ACS Publications. Most Trusted. Most Cited. Most Read
Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries
My Activity
    Review

    Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Chemical Reviews

    Cite this: Chem. Rev. 2020, 120, 15, 7745–7794
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemrev.0c00431
    Published July 27, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Developing reversible lithium metal anodes with high rate capability is one of the central aims of current battery research. Lithium metal anodes are not only required for the development of innovative cell concepts such as lithium–air or lithium–sulfur batteries, they can also increase the energy density of batteries with intercalation-type cathodes. The use of solid electrolyte separators is especially promising to develop well-performing lithium metal anodes, because they can act as a mechanical barrier to avoid unwanted dendritic growth of lithium through the cell. However, inhomogeneous electrodeposition and contact loss often hinder the application of a lithium metal anode in solid-state batteries. In this review, we assess the physicochemical concepts that describe the fundamental mechanisms governing lithium metal anode performance in combination with inorganic solid electrolytes. In particular, our discussion of kinetic rate limitations and morphological stability intends to stimulate further progress in the field of lithium metal anodes.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00431.

    • Tables of reported critical current densities for garnet and sulfide solid electrolytes, lithium binary alloy phase diagrams (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 561 publications.

    1. Guofei Chen, Lei Guan, Yang Chen, Huijie Xu, Jianqiu Zhou, Rui Cai. Optimization Effect on the Interfacial Impedance and Contact Stress of the ASSLB with Porous Polymer Buffer Layer. The Journal of Physical Chemistry C 2024, 128 (47) , 20407-20422. https://doi.org/10.1021/acs.jpcc.4c05666
    2. Sesha Sai Behara, Anton Van der Ven. Role of Short-Range Order on Diffusion Coefficients in the Li–Mg Alloy. Chemistry of Materials 2024, 36 (22) , 11236-11245. https://doi.org/10.1021/acs.chemmater.4c02334
    3. Waquar Ahmed Khokhar, Muhammad Rafiq, Abdur Raheem Aleem, Danish A. Khokhar, Adeel Ahmed, Muhammad Altaf Nazir, Muhammad Khurram Tufail. Recent Advancements in the Interfacial Stability of Garnet Solid Electrolytes and Design Strategies for Solid-State Lithium Batteries: A Review. Energy & Fuels 2024, 38 (22) , 21674-21700. https://doi.org/10.1021/acs.energyfuels.4c02715
    4. Jingui Yang, Jing Lin, Torsten Brezesinski, Florian Strauss. Emerging Superionic Sulfide and Halide Glass–Ceramic Solid Electrolytes: Recent Progress and Future Perspectives. ACS Energy Letters 2024, Article ASAP.
    5. Abhishek A. Panchal, Tyler N.T. Pennebaker, Elias Sebti, Yan Li, Yuheng Li, Raphaële J. Clément, Pieremanuele Canepa. Compatibility of Halide Bilayer Separators for All-Solid-State Batteries. ACS Energy Letters 2024, Article ASAP.
    6. Johannes Hartel, Ananya Banik, Md Yusuf Ali, Bianca Helm, Kyra Strotmann, Vasiliki Faka, Oliver Maus, Cheng Li, Hartmut Wiggers, Wolfgang G. Zeier. Investigating the Influence of Transition Metal Substitution in Lithium Argyrodites on Structure, Transport, and Solid-State Battery Performance. Chemistry of Materials 2024, 36 (21) , 10731-10745. https://doi.org/10.1021/acs.chemmater.4c02281
    7. Shiwei Chen, Qingbo Cao, Bin Tang, Xinyu Yu, Zhen Zhou, Shou-Hang Bo, Yunlong Guo. Chemomechanical Pairing of Alloy Anodes and Solid-State Electrolytes. ACS Energy Letters 2024, 9 (11) , 5373-5382. https://doi.org/10.1021/acsenergylett.4c01983
    8. Ran Wei, Yue Zhang, Jiameng Yu, Xinshui Zhang, Yining Zhang, Tianyi Gao, Yi Yu, Jie Zhao, Wei Liu. Enhanced Critical Current Density in the Garnet Oxide Electrolyte by a Silver Interlayer. ACS Applied Materials & Interfaces 2024, 16 (41) , 55198-55205. https://doi.org/10.1021/acsami.4c08818
    9. Leonardo Merola, Vipin K. Singh, Max Palmer, Janis K. Eckhardt, Sebastian L. Benz, Till Fuchs, Linda F. Nazar, Jeff Sakamoto, Felix H. Richter, Jürgen Janek. Evaluation of Oxide|Sulfide Heteroionic Interface Stability for Developing Solid-State Batteries with a Lithium–Metal Electrode: The Case of LLZO|Li6PS5Cl and LLZO|Li7P3S11. ACS Applied Materials & Interfaces 2024, 16 (40) , 54847-54863. https://doi.org/10.1021/acsami.4c11597
    10. Stephen R. Xie, Shreyas J. Honrao, John W. Lawson. High-Throughput Screening of Li Solid-State Electrolytes with Bond Valence Methods and Machine Learning. Chemistry of Materials 2024, 36 (19) , 9320-9329. https://doi.org/10.1021/acs.chemmater.3c02841
    11. Sascha Kremer, René Rekers, Ujjawal Sigar, Juri Becker, Johannes Schubert, Janis K. Eckhardt, Anja Bielefeld, Felix H. Richter, Jürgen Janek. A Simple Method for the Study of Heteroionic Interface Impedances in Solid Electrolyte Multilayer Cells Containing LLZO. ACS Applied Materials & Interfaces 2024, 16 (33) , 44236-44248. https://doi.org/10.1021/acsami.4c07845
    12. Sesha Sai Behara, Jeremiah Thomas, Anton Van der Ven. Fundamental Thermodynamic, Kinetic, and Mechanical Properties of Lithium and Its Alloys. Chemistry of Materials 2024, 36 (15) , 7370-7387. https://doi.org/10.1021/acs.chemmater.4c01279
    13. Sun Geun Yoon, Bairav S. Vishnugopi, Elif Pınar Alsaç, Won Joon Jeong, Stephanie Elizabeth Sandoval, Douglas Lars Nelson, Abhinand Ayyaswamy, Partha P. Mukherjee, Matthew T. McDowell. Synergistic Evolution of Alloy Nanoparticles and Carbon in Solid-State Lithium Metal Anode Composites at Low Stack Pressure. ACS Nano 2024, 18 (31) , 20792-20805. https://doi.org/10.1021/acsnano.4c07687
    14. Mohammad Babar, Venkatasubramanian Viswanathan. Modeling Scanning Electrochemical Cell Microscopy (SECCM) in Twisted Bilayer Graphene. The Journal of Physical Chemistry Letters 2024, 15 (29) , 7371-7378. https://doi.org/10.1021/acs.jpclett.4c01002
    15. Sunny Wang, Edward Barks, Po-Ting Lin, Xin Xu, Celeste Melamed, Geoff McConohy, Slavomír Nems̆ák, William C. Chueh. Effect of H+ Exchange and Surface Impurities on Bulk and Interfacial Electrochemistry of Garnet Solid Electrolytes. Chemistry of Materials 2024, 36 (14) , 6849-6864. https://doi.org/10.1021/acs.chemmater.4c00738
    16. Won Joon Jeong, Congcheng Wang, Sun Geun Yoon, Yuhgene Liu, Timothy Chen, Matthew T. McDowell. Electrochemical behavior of elemental alloy anodes in solid-state batteries. ACS Energy Letters 2024, 9 (6) , 2554-2563. https://doi.org/10.1021/acsenergylett.4c00915
    17. Mohammad Babar, Ziyan Zhu, Rachel Kurchin, Efthimios Kaxiras, Venkatasubramanian Viswanathan. Twisto-Electrochemical Activity Volcanoes in Trilayer Graphene. Journal of the American Chemical Society 2024, 146 (23) , 16105-16111. https://doi.org/10.1021/jacs.4c03464
    18. Kangli Wang, Jürgen Janek, Doreen Mollenhauer. Insight into the Li/LiPON Interface at the Molecular Level: Interfacial Decomposition and Reconfiguration. Chemistry of Materials 2024, 36 (10) , 5133-5141. https://doi.org/10.1021/acs.chemmater.4c00377
    19. Julian J. A. Kreissl, Hoang Anh Dang, Boris Mogwitz, Marcus Rohnke, Daniel Schröder, Jürgen Janek. Implementation of Different Conversion/Alloy Active Materials as Anodes for Lithium-Based Solid-State Batteries. ACS Applied Materials & Interfaces 2024, 16 (20) , 26195-26208. https://doi.org/10.1021/acsami.4c03058
    20. Haoqun Zhang, Leibo Li, Guida Kang, Nan Lu, Shengdao Wang, Guibin Wang. A Flexible and Mechanical Robust All-Solid-State Polymer Electrolyte with Microphase Separated Structure for Lithium-Ion Battery. ACS Applied Materials & Interfaces 2024, 16 (19) , 24671-24682. https://doi.org/10.1021/acsami.4c02824
    21. Yongtao Zhao, Xiaohang Lin, Yuan Yang, Xiaochen Wu, Zhibiao Hu, Minghao Hua, Pengchao Si. Economic and Effective Construction of a P/Sn Multifunctional Layer on the Li/Garnet Interface via Transformation Reactions. ACS Sustainable Chemistry & Engineering 2024, 12 (18) , 7092-7104. https://doi.org/10.1021/acssuschemeng.4c00737
    22. Zijie Wei, Sibin Zhu, Xiaoming Zhu, Lun Yu, Zilan Jiang, Xufeng Tang, Xiaoying Qu, Yadong Wang, Haolin Tang, Xiaoling Liu. In Situ-Polymerized Separator-Free Ionogel Electrolyte with Enhanced Interfacial Compatibility for Integrated Solid-State Lithium Batteries. Energy & Fuels 2024, 38 (9) , 8296-8305. https://doi.org/10.1021/acs.energyfuels.4c00300
    23. Hua Zhong, Denghua Liu, Xinye Yuan, Xiang Xiong, Kai Han. Advanced Micro/Nanostructure Silicon-Based Anode Materials for High-Energy Lithium-Ion Batteries: From Liquid- to Solid-State Batteries. Energy & Fuels 2024, 38 (9) , 7693-7732. https://doi.org/10.1021/acs.energyfuels.4c00633
    24. Pallab Barai, Till Fuchs, Enrico Trevisanello, Felix H. Richter, Jürgen Janek, Venkat Srinivasan. Study of Void Formation at the Lithium|Solid Electrolyte Interface. Chemistry of Materials 2024, 36 (5) , 2245-2258. https://doi.org/10.1021/acs.chemmater.3c01708
    25. Kairui Guo, Shaoqiao Li, Jirong Wang, Zhen Shi, Yong Wang, Zhigang Xue. In Situ Orthogonal Polymerization for Constructing Fast-Charging and Long-Lifespan Li Metal Batteries with Topological Copolymer Electrolytes. ACS Energy Letters 2024, 9 (3) , 843-852. https://doi.org/10.1021/acsenergylett.3c02422
    26. Dongjae Shin, Jinkwan Jung, Youngil Roh, Changhoon Park, Il Ju Kim, Hyeokjin Kwon, Jaewon Baek, Wonsik Oh, Junhyuk Kim, Seoyoung Jeong, Jaemin Hwang, Yesom Kim, Duk Hyoung Yoon, Hee-Tak Kim. Preferential Lithium Plating in the Interfacial Void Region in All-Solid-State Batteries via Pressure Gradient-Driven Lithium-Ion Flux. ACS Energy Letters 2024, 9 (3) , 1035-1042. https://doi.org/10.1021/acsenergylett.4c00297
    27. Adrian J. Sanchez, Neil P. Dasgupta. Lithium Metal Anodes: Advancing our Mechanistic Understanding of Cycling Phenomena in Liquid and Solid Electrolytes. Journal of the American Chemical Society 2024, 146 (7) , 4282-4300. https://doi.org/10.1021/jacs.3c05715
    28. Tianci Cao, Rong Xu, Xiaopeng Cheng, Mingming Wang, Tao Sun, Junxia Lu, Xianqiang Liu, Yuefei Zhang, Ze Zhang. Chemomechanical Origins of the Dynamic Evolution of Isolated Li Filaments in Inorganic Solid-State Electrolytes. Nano Letters 2024, 24 (6) , 1843-1850. https://doi.org/10.1021/acs.nanolett.3c03321
    29. Benjamin Hennequart, Maria Platonova, Ronan Chometon, Thomas Marchandier, Alessandro Benedetto, Elisa Quemin, Romain Dugas, Christophe Lethien, Jean-Marie Tarascon. Atmospheric-Pressure Operation of All-Solid-State Batteries Enabled by Halide Solid Electrolyte. ACS Energy Letters 2024, 9 (2) , 454-460. https://doi.org/10.1021/acsenergylett.3c02513
    30. Shuxian Zhang, Jianchao Chen, Chunyan Zhu, Qingyuan Liu, Qingyu Li, Renbo Liu, Xiaobo Jiang, Yijie Yan, Shengjian Sun, Longwei Yin, Rutao Wang. Robust All-Solid-State Lithium Metal Batteries Enabled by a Composite Lithium Anode with Improved Bulk Li Diffusion Kinetics Properties. ACS Nano 2023, 17 (23) , 24290-24298. https://doi.org/10.1021/acsnano.3c09853
    31. Cheng Ouyang, Hongpeng Zheng, Qiwen Chen, Hezhou Liu, Huanan Duan. Correlating the Microstructure and Current Density of the Li/Garnet Interface. ACS Applied Materials & Interfaces 2023, 15 (44) , 51179-51190. https://doi.org/10.1021/acsami.3c11748
    32. Thorben Böger, Tim Bernges, Yuheng Li, Pieremanuele Canepa, Wolfgang G. Zeier. Thermal Conductivities of Lithium-Ion-Conducting Solid Electrolytes. ACS Applied Energy Materials 2023, 6 (20) , 10704-10712. https://doi.org/10.1021/acsaem.3c01977
    33. Akila C. Thenuwara, Eric L. Thompson, Thomas F. Malkowski, Kenneth D. Parrotte, Kathryn E. Lostracco, Sooraj Narayan, Ryan T. Rooney, Lori A. Seeley, Melroy R. Borges, Brent D. Conway, Zhen Song, Michael E. Badding, Kevin G. Gallagher. Interplay among Metallic Interlayers, Discharge Rate, and Pressure in LLZO-Based Lithium–Metal Batteries. ACS Energy Letters 2023, 8 (10) , 4016-4023. https://doi.org/10.1021/acsenergylett.3c01514
    34. Janis K. Eckhardt, Sascha Kremer, Till Fuchs, Philip Minnmann, Johannes Schubert, Simon Burkhardt, Matthias T. Elm, Peter J. Klar, Christian Heiliger, Jürgen Janek. Influence of Microstructure on the Material Properties of LLZO Ceramics Derived by Impedance Spectroscopy and Brick Layer Model Analysis. ACS Applied Materials & Interfaces 2023, 15 (40) , 47260-47277. https://doi.org/10.1021/acsami.3c10060
    35. Ajay Gautam, Hanan Al-Kutubi, Theodosios Famprikis, Swapna Ganapathy, Marnix Wagemaker. Exploring the Relationship Between Halide Substitution, Structural Disorder, and Lithium Distribution in Lithium Argyrodites (Li6–xPS5–xBr1+x). Chemistry of Materials 2023, 35 (19) , 8081-8091. https://doi.org/10.1021/acs.chemmater.3c01525
    36. Pooja Vadhva, Adam M. Boyce, Anisha Patel, Paul R. Shearing, Gregory Offer, Alexander J. E. Rettie. Silicon-Based Solid-State Batteries: Electrochemistry and Mechanics to Guide Design and Operation. ACS Applied Materials & Interfaces 2023, 15 (36) , 42470-42480. https://doi.org/10.1021/acsami.3c06615
    37. Benjamin Hennequart, Michael Deschamps, Ronan Chometon, Bernhard Leube, Romain Dugas, Elisa Quemin, Pierre-Etienne Cabelguen, Christophe Lethien, Jean-Marie Tarascon. Solid-Electrolyte-Free O3-LixTiS2 Cathode for High-Energy-Density All-Solid-State Lithium-Metal Batteries. ACS Applied Energy Materials 2023, 6 (16) , 8521-8531. https://doi.org/10.1021/acsaem.3c01383
    38. Priya Ganesan, Mervyn Soans, Musa Ali Cambaz, Ramon Zimmermanns, Ritambhara Gond, Stefan Fuchs, Yang Hu, Sebastian Baumgart, Mohsen Sotoudeh, Dominik Stepien, Helge Stein, Axel Groß, Dominic Bresser, Alberto Varzi, Maximilian Fichtner. Fluorine-Substituted Halide Solid Electrolytes with Enhanced Stability toward the Lithium Metal. ACS Applied Materials & Interfaces 2023, 15 (32) , 38391-38402. https://doi.org/10.1021/acsami.3c03513
    39. Mengyuan Song, Changhao Tian, Tao Huang, Aishui Yu. Hybrid Ceramic-Gel Polymer Electrolyte with a 3D Cross-Linked Polymer Network for Lithium–Oxygen Batteries. ACS Applied Energy Materials 2023, 6 (14) , 7681-7691. https://doi.org/10.1021/acsaem.3c01183
    40. Huanyu Zhang, Giulia Paggiaro, Faruk Okur, Janis Huwiler, Claudia Cancellieri, Lars P. H. Jeurgens, Dmitry Chernyshov, Wouter van Beek, Maksym V. Kovalenko, Kostiantyn V. Kravchyk. On High-Temperature Thermal Cleaning of Li7La3Zr2O12 Solid-State Electrolytes. ACS Applied Energy Materials 2023, 6 (13) , 6972-6980. https://doi.org/10.1021/acsaem.3c00459
    41. Maria Gombotz, Caroline Hiebl, Florian Stainer, H. Martin R. Wilkening. Solids with Two Mobile Ions: Proton H+ Self-Diffusion in Li–H Exchanged Garnet-Type Li6La3ZrTaO7 as Seen by Solid-State 1H NMR Relaxation. The Journal of Physical Chemistry C 2023, 127 (23) , 10960-10967. https://doi.org/10.1021/acs.jpcc.3c02330
    42. Takeaki Inaoka, Taichi Asakura, Misae Otoyama, Kota Motohashi, Atsushi Sakuda, Masahiro Tatsumisago, Akitoshi Hayashi. Tin Interlayer at the Li/Li3PS4 Interface for Improved Li Stripping/Plating Performance. The Journal of Physical Chemistry C 2023, 127 (22) , 10453-10458. https://doi.org/10.1021/acs.jpcc.3c01740
    43. Yufeng Liang, Tingting Feng, Jintian Wu, Jie Tan, Mengqiang Wu. Constructing a High-Performance Semi-interpenetrating Gel Polymer Electrolyte via In Situ Polymerization for Lithium Metal Batteries. ACS Applied Polymer Materials 2023, 5 (5) , 3564-3573. https://doi.org/10.1021/acsapm.3c00229
    44. Steven Kmiec, Erick Ruoff, Joe Darga, Andrew Bodratti, Arumugam Manthiram. Scalable Glass-Fiber-Polymer Composite Solid Electrolytes for Solid-State Sodium–Metal Batteries. ACS Applied Materials & Interfaces 2023, 15 (17) , 20946-20957. https://doi.org/10.1021/acsami.3c00240
    45. Yongil Kim, Dominik Stepien, Hyein Moon, Kay Schönherr, Benjamin Schumm, Matthias Kuenzel, Holger Althues, Dominic Bresser, Stefano Passerini. Artificial Interphase Design Employing Inorganic–Organic Components for High-Energy Lithium-Metal Batteries. ACS Applied Materials & Interfaces 2023, 15 (17) , 20987-20997. https://doi.org/10.1021/acsami.3c00779
    46. Jonas Spychala, Alexandra Wilkening, H. Martin R. Wilkening. The Batteries’ New Clothes: Li and H Dynamics in Poorly Conducting Li2OHCl Directly Probed by Nuclear Spin Relaxation. The Journal of Physical Chemistry C 2023, 127 (15) , 7433-7444. https://doi.org/10.1021/acs.jpcc.2c08815
    47. Ikcheon Na, Hwiho Kim, Sebastian Kunze, Chihyun Nam, Sugeun Jo, Hanbi Choi, Sumin Oh, Eugene Choi, Yong Bae Song, Yoon Seok Jung, Yun Seog Lee, Jongwoo Lim. Monolithic 100% Silicon Wafer Anode for All-Solid-State Batteries Achieving High Areal Capacity at Room Temperature. ACS Energy Letters 2023, 8 (4) , 1936-1943. https://doi.org/10.1021/acsenergylett.3c00496
    48. Oliver Maus, Matthias T. Agne, Till Fuchs, Paul S. Till, Björn Wankmiller, Josef Maximilian Gerdes, Rituraj Sharma, Michael Heere, Niina Jalarvo, Omer Yaffe, Michael Ryan Hansen, Wolfgang G. Zeier. On the Discrepancy between Local and Average Structure in the Fast Na+ Ionic Conductor Na2.9Sb0.9W0.1S4. Journal of the American Chemical Society 2023, 145 (13) , 7147-7158. https://doi.org/10.1021/jacs.2c11803
    49. Tengrui Wang, Wei Luo, Yunhui Huang. Engineering Li Metal Anode for Garnet-Based Solid-State Batteries. Accounts of Chemical Research 2023, 56 (6) , 667-676. https://doi.org/10.1021/acs.accounts.2c00822
    50. Pallab Barai, Till Fuchs, Enrico Trevisanello, Hong Keun Kim, Felix H. Richter, Jürgen Janek, Venkat Srinivasan. Reaction Current Heterogeneity at the Interface between a Lithium Electrode and Polymer/Ceramic Composite Electrolytes. ACS Applied Energy Materials 2023, 6 (4) , 2160-2177. https://doi.org/10.1021/acsaem.2c03059
    51. Pooja Vadhva, Thomas E. Gill, Joshua H. Cruddos, Samia Said, Marco Siniscalchi, Sudarshan Narayanan, Mauro Pasta, Thomas S. Miller, Alexander J. E. Rettie. Engineering Solution-Processed Non-Crystalline Solid Electrolytes for Li Metal Batteries. Chemistry of Materials 2023, 35 (3) , 1168-1176. https://doi.org/10.1021/acs.chemmater.2c03071
    52. Edouard Quérel, Nicholas J. Williams, Ieuan D. Seymour, Stephen J. Skinner, Ainara Aguadero. Operando Characterization and Theoretical Modeling of Metal|Electrolyte Interphase Growth Kinetics in Solid-State Batteries. Part I: Experiments. Chemistry of Materials 2023, 35 (3) , 853-862. https://doi.org/10.1021/acs.chemmater.2c03130
    53. Nicholas J. Williams, Edouard Quérel, Ieuan D. Seymour, Stephen J. Skinner, Ainara Aguadero. Operando Characterization and Theoretical Modeling of Metal|Electrolyte Interphase Growth Kinetics in Solid-State Batteries. Part II: Modeling. Chemistry of Materials 2023, 35 (3) , 863-869. https://doi.org/10.1021/acs.chemmater.2c03131
    54. Adam M. Maraschky, Melissa L. Meyerson, Stephen J. Percival, Daniel R. Lowry, Stephen Meserole, John N. Williard, Amanda S. Peretti, Martha Gross, Leo J. Small, Erik D. Spoerke. Impact of Catholyte Lewis Acidity at the Molten Salt–NaSICON Interface in Low-Temperature Molten Sodium Batteries. The Journal of Physical Chemistry C 2023, 127 (3) , 1293-1302. https://doi.org/10.1021/acs.jpcc.2c06240
    55. Yanhao Dong, Ju Li. Oxide Cathodes: Functions, Instabilities, Self Healing, and Degradation Mitigations. Chemical Reviews 2023, 123 (2) , 811-833. https://doi.org/10.1021/acs.chemrev.2c00251
    56. Sewon Kim, Gabin Yoon, Sung-Kyun Jung, SeonTae Park, Ju-Sik Kim, Kyungho Yoon, Sunyoung Lee, Kisuk Kang. High-Power Hybrid Solid-State Lithium–Metal Batteries Enabled by Preferred Directional Lithium Growth Mechanism. ACS Energy Letters 2023, 8 (1) , 9-20. https://doi.org/10.1021/acsenergylett.2c02150
    57. Bairav S. Vishnugopi, Md Toukir Hasan, Hanwei Zhou, Partha P. Mukherjee. Interphases and Electrode Crosstalk Dictate the Thermal Stability of Solid-State Batteries. ACS Energy Letters 2023, 8 (1) , 398-407. https://doi.org/10.1021/acsenergylett.2c02443
    58. Yifan Wu, Shou-Hang Bo. Interfacial Behavior of a Thio-LISICON Solid-State Electrolyte under External Pressure. ACS Applied Energy Materials 2022, 5 (11) , 13571-13579. https://doi.org/10.1021/acsaem.2c02285
    59. Hanyu Huo, Jürgen Janek. Silicon as Emerging Anode in Solid-State Batteries. ACS Energy Letters 2022, 7 (11) , 4005-4016. https://doi.org/10.1021/acsenergylett.2c01950
    60. Marco Siniscalchi, Junliang Liu, Joshua S. Gibson, Stephen J. Turrell, Jack Aspinall, Robert S. Weatherup, Mauro Pasta, Susannah C. Speller, Chris R. M. Grovenor. On the Relative Importance of Li Bulk Diffusivity and Interface Morphology in Determining the Stripped Capacity of Metallic Anodes in Solid-State Batteries. ACS Energy Letters 2022, 7 (10) , 3593-3599. https://doi.org/10.1021/acsenergylett.2c01793
    61. Kaustubh G. Naik, Debanjali Chatterjee, Partha P. Mukherjee. Solid Electrolyte–Cathode Interface Dictates Reaction Heterogeneity and Anode Stability. ACS Applied Materials & Interfaces 2022, 14 (40) , 45308-45319. https://doi.org/10.1021/acsami.2c11339
    62. Zizheng Tong, Yan-Ming Lai, Chia-Erh Liu, Shih-Chieh Liao, Jin-Ming Chen, Shu-Fen Hu, Ru-Shi Liu. Degradation of a Li1.5Al0.5Ge1.5(PO4)3-Based Solid-State Li-Metal Battery: Corrosion of Li1.5Al0.5Ge1.5(PO4)3 against the Li-Metal Anode. ACS Applied Energy Materials 2022, 5 (9) , 11694-11704. https://doi.org/10.1021/acsaem.2c02170
    63. Janis K. Eckhardt, Till Fuchs, Simon Burkhardt, Peter J. Klar, Jürgen Janek, Christian Heiliger. 3D Impedance Modeling of Metal Anodes in Solid-State Batteries–Incompatibility of Pore Formation and Constriction Effect in Physical-Based 1D Circuit Models. ACS Applied Materials & Interfaces 2022, 14 (37) , 42757-42769. https://doi.org/10.1021/acsami.2c12991
    64. Shuting Luo, Xinyu Liu, Xiao Zhang, Xuefeng Wang, Zhenyu Wang, Yufeng Zhang, Haidong Wang, Weigang Ma, Lingyun Zhu, Xing Zhang. Nanostructure of the Interphase Layer between a Single Li Dendrite and Sulfide Electrolyte in All-Solid-State Li Batteries. ACS Energy Letters 2022, 7 (9) , 3064-3071. https://doi.org/10.1021/acsenergylett.2c01543
    65. Weizhai Bao, Ronghao Wang, Kaiwen Sun, Chengfei Qian, Yuhao Zhang, Jingfa Li. Interface Crystallographic Optimization of Crystal Plane for Stable Metallic Lithium Anode. ACS Applied Materials & Interfaces 2022, 14 (34) , 38696-38705. https://doi.org/10.1021/acsami.2c08278
    66. Janis K. Eckhardt, Peter J. Klar, Jürgen Janek, Christian Heiliger. Interplay of Dynamic Constriction and Interface Morphology between Reversible Metal Anode and Solid Electrolyte in Solid State Batteries. ACS Applied Materials & Interfaces 2022, 14 (31) , 35545-35554. https://doi.org/10.1021/acsami.2c07077
    67. Lukas Ladenstein, Katharina Hogrefe, H. Martin R. Wilkening. Ionic Transport and Electrochemical Properties of NaSICON-Type Li1 + xHf2 – xGax(PO4)3 for All-Solid-State Lithium Batteries. ACS Applied Energy Materials 2022, 5 (7) , 8823-8834. https://doi.org/10.1021/acsaem.2c01304
    68. Ting-Ting Wu, Sijie Guo, Bing Li, Jin-Yang Li, Hong-Shen Zhang, Pei-Zhong Ma, Xing Zhang, Chang-Yu Shen, Xian-Hu Liu, An-Min Cao. Facile Construction of Nanofilms from a Dip-Coating Process to Enable High-Performance Solid-State Batteries. ACS Applied Materials & Interfaces 2022, 14 (28) , 32026-32034. https://doi.org/10.1021/acsami.2c07292
    69. Yanhao Dong, I-Wei Chen, Ju Li. Transverse and Longitudinal Degradations in Ceramic Solid Electrolytes. Chemistry of Materials 2022, 34 (13) , 5749-5765. https://doi.org/10.1021/acs.chemmater.2c00329
    70. Kaustubh G. Naik, Bairav S. Vishnugopi, Partha P. Mukherjee. Kinetics or Transport: Whither Goes the Solid-State Battery Cathode?. ACS Applied Materials & Interfaces 2022, 14 (26) , 29754-29765. https://doi.org/10.1021/acsami.2c04962
    71. Tenzin Ingsel Ram K. Gupta . Solid-State Rechargeable Lithium-Ion Batteries: Component Chemistries and Battery Architectures. , 21-37. https://doi.org/10.1021/bk-2022-1413.ch002
    72. Siddharth Sradhasagar Soobhankar Pati Amritendu Roy . Methods and Techniques of Solid-State Batteries. , 39-89. https://doi.org/10.1021/bk-2022-1413.ch003
    73. Ryo Asakura Arndt Remhof Corsin Battaglia . Hydroborate-Based Solid Electrolytes for All-Solid-State Batteries. , 353-393. https://doi.org/10.1021/bk-2022-1413.ch014
    74. Bowen Shao Yonglin Huang Fudong Han . Lithium-Sulfur Solid-State Batteries. , 267-288. https://doi.org/10.1021/bk-2022-1414.ch012
    75. Minyuan M. Li, Shalini Tripathi, Evgueni Polikarpov, Nathan L. Canfield, Kee Sung Han, J. Mark Weller, Edgar C. Buck, Mark H. Engelhard, David M. Reed, Vincent L. Sprenkle, Guosheng Li. Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries. ACS Applied Materials & Interfaces 2022, 14 (22) , 25534-25544. https://doi.org/10.1021/acsami.2c05245
    76. Hongchang Hao, Tanya Hutter, Brad L. Boyce, John Watt, Pengcheng Liu, David Mitlin. Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal–Sulfur and Selenium Batteries. Chemical Reviews 2022, 122 (9) , 8053-8125. https://doi.org/10.1021/acs.chemrev.1c00838
    77. Kostiantyn V. Kravchyk, Huanyu Zhang, Faruk Okur, Maksym V. Kovalenko. Li–Garnet Solid-State Batteries with LLZO Scaffolds. Accounts of Materials Research 2022, 3 (4) , 411-415. https://doi.org/10.1021/accountsmr.2c00004
    78. Marius Müller, Johannes Schmieg, Sebastian Dierickx, Jochen Joos, André Weber, Dagmar Gerthsen, Ellen Ivers-Tiffée. Reducing Impedance at a Li-Metal Anode/Garnet-Type Electrolyte Interface Implementing Chemically Resolvable In Layers. ACS Applied Materials & Interfaces 2022, 14 (12) , 14739-14752. https://doi.org/10.1021/acsami.1c25257
    79. Changfei Zou, Li Yang, Kaili Luo, Lei Liu, Xiyuan Tao, Lingguang Yi, Xianhu Liu, Zhigao Luo, Xianyou Wang. Performance Improvement of Li6PS5Cl Solid Electrolyte Modified by Poly(ethylene oxide)-Based Composite Polymer Electrolyte with ZSM-5 Molecular Sieves. ACS Applied Energy Materials 2022, 5 (2) , 2356-2365. https://doi.org/10.1021/acsaem.1c03819
    80. Hanyu Huo, Kai Huang, Wei Luo, Jintao Meng, Liangyi Zhou, Zhe Deng, Jiayun Wen, Yiming Dai, Zhimei Huang, Yue Shen, Xiangxin Guo, Xiulei Ji, Yunhui Huang. Evaluating Interfacial Stability in Solid-State Pouch Cells via Ultrasonic Imaging. ACS Energy Letters 2022, 7 (2) , 650-658. https://doi.org/10.1021/acsenergylett.1c02363
    81. Sijie Guo, Yutao Li, Bing Li, Nicholas S. Grundish, An-Min Cao, Yong-Gang Sun, Yan-Song Xu, Yanglimin Ji, Yan Qiao, Qinghua Zhang, Fan-Qi Meng, Zhi-Hao Zhao, Dong Wang, Xing Zhang, Lin Gu, Xiqian Yu, Li-Jun Wan. Coordination-Assisted Precise Construction of Metal Oxide Nanofilms for High-Performance Solid-State Batteries. Journal of the American Chemical Society 2022, 144 (5) , 2179-2188. https://doi.org/10.1021/jacs.1c10872
    82. John A. Lewis, Chanhee Lee, Yuhgene Liu, Sang Yun Han, Dhruv Prakash, Emily J. Klein, Hyun-Wook Lee, Matthew T. McDowell. Role of Areal Capacity in Determining Short Circuiting of Sulfide-Based Solid-State Batteries. ACS Applied Materials & Interfaces 2022, 14 (3) , 4051-4060. https://doi.org/10.1021/acsami.1c20139
    83. Shuaifeng Lou, Nan Sun, Fang Zhang, Qingsong Liu, Jiajun Wang. Tracking Battery Dynamics by Operando Synchrotron X-ray Imaging: Operation from Liquid Electrolytes to Solid-State Electrolytes. Accounts of Materials Research 2021, 2 (12) , 1177-1189. https://doi.org/10.1021/accountsmr.1c00159
    84. Li Yang, Xiyuan Tao, Xiao Huang, Changfei Zou, Lingguang Yi, Xiaoyi Chen, Zihao Zang, Zhigao Luo, Xianyou Wang. Efficient Mutual-Compensating Li-Loss Strategy toward Highly Conductive Garnet Ceramics for Li-Metal Solid-State Batteries. ACS Applied Materials & Interfaces 2021, 13 (47) , 56054-56063. https://doi.org/10.1021/acsami.1c15115
    85. Svenja-K. Otto, Till Fuchs, Yannik Moryson, Christian Lerch, Boris Mogwitz, Joachim Sann, Jürgen Janek, Anja Henss. Storage of Lithium Metal: The Role of the Native Passivation Layer for the Anode Interface Resistance in Solid State Batteries. ACS Applied Energy Materials 2021, 4 (11) , 12798-12807. https://doi.org/10.1021/acsaem.1c02481
    86. Lisette Haarmann, Jochen Rohrer, Karsten Albe. On the Origin of Zero Interface Resistance in the Li6.25Al0.25La3Zr2O12|Li0 System: An Atomistic Investigation. ACS Applied Materials & Interfaces 2021, 13 (44) , 52629-52635. https://doi.org/10.1021/acsami.1c15400
    87. Saneyuki Ohno, Wolfgang G. Zeier. Toward Practical Solid-State Lithium–Sulfur Batteries: Challenges and Perspectives. Accounts of Materials Research 2021, 2 (10) , 869-880. https://doi.org/10.1021/accountsmr.1c00116
    88. Bairav S. Vishnugopi, Eric Kazyak, John A. Lewis, Jagjit Nanda, Matthew T. McDowell, Neil P. Dasgupta, Partha P. Mukherjee. Challenges and Opportunities for Fast Charging of Solid-State Lithium Metal Batteries. ACS Energy Letters 2021, 6 (10) , 3734-3749. https://doi.org/10.1021/acsenergylett.1c01352
    89. Subhayan Roychoudhury, Zengqing Zhuo, Ruimin Qiao, Liwen Wan, Yufeng Liang, Feng Pan, Yi-de Chuang, David Prendergast, Wanli Yang. Controlled Experiments and Optimized Theory of Absorption Spectra of Li Metal and Salts. ACS Applied Materials & Interfaces 2021, 13 (38) , 45488-45495. https://doi.org/10.1021/acsami.1c11970
    90. Prashun Gorai, Theodosios Famprikis, Baltej Singh, Vladan Stevanović, Pieremanuele Canepa. Devil is in the Defects: Electronic Conductivity in Solid Electrolytes. Chemistry of Materials 2021, 33 (18) , 7484-7498. https://doi.org/10.1021/acs.chemmater.1c02345
    91. Andrey Golov, Javier Carrasco. Molecular-Level Insight into the Interfacial Reactivity and Ionic Conductivity of a Li-Argyrodite Li6PS5Cl Solid Electrolyte at Bare and Coated Li-Metal Anodes. ACS Applied Materials & Interfaces 2021, 13 (36) , 43734-43745. https://doi.org/10.1021/acsami.1c12753
    92. Ruo Zhao, Lei Gao, Manrong Song, Yu Ye, Zibin Liang, Juncao Bian, Jinlong Zhu, Shuai Li, Ruqiang Zou, Yusheng Zhao. Stabilization of NASICON-Type Electrolyte against Li Anode via an Ionic Conductive MOF-Incorporated Adhesive Interlayer. ACS Energy Letters 2021, 6 (9) , 3141-3150. https://doi.org/10.1021/acsenergylett.1c01551
    93. Agnieszka Priebe, Jordi Sastre, Moritz H. Futscher, Jakub Jurczyk, Marcos V. Puydinger dos Santos, Yaroslav E. Romanyuk, Johann Michler. Detection of Au+ Ions During Fluorine Gas-Assisted Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) for the Complete Elemental Characterization of Microbatteries. ACS Applied Materials & Interfaces 2021, 13 (34) , 41262-41274. https://doi.org/10.1021/acsami.1c10352
    94. Yuanyuan Zhu, Ying Zhang, Pratteek Das, Zhong-Shuai Wu. Recent Advances in Interface Engineering and Architecture Design of Air-Stable and Water-Resistant Lithium Metal Anodes. Energy & Fuels 2021, 35 (16) , 12902-12920. https://doi.org/10.1021/acs.energyfuels.1c01904
    95. He Gan, Rilei Wang, Jing Wu, Hui Chen, Run Li, Hongbo Liu. Coupling a 3D Lithophilic Skeleton with a Fluorine-Enriched Interface to Enable Stable Lithium Metal Anode. ACS Applied Materials & Interfaces 2021, 13 (31) , 37162-37171. https://doi.org/10.1021/acsami.1c09353
    96. Christian Hänsel, Baltej Singh, David Kiwic, Pieremanuele Canepa, Dipan Kundu. Favorable Interfacial Chemomechanics Enables Stable Cycling of High-Li-Content Li–In/Sn Anodes in Sulfide Electrolyte-Based Solid-State Batteries. Chemistry of Materials 2021, 33 (15) , 6029-6040. https://doi.org/10.1021/acs.chemmater.1c01431
    97. Masakuni Takahashi, Toshiki Watanabe, Kentaro Yamamoto, Koji Ohara, Atsushi Sakuda, Takuya Kimura, Seunghoon Yang, Koji Nakanishi, Tomoki Uchiyama, Masao Kimura, Akitoshi Hayashi, Masahiro Tatsumisago, Yoshiharu Uchimoto. Investigation of the Suppression of Dendritic Lithium Growth with a Lithium-Iodide-Containing Solid Electrolyte. Chemistry of Materials 2021, 33 (13) , 4907-4914. https://doi.org/10.1021/acs.chemmater.1c00270
    98. Zhong-Heng Fu, Xiang Chen, Chen-Zi Zhao, Hong Yuan, Rui Zhang, Xin Shen, Xia-Xia Ma, Yang Lu, Quan-Bing Liu, Li-Zhen Fan, Qiang Zhang. Stress Regulation on Atomic Bonding and Ionic Diffusivity: Mechanochemical Effects in Sulfide Solid Electrolytes. Energy & Fuels 2021, 35 (12) , 10210-10218. https://doi.org/10.1021/acs.energyfuels.1c00488
    99. Kostiantyn V. Kravchyk, Faruk Okur, Maksym V. Kovalenko. Break-Even Analysis of All-Solid-State Batteries with Li-Garnet Solid Electrolytes. ACS Energy Letters 2021, 6 (6) , 2202-2207. https://doi.org/10.1021/acsenergylett.1c00672
    100. Peichao Zou, Yiming Sui, Houchao Zhan, Chunyang Wang, Huolin L. Xin, Hui-Ming Cheng, Feiyu Kang, Cheng Yang. Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under Multiphysical Fields. Chemical Reviews 2021, 121 (10) , 5986-6056. https://doi.org/10.1021/acs.chemrev.0c01100
    Load more citations

    Chemical Reviews

    Cite this: Chem. Rev. 2020, 120, 15, 7745–7794
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemrev.0c00431
    Published July 27, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    26k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.