, Weikang Yuan, Xuezhi Duan. Molecular‐Level Insights into the Notorious CO Poisoning of Platinum Catalyst. Angewandte Chemie 2022, 134 (16) https://doi.org/10.1002/ange.202200190
  27. Wenyao Chen, Junbo Cao, Wenzhao Fu, Jing Zhang, Gang Qian, Jia Yang, De Chen, Xinggui Zhou, Weikang Yuan, Xuezhi Duan. Molecular‐Level Insights into the Notorious CO Poisoning of Platinum Catalyst. Angewandte Chemie International Edition 2022, 61 (16) https://doi.org/10.1002/anie.202200190
  28. Alfredo Calderón-Cárdenas, Enrique A. Paredes-Salazar, Hamilton Varela. A microkinetic description of electrocatalytic reactions: the role of self-organized phenomena. New Journal of Chemistry 2022, 46 (15) , 6837-6846. https://doi.org/10.1039/D2NJ00758D
  29. Miguel Pineda, Michail Stamatakis. Kinetic Monte Carlo simulations for heterogeneous catalysis: Fundamentals, current status and challenges. The Journal of Chemical Physics 2022, https://doi.org/10.1063/5.0083251
  30. David Mahlberg, Sung Sakong, Axel Groß. Structure of PtRu/Ru(0 0 0 1) and AgPd/Pd(1 1 1) surface alloys: A kinetic Monte Carlo study. Chemical Physics 2022, 555 , 111428. https://doi.org/10.1016/j.chemphys.2021.111428
  31. Oscar Díaz-Ibarra, Kyungjoo Kim, Cosmin Safta, Judit Zádor, Habib N. Najm. Using computational singular perturbation as a diagnostic tool in ODE and DAE systems: a case study in heterogeneous catalysis. Combustion Theory and Modelling 2022, 26 (2) , 201-227. https://doi.org/10.1080/13647830.2021.2002417
  32. Yugai Huang, Hui-Li Lu, Zhao-Xu Chen. DFT and microkinetic study of acetylene transformation on Pd(111), M(111) and PdM(111) surfaces (M = Cu, Ag, Au). Physical Chemistry Chemical Physics 2022, 24 (5) , 3182-3190. https://doi.org/10.1039/D1CP05353A
  33. Miguel Steiner, Markus Reiher. Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Topics in Catalysis 2022, 65 (1-4) , 6-39. https://doi.org/10.1007/s11244-021-01543-9
  34. Zhenshan Li. First-principles-based microkinetic rate equation theory for oxygen carrier reduction in chemical looping. Chemical Engineering Science 2022, 247 , 117042. https://doi.org/10.1016/j.ces.2021.117042
  35. Samantha Francis, Alexandre Boucher, Glenn Jones, Alberto Roldan. Ostwald ripening microkinetic simulation of Au clusters on MgO(0 0 1). Applied Surface Science 2022, 572 , 151317. https://doi.org/10.1016/j.apsusc.2021.151317
  36. Jonas Van Belleghem, Jia Yang, Pieter Janssens, Jeroen Poissonnier, De Chen, Guy B. Marin, Joris W. Thybaut. Microkinetic model validation for Fischer-Tropsch synthesis at methanation conditions based on steady state isotopic transient kinetic analysis. Journal of Industrial and Engineering Chemistry 2022, 105 , 191-209. https://doi.org/10.1016/j.jiec.2021.09.017
  37. Vladimir P. Zhdanov. Late stage of the formation of a protein corona around nanoparticles in biofluids. Physical Review E 2022, 105 (1) https://doi.org/10.1103/PhysRevE.105.014402
  38. Gerhard R. Wittreich, Dionisios G. Vlachos. Python Group Additivity (pGrAdd) Software for Estimating Species Thermochemical Properties. Computer Physics Communications 2022, , 108277. https://doi.org/10.1016/j.cpc.2021.108277
  39. Selin Bac, Zhenzhuo Lan, Shaama Mallikarjun Sharada. Transition Structures, Reaction Paths, and Kinetics: Methods and Applications in Catalysis. 2022,,https://doi.org/10.1016/B978-0-12-821978-2.00006-4
  40. Yuqi Yang, Tonghao Shen, Xin Xu. Towards the rational design of Pt-based alloy catalysts for the low-temperature water-gas shift reaction: from extended surfaces to single atom alloys. Chemical Science 2022, 21 https://doi.org/10.1039/D2SC01729F
  41. Aditya Bhan, W. Nicholas Delgass. Best practices in catalysis: A perspective. Journal of Catalysis 2022, 405 , 419-429. https://doi.org/10.1016/j.jcat.2021.12.014
  42. Wen-De Hu, Chuan-Ming Wang, Yang-Dong Wang, Jun Ke, Guang Yang, Yu-Jue Du, Wei-Min Yang. First-principles-based microkinetic simulations of syngas to methanol conversion on ZnAl2O4 spinel oxide. Applied Surface Science 2021, 569 , 151064. https://doi.org/10.1016/j.apsusc.2021.151064
  43. Wenyao Chen, Junbo Cao, Jia Yang, Yueqiang Cao, Hao Zhang, Zheng Jiang, Jing Zhang, Gang Qian, Xinggui Zhou, De Chen, Weikang Yuan, Xuezhi Duan. Molecular-level insights into the electronic effects in platinum-catalyzed carbon monoxide oxidation. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-27238-z
  44. Salman Masoudi Soltani, Abhishek Lahiri, Husain Bahzad, Peter Clough, Mikhail Gorbounov, Yongliang Yan. Sorption-enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review. Carbon Capture Science & Technology 2021, 1 , 100003. https://doi.org/10.1016/j.ccst.2021.100003
  45. Guy B. Marin, Vladimir V. Galvita, Gregory S. Yablonsky. Kinetics of chemical processes: From molecular to industrial scale. Journal of Catalysis 2021, 404 , 745-759. https://doi.org/10.1016/j.jcat.2021.09.014
  46. Ali Hussain Motagamwala, James A. Dumesic. Chemical kinetics for generalized two-step reaction schemes. Journal of Catalysis 2021, 404 , 850-863. https://doi.org/10.1016/j.jcat.2021.08.046
  47. Adam Baz, Sean T. Dix, Adam Holewinski, Suljo Linic. Microkinetic modeling in electrocatalysis: Applications, limitations, and recommendations for reliable mechanistic insights. Journal of Catalysis 2021, 404 , 864-872. https://doi.org/10.1016/j.jcat.2021.08.043
  48. Charles T. Campbell, Zhongtian Mao. Analysis and prediction of reaction kinetics using the degree of rate control. Journal of Catalysis 2021, 404 , 647-660. https://doi.org/10.1016/j.jcat.2021.10.002
  49. Sergio Pablo‐García, Rodrigo García‐Muelas, Albert Sabadell‐Rendón, Núria López. Dimensionality reduction of complex reaction networks in heterogeneous catalysis: From l inear‐scaling relationships to statistical learning techniques. WIREs Computational Molecular Science 2021, 11 (6) https://doi.org/10.1002/wcms.1540
  50. Qinqin Sang, Shuai Yin, Feng Liu, Huiming Yin, Jia He, Yi Ding. Highly coordinated Pd overlayers on nanoporous gold for efficient formic acid electro-oxidation. Nano Research 2021, 14 (10) , 3502-3508. https://doi.org/10.1007/s12274-021-3642-2
  51. Zhengyuan Li, Yanbo Fang, Jianfang Zhang, Tianyu Zhang, Juan D. Jimenez, Sanjaya D. Senanayake, Vesselin Shanov, Shize Yang, Jingjie Wu. Planar defect-driven electrocatalysis of CO 2 -to-C 2 H 4 conversion. Journal of Materials Chemistry A 2021, 9 (35) , 19932-19939. https://doi.org/10.1039/D1TA02565A
  52. Maxim L. Kuznetsov, Armando J.L. Pombeiro. Metal-free and iron(II)-assisted oxidation of cyclohexane to adipic acid with ozone: A theoretical mechanistic study. Journal of Catalysis 2021, 399 , 52-66. https://doi.org/10.1016/j.jcat.2021.04.030
  53. Ángel Morales‐García, Francesc Viñes, José R. B. Gomes, Francesc Illas. Concepts, models, and methods in computational heterogeneous catalysis illustrated through CO 2 conversion. WIREs Computational Molecular Science 2021, 11 (4) https://doi.org/10.1002/wcms.1530
  54. Dmitry Yu. Murzin, Johan Wärnå, Heikki Haario, Tapio Salmi. Parameter estimation in kinetic models of complex heterogeneous catalytic reactions using Bayesian statistics. Reaction Kinetics, Mechanisms and Catalysis 2021, 133 (1) , 1-15. https://doi.org/10.1007/s11144-021-01974-1
  55. Jiayan Xu, Xiao-Ming Cao, P. Hu. Perspective on computational reaction prediction using machine learning methods in heterogeneous catalysis. Physical Chemistry Chemical Physics 2021, 23 (19) , 11155-11179. https://doi.org/10.1039/D1CP01349A
  56. Kai S. Exner. Why the microkinetic modeling of experimental tafel plots requires knowledge of the reaction intermediate's binding energy. Electrochemical Science Advances 2021, 355 https://doi.org/10.1002/elsa.202100037
  57. Shenggang Li, Yuchen Wang, Bin Qin, Zhimin Zhou, Shiju Zhou, Kun Li, Zhangqian Wei. Mechanistic studies toward the rational design of oxide catalysts for carbon dioxide hydrogenation. 2021,,, 211-270. https://doi.org/10.1016/bs.arcc.2021.09.001

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE