ACS Publications. Most Trusted. Most Cited. Most Read
Understanding the Effect of Water on CO2 Adsorption
My Activity
    Review

    Understanding the Effect of Water on CO2 Adsorption
    Click to copy article linkArticle link copied!

    • Joel M. Kolle
      Joel M. Kolle
      Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
    • Mohammadreza Fayaz
      Mohammadreza Fayaz
      Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
    • Abdelhamid Sayari*
      Abdelhamid Sayari
      Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
      *Email: [email protected]
    Other Access Options

    Chemical Reviews

    Cite this: Chem. Rev. 2021, 121, 13, 7280–7345
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemrev.0c00762
    Published May 11, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Carbon capture from large sources and ambient air is one of the most promising strategies to curb the deleterious effect of greenhouse gases. Among different technologies, CO2 adsorption has drawn widespread attention mostly because of its low energy requirements. Considering that water vapor is a ubiquitous component in air and almost all CO2-rich industrial gas streams, understanding its impact on CO2 adsorption is of critical importance. Owing to the large diversity of adsorbents, water plays many different roles from a severe inhibitor of CO2 adsorption to an excellent promoter. Water may also increase the rate of CO2 capture or have the opposite effect. In the presence of amine-containing adsorbents, water is even necessary for their long-term stability. The current contribution is a comprehensive review of the effects of water whether in the gas feed or as adsorbent moisture on CO2 adsorption. For convenience, we discuss the effect of water vapor on CO2 adsorption over four broadly defined groups of materials separately, namely (i) physical adsorbents, including carbons, zeolites and MOFs, (ii) amine-functionalized adsorbents, and (iii) reactive adsorbents, including metal carbonates and oxides. For each category, the effects of humidity level on CO2 uptake, selectivity, and adsorption kinetics under different operational conditions are discussed. Whenever possible, findings from different sources are compared, paying particular attention to both similarities and inconsistencies. For completeness, the effect of water on membrane CO2 separation is also discussed, albeit briefly.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 160 publications.

    1. Zakhar A. Markin, Anna A. Golovacheva, Ksenia V. Otvagina, Anton N. Petukhov, Artyom N. Markov, Alexander A. Logunov, Artem A. Atlaskin, Anton L. Esipovich, Andrey V. Vorotyntsev, Olga V. Kazarina. Development of Multifunctional Choline-Like Ionic Solvents for Ammonia and Carbon Dioxide Capture and Transformation of Latter. Industrial & Engineering Chemistry Research 2024, 63 (47) , 20729-20745. https://doi.org/10.1021/acs.iecr.4c02810
    2. Yanlin Chen, Lijun Zhu, Junye Wu, Kuihua Wang, Tianshu Ge. Feasibility and Effectivity of an Amine-Grafted Alumina Adsorbent for Direct Air Capture. Langmuir 2024, Article ASAP.
    3. Mingrui Wang, Guanghui Zhang, Hao Wang, Zhiqun Wang, Yu Zhou, Xiaowa Nie, Ben Hang Yin, Chunshan Song, Xinwen Guo. Understanding and Tuning the Effects of H2O on Catalytic CO and CO2 Hydrogenation. Chemical Reviews 2024, 124 (21) , 12006-12085. https://doi.org/10.1021/acs.chemrev.4c00282
    4. Shubham Jamdade, Xuqing Cai, Melissa R. Allen-Dumas, David S. Sholl. Incorporating Diurnal and Meter-Scale Variations of Ambient CO2 Concentrations in Development of Direct Air Capture Technologies. ACS Sustainable Chemistry & Engineering 2024, 12 (45) , 16680-16691. https://doi.org/10.1021/acssuschemeng.4c06158
    5. Huafeng Li, Hui Kong, Jianzhong Guo, Bing Li, Shanshan Zhang, Suzhi Li, Junwei Zhao, Liqun Bai. First Photocatalytic Synthesis of Cyclic Carbonates from CO2 Using Bromide-Functionalized Polyoxometalate without Additional Cocatalyst. ACS Sustainable Chemistry & Engineering 2024, 12 (44) , 16396-16408. https://doi.org/10.1021/acssuschemeng.4c06676
    6. Margot F. K. Verstreken, Nicolas Chanut, Yann Magnin, Héctor Octavio Rubiera Landa, Joeri F. M. Denayer, Gino V. Baron, Rob Ameloot. Mind the Gap: The Role of Mass Transfer in Shaped Nanoporous Adsorbents for Carbon Dioxide Capture. Journal of the American Chemical Society 2024, 146 (34) , 23633-23648. https://doi.org/10.1021/jacs.4c03086
    7. Xin Zhang, Yan-Long Zhao, Xiang-Yu Li, Xuefeng Bai, Qiancheng Chen, Jian-Rong Li. Recovery of High-Purity SF6 from Humid SF6/N2 Mixture within a Co(II)-Pyrazolate Framework. Journal of the American Chemical Society 2024, 146 (28) , 19303-19309. https://doi.org/10.1021/jacs.4c05075
    8. Jong Hyeak Choe, Hyojin Kim, Hongryeol Yun, Jintu Francis Kurisingal, Namju Kim, Donggyu Lee, Yong Hoon Lee, Chang Seop Hong. Extended MOF-74-Type Variant with an Azine Linkage: Efficient Direct Air Capture and One-Pot Synthesis. Journal of the American Chemical Society 2024, 146 (28) , 19337-19349. https://doi.org/10.1021/jacs.4c05318
    9. Jon Hastings, Thomas Lassitter, Nicholas Fylstra, George K. H. Shimizu, T. Grant Glover. Steam Isotherms, CO2/H2O Mixed-Gas Isotherms, and Single-Component CO2 and H2O Diffusion Rates in CALF-20. Industrial & Engineering Chemistry Research 2024, 63 (26) , 11544-11551. https://doi.org/10.1021/acs.iecr.4c00373
    10. Mason C. Lawrence, Aidan M. Spoel, Michael J. Katz. Pore Perfection vs Defect Design: Examining the Complex Relationship between Pore Structure and Carbon Dioxide Adsorption in Zr-Based MOFs. The Journal of Physical Chemistry C 2024, 128 (25) , 10698-10704. https://doi.org/10.1021/acs.jpcc.4c02334
    11. Xuqing Cai, Mark A. Coletti, David S. Sholl, Melissa R. Allen-Dumas. Assessing Impacts of Atmospheric Conditions on Efficiency and Siting of Large-Scale Direct Air Capture Facilities. JACS Au 2024, 4 (5) , 1883-1891. https://doi.org/10.1021/jacsau.4c00082
    12. Chao Wang, Xue-Wen Zhang, Xiao-Xian Chen, Wei-Xiong Zhang, Jie-Peng Zhang. Isomeric Porous Cu(I) Triazolate Frameworks Showing Periodic and Aperiodic Flexibility for Efficient CO Separation. Journal of the American Chemical Society 2024, 146 (20) , 13886-13893. https://doi.org/10.1021/jacs.4c01539
    13. Alexandra J. Ringsby, Cynthia M. Ross, Kate Maher. Sorption of Soil Carbon Dioxide by Biochar and Engineered Porous Carbons. Environmental Science & Technology 2024, 58 (19) , 8313-8325. https://doi.org/10.1021/acs.est.4c02015
    14. Daniel Pereira, Marina Ilkaeva, Francisco Vicente, Ricardo Vieira, Mariana Sardo, Mirtha A. O. Lourenço, Armando Silvestre, Ildefonso Marin-Montesinos, Luís Mafra. Valorization of Crab Shells as Potential Sorbent Materials for CO2 Capture. ACS Omega 2024, 9 (16) , 17956-17965. https://doi.org/10.1021/acsomega.3c09423
    15. Hongjun Liu, Hongfei Lin, Sheng Dai, De-en Jiang. Minimal Kinetic Model of Direct Air Capture of CO2 by Supported Amine Sorbents in Dry and Humid Conditions. Industrial & Engineering Chemistry Research 2024, 63 (13) , 5871-5879. https://doi.org/10.1021/acs.iecr.3c04535
    16. Ojuolape O. Oghenetega, Pasquale Fulvio, N. Scott Bobbitt, Krista S. Walton. Single-Component Adsorption Equilibria of CO2, CH4, Water, and Acetone on Tapered Porous Carbon Molecular Sieves. Journal of Chemical & Engineering Data 2024, 69 (3) , 1411-1422. https://doi.org/10.1021/acs.jced.3c00368
    17. Naipu He, Wen Li, Tingting Shi, Zongjie Li, Fengchuan Guo, Zongxin Li, Xuerui Zhao. Modulated Growth of MOFs to Fabricate ZIF-8@Chitosan/Polyvinylpyrrolidone Hydrogels with Improved Adsorption Capacity for CO2. ACS Applied Polymer Materials 2024, 6 (5) , 2814-2822. https://doi.org/10.1021/acsapm.3c03026
    18. Xiaoliang Wang, Maytham Alzayer, Arthur J. Shih, Saptasree Bose, Haomiao Xie, Simon M. Vornholt, Christos D. Malliakas, Hussain Alhashem, Faramarz Joodaki, Sammer Marzouk, Grace Xiong, Mark Del Campo, Pierre Le Magueres, Filip Formalik, Debabrata Sengupta, Karam B. Idrees, Kaikai Ma, Yongwei Chen, Kent O. Kirlikovali, Timur Islamoglu, Karena W. Chapman, Randall Q. Snurr, Omar K. Farha. Tailoring Hydrophobicity and Pore Environment in Physisorbents for Improved Carbon Dioxide Capture under High Humidity. Journal of the American Chemical Society 2024, 146 (6) , 3943-3954. https://doi.org/10.1021/jacs.3c11671
    19. Jong Hyeak Choe, Hyojin Kim, Hongryeol Yun, Minjung Kang, Sookyung Park, Sumin Yu, Chang Seop Hong. Boc Protection for Diamine-Appended MOF Adsorbents to Enhance CO2 Recyclability under Realistic Humid Conditions. Journal of the American Chemical Society 2024, 146 (1) , 646-659. https://doi.org/10.1021/jacs.3c10475
    20. Hwangho Lee, Dan Xie, Stacey I. Zones, Alexander Katz. CO2 Desorbs Water from K-MER Zeolite under Equilibrium Control. Journal of the American Chemical Society 2024, 146 (1) , 68-72. https://doi.org/10.1021/jacs.3c10834
    21. May-Yin Ashlyn Low, David Danaci, Hassan Azzan, Robert T. Woodward, Camille Petit. Measurement of Physicochemical Properties and CO2, N2, Ar, O2, and H2O Unary Adsorption Isotherms of Purolite A110 and Lewatit VP OC 1065 for Application in Direct Air Capture. Journal of Chemical & Engineering Data 2023, 68 (12) , 3499-3511. https://doi.org/10.1021/acs.jced.3c00401
    22. Yuanyuan Zhang, Haitao Li, Tomas Ramirez Reina, Jian Liu. Coal Chemistry Industry: From Production of Liquid Fuels to Fine Chemicals to Carbon Materials. Energy & Fuels 2023, 37 (23) , 17754-17764. https://doi.org/10.1021/acs.energyfuels.3c02661
    23. Yann Magnin, Estelle Dirand, Guillaume Maurin, Philip L. Llewellyn. Abnormal CO2 and H2O Diffusion in CALF-20(Zn) Metal–Organic Framework: Fundamental Understanding of CO2 Capture. ACS Applied Nano Materials 2023, 6 (21) , 19963-19971. https://doi.org/10.1021/acsanm.3c03752
    24. Youhong Guo, Vittoria Bolongaro, T. Alan Hatton. Scalable Biomass-Derived Hydrogels for Sustainable Carbon Dioxide Capture. Nano Letters 2023, 23 (21) , 9697-9703. https://doi.org/10.1021/acs.nanolett.3c02157
    25. Chaehoon Kim, Yejee Ha, Minkee Choi. Design of Amine-Containing Nanoporous Materials for Postcombustion CO2 Capture from Engineering Perspectives. Accounts of Chemical Research 2023, 56 (21) , 2887-2897. https://doi.org/10.1021/acs.accounts.3c00326
    26. Jiuyang Jia, Haiqian Zhao, Mingqi He, Zhonghua Wang, Zekun Sun, Xue Yang, Qi Yu, Zhibin Qu, Xinxin Pi, Feng Yao. Investigation of the Mechanisms of CO2/O2 Adsorption Selectivity on Carbon Materials Enhanced by Oxygen Functional Groups. Langmuir 2023, 39 (41) , 14699-14710. https://doi.org/10.1021/acs.langmuir.3c02076
    27. Taishi Kataoka, Yasuhiko Orita, Yusuke Shimoyama. Photothermal Release of CO2 Using Carbon/Silica Composite toward Direct Air Capture. Industrial & Engineering Chemistry Research 2023, 62 (40) , 16383-16389. https://doi.org/10.1021/acs.iecr.3c01721
    28. Thien S. Nguyen, Nesibe A. Dogan, Haeseong Lim, Cafer T. Yavuz. Amine Chemistry of Porous CO2 Adsorbents. Accounts of Chemical Research 2023, 56 (19) , 2642-2652. https://doi.org/10.1021/acs.accounts.3c00367
    29. Ruirui Yun, Beibei Zhang, Changsong Shi, Ruiming Xu, Ting Suo. Intermetallic Compound with CuNi Sites for Enhancing the Selectivity of Electrochemical CO2 Conversion. Inorganic Chemistry 2023, 62 (38) , 15790-15796. https://doi.org/10.1021/acs.inorgchem.3c02789
    30. Laigang Hu, Wenhao Wu, Ling Jiang, Min Hu, Hongxia Zhu, Li Gong, Jiahui Yang, Daohui Lin, Kun Yang. Methyl-Functionalized Al-Based MOF ZJU-620(Al): A Potential Physisorbent for Carbon Dioxide Capture. ACS Applied Materials & Interfaces 2023, 15 (37) , 43925-43932. https://doi.org/10.1021/acsami.3c10086
    31. Pranjali Priyadarshini, Guanhe Rim, Cornelia Rosu, MinGyu Song, Christopher W. Jones. Direct Air Capture of CO2 Using Amine/Alumina Sorbents at Cold Temperature. ACS Environmental Au 2023, 3 (5) , 295-307. https://doi.org/10.1021/acsenvironau.3c00010
    32. Quirin Grossmann, Valentina Stampi-Bombelli, Alexander Yakimov, Scott Docherty, Christophe Copéret, Marco Mazzotti. Developing Versatile Contactors for Direct Air Capture of CO2 through Amine Grafting onto Alumina Pellets and Alumina Wash-Coated Monoliths. Industrial & Engineering Chemistry Research 2023, 62 (34) , 13594-13611. https://doi.org/10.1021/acs.iecr.3c01265
    33. Xueqin Li, Kai Chen, Ruili Guo, Zhong Wei. Ionic Liquids Functionalized MOFs for Adsorption. Chemical Reviews 2023, 123 (16) , 10432-10467. https://doi.org/10.1021/acs.chemrev.3c00248
    34. Vinicius Martins, Bryan E.G. Lucier, Zhiqang Liu, Heng Liang, Anmin Zheng, Victor V. Terskikh, Wanli Zhang, Bligh E. Desveaux, Yining Huang. Cold, Hot, Dry, and Wet: Locations and Dynamics of CO2 and H2O Co-Adsorbed in an Ultramicroporous MOF. Inorganic Chemistry 2023, 62 (28) , 11152-11167. https://doi.org/10.1021/acs.inorgchem.3c01251
    35. Bingyao Ge, Chunping Chen, Zhuozhen Gan, Xuancan Zhu, Yihe Miao, Yaozu Wang, Tianshu Ge, Dermot O’Hare, Ruzhu Wang. Scalable Synthesis of Amine-Grafted Ultrafine Layered Double Hydroxide Nanosheets with Improved Carbon Dioxide Capture Capacity from Air. ACS Sustainable Chemistry & Engineering 2023, 11 (25) , 9282-9287. https://doi.org/10.1021/acssuschemeng.3c01183
    36. Hugo Veldhuizen, Saira Alam Butt, Annemiek van Leuken, Bart van der Linden, Willy Rook, Sybrand van der Zwaag, Monique A. van der Veen. Competitive and Cooperative CO2–H2O Adsorption through Humidity Control in a Polyimide Covalent Organic Framework. ACS Applied Materials & Interfaces 2023, 15 (24) , 29186-29194. https://doi.org/10.1021/acsami.3c04561
    37. Srinivasu Kancharlapalli, Randall Q. Snurr. High-Throughput Screening of the CoRE-MOF-2019 Database for CO2 Capture from Wet Flue Gas: A Multi-Scale Modeling Strategy. ACS Applied Materials & Interfaces 2023, 15 (23) , 28084-28092. https://doi.org/10.1021/acsami.3c04079
    38. Fnu Gorky, Hoang M. Nguyen, Keerthana Krishnan, Jolie M. Lucero, Maria L. Carreon, Moises A. Carreon. Plasma-Induced Desorption of Methane and Carbon Dioxide over Silico Alumino Phosphate Zeolites. ACS Applied Energy Materials 2023, 6 (8) , 4380-4389. https://doi.org/10.1021/acsaem.3c00426
    39. Husam Al Araj, Daniel Bahamon, K. Suresh Kumar Reddy, Lourdes F. Vega, Georgios N. Karanikolos. A Systematic Approach to Understanding and Optimizing the CO2 Capture Performance of Triamine-Functionalized Mesoporous Silica with Amine Blends Using Molecular Simulations. The Journal of Physical Chemistry C 2023, 127 (15) , 7410-7424. https://doi.org/10.1021/acs.jpcc.2c08453
    40. Lukas W. Bingel, Krista S. Walton. Surprising Use of the Business Innovation Bass Diffusion Model To Accurately Describe Adsorption Isotherm Types I, III, and V. Langmuir 2023, 39 (12) , 4475-4482. https://doi.org/10.1021/acs.langmuir.3c00147
    41. Gabriela C. del Valle-Pérez, Juan C. Muñoz-Senmache, Perla E. Cruz-Tato, Eduardo Nicolau, Arturo J. Hernández-Maldonado. Carbon Dioxide Removal from Humid Atmosphere by a Porous Hierarchical Silicoaluminophosphate/Carbon Composite Adsorbent. ACS Applied Engineering Materials 2023, 1 (2) , 790-801. https://doi.org/10.1021/acsaenm.2c00208
    42. MinGyu Song, Guanhe Rim, Fanhe Kong, Pranjali Priyadarshini, Cornelia Rosu, Ryan P. Lively, Christopher W. Jones. Cold-Temperature Capture of Carbon Dioxide with Water Coproduction from Air Using Commercial Zeolites. Industrial & Engineering Chemistry Research 2022, 61 (36) , 13624-13634. https://doi.org/10.1021/acs.iecr.2c02041
    43. Haisong Feng, Chunyuan Chen, Si Wang, Meng Zhang, Hu Ding, Yujie Liang, Xin Zhang. Theoretical Investigation of Cu–Au Alloy for Carbon Dioxide Electroreduction: Cu/Au Ratio Determining C1/C2 Selectivity. The Journal of Physical Chemistry Letters 2022, 13 (34) , 8002-8009. https://doi.org/10.1021/acs.jpclett.2c02161
    44. Jong Hyeak Choe, Hyojin Kim, Minjung Kang, Hongryeol Yun, Sun Young Kim, Su Min Lee, Chang Seop Hong. Functionalization of Diamine-Appended MOF-Based Adsorbents by Ring Opening of Epoxide: Long-Term Stability and CO2 Recyclability under Humid Conditions. Journal of the American Chemical Society 2022, 144 (23) , 10309-10319. https://doi.org/10.1021/jacs.2c01488
    45. Abeer Al Mohtar, Moisés L. Pinto. Water Effect on CO2 Adsorption Kinetics in Amine-Functionalized Silicas Assessed Using the Density Functional Theory. The Journal of Physical Chemistry C 2022, 126 (11) , 5159-5166. https://doi.org/10.1021/acs.jpcc.1c10716
    46. Lingcong Li, Shinta Miyazaki, Shunsaku Yasumura, Kah Wei Ting, Takashi Toyao, Zen Maeno, Ken-ichi Shimizu. Continuous CO2 Capture and Selective Hydrogenation to CO over Na-Promoted Pt Nanoparticles on Al2O3. ACS Catalysis 2022, 12 (4) , 2639-2650. https://doi.org/10.1021/acscatal.1c05339
    47. Yann Magnin, Estelle Dirand, Alejandro Orsikowsky, Mélanie Plainchault, Véronique Pugnet, Philippe Cordier, Philip L. Llewellyn. A Step in Carbon Capture from Wet Gases: Understanding the Effect of Water on CO2 Adsorption and Diffusion in UiO-66. The Journal of Physical Chemistry C 2022, 126 (6) , 3211-3220. https://doi.org/10.1021/acs.jpcc.1c09914
    48. Li-Hui Cao, Yan Yang, Xiao-Han Tang, Xu Wang, Zheng Yin. Substituent Controlled Framework Transformation Based on Solvent-Assisted Linker Exchange. Crystal Growth & Design 2022, 22 (1) , 37-42. https://doi.org/10.1021/acs.cgd.1c00949
    49. X. Wang, P. Ma, Y.J. Jing, C. Yu, H. Qiu, C. Kang, Z. Cui, K. Hou, A.C.K. Yip, B.H. Yin. A soluble and recyclable polymeric adsorbent of intrinsic microporosity for CO2 capture. Materials Today Sustainability 2023, 24 , 100484. https://doi.org/10.1016/j.mtsust.2023.100484
    50. Meixue Zhao, Jianping Guo, Qingping Xin, Yanli Zhang, Xu Li, Xiaoli Ding, Lei Zhang, Lizhi Zhao, Hui Ye, Hong Li, Guangyu Xuan, Yuzhong Zhang. Novel aminated F-Ce nanosheet mixed matrix membranes with controllable channels for CO2 capture. Separation and Purification Technology 2023, 324 , 124512. https://doi.org/10.1016/j.seppur.2023.124512
    51. Amirjavad Ahmadian Hosseini, Masoud Jahandar Lashaki. A comprehensive evaluation of amine-impregnated silica materials for direct air capture of carbon dioxide. Separation and Purification Technology 2023, 325 , 124580. https://doi.org/10.1016/j.seppur.2023.124580
    52. Olusola Johnson, Umadevi Gopalakrishnan, Babu Joseph, John N. Kuhn. Landfill gas upgrading using amine-functionalized silica sorbents. International Journal of Green Energy 2023, 20 (13) , 1451-1458. https://doi.org/10.1080/15435075.2022.2156293
    53. Lingxiang Huang, Yue Ma, Mufan Niu, Shenyong Ren, Qiaoxia Guo, Chunming Xu, Baojian Shen. Formation of H2O in the CH4-CO2 dry reforming process and its activation to this reaction over Ni-Fe/MC12A7 catalysts. Applied Catalysis B: Environmental 2023, 334 , 122822. https://doi.org/10.1016/j.apcatb.2023.122822
    54. Long Jiang, Jinyuan Yong, Renyu Xie, Pengfei Xie, Xuejun Zhang, Zhijie Chen, Zongbi Bao. Screening, preparation, and prototyping of metal–organic frameworks for adsorptive carbon capture under humid conditions. SusMat 2023, 41 https://doi.org/10.1002/sus2.154
    55. Aaro Luukkonen, Jere Elfving, Eero Inkeri. Improving adsorption-based direct air capture performance through operating parameter optimization. Chemical Engineering Journal 2023, 471 , 144525. https://doi.org/10.1016/j.cej.2023.144525
    56. Yinji Wan, Dekai Kong, Feng Xiong, Tianjie Qiu, Song Gao, Qiuning Zhang, Yefan Miao, Mulin Qin, Shengqiang Wu, Yonggang Wang, Ruiqin Zhong, Ruqiang Zou. Enhancing hydrophobicity via core–shell metal organic frameworks for high-humidity flue gas CO2 capture. Chinese Journal of Chemical Engineering 2023, 61 , 82-89. https://doi.org/10.1016/j.cjche.2023.03.002
    57. Jean Paul Harrouz, Jennifer Karam, Kamel Ghali, Nesreen Ghaddar. Personalized ventilation with embedded air treatment system for simultaneous cooling and sorption-based carbon and humidity capture. Energy Conversion and Management 2023, 291 , 117290. https://doi.org/10.1016/j.enconman.2023.117290
    58. X. Duan, G. Song, G. Lu, Y. Wang, J. Sun, A. Chen, X. Xie. Chemisorption and regeneration of amine-based CO2 sorbents in direct air capture. Materials Today Sustainability 2023, 23 , 100453. https://doi.org/10.1016/j.mtsust.2023.100453
    59. Fangdi Dong, Xu Wang, Zhiqiang Zhao, Shuai Gao, Guo Wang, Kai Li, Yuqing Lin. Ligand “lock and fix” strategy provides stability to metal-organic frameworks for photodegradation processes. Cell Reports Physical Science 2023, 4 (9) , 101545. https://doi.org/10.1016/j.xcrp.2023.101545
    60. Niamh A. Hartley, Suzi M. Pugh, Zhen Xu, Daniel C. Y. Leong, Adam Jaffe, Alexander C. Forse. Quinone-functionalised carbons as new materials for electrochemical carbon dioxide capture. Journal of Materials Chemistry A 2023, 11 (30) , 16221-16232. https://doi.org/10.1039/D3TA02213G
    61. Muhammad I. Qadir, Jairton Dupont. Thermo‐ and Photocatalytic Activation of CO 2 in Ionic Liquids Nanodomains. Angewandte Chemie 2023, 135 (31) https://doi.org/10.1002/ange.202301497
    62. Muhammad I. Qadir, Jairton Dupont. Thermo‐ and Photocatalytic Activation of CO 2 in Ionic Liquids Nanodomains. Angewandte Chemie International Edition 2023, 62 (31) https://doi.org/10.1002/anie.202301497
    63. Deng Long, Jia Liu, Hongyu Chen, Pei Liu, Kai Zheng, Yibo Zeng, Xinyi Chen, Shuang Li, Miao Lu. Electronegative diversity induced localized built-in electric field in a single phased MoSxSeyNz for selectivity-enhanced visible photocatalytic CO2 reduction. Applied Catalysis B: Environmental 2023, 330 , 122625. https://doi.org/10.1016/j.apcatb.2023.122625
    64. Felix Otieno Okello, Timothy Tizhe Fidelis, John Agumba, Timothy Manda, Livingstone Ochilo, Asif Mahmood, Anthony Pembere. Towards estimation and mechanism of CO2 adsorption on zeolite adsorbents using molecular simulations and machine learning. Materials Today Communications 2023, 36 , 106594. https://doi.org/10.1016/j.mtcomm.2023.106594
    65. Min Li, Ji-Xin Xie, Peng Tan, Jun Liu, Chen Gu, Xiao-Qin Liu, Lin-Bing Sun. Precise heating of adsorption sites induced by visible light irradiation. Separation and Purification Technology 2023, 318 , 123968. https://doi.org/10.1016/j.seppur.2023.123968
    66. Nikola L. Drenchev, Boris L. Shivachev, Lubomir D. Dimitrov, Konstantin I. Hadjiivanov. Effect of Water on CO2 Adsorption on CaNaY Zeolite: Formation of Ca2+(H2O)(CO2), Ca2+(H2O)(CO2)2 and Ca2+(H2O)2(CO2) Complexes. Nanomaterials 2023, 13 (16) , 2278. https://doi.org/10.3390/nano13162278
    67. Arvind Rajendran, George K. H. Shimizu, Tom K. Woo. The Challenge of Water Competition in Physical Adsorption of CO 2 by Porous Solids for Carbon Capture Applications – A Short Perspective. Advanced Materials 2023, https://doi.org/10.1002/adma.202301730
    68. Xuemin Zhang, Pengyu Li, Qing Yuan, Jinping Li, Tao Shan, Qingbai Wu, Yingmei Wang. A comprehensive review of the influence of particle size and pore distribution on the kinetics of CO 2 hydrate formation in porous media. Greenhouse Gases: Science and Technology 2023, 30 https://doi.org/10.1002/ghg.2239
    69. Wenjie Luo, Bo Li, Mengxia Xu, Chengheng Pang, Edward Lester, Kien-Woh Kow. Accelerated curing of cement mortar: In-situ carbonation utilising CO2-impregnated faujasite. Construction and Building Materials 2023, 388 , 131639. https://doi.org/10.1016/j.conbuildmat.2023.131639
    70. Mohammad Shabani Nashtaei, Afsaneh Mollahosseini, Mahboubeh Rabbani, Payam Shabannashtaei, Sina Parvaz. Preparing PAN/MOF nanofiber composite by electrospinning method for carbon dioxide adsorption. Inorganic Chemistry Communications 2023, 153 , 110731. https://doi.org/10.1016/j.inoche.2023.110731
    71. Liqi Qiu, Li Peng, Debabrata Moitra, Hongjun Liu, Yuqing Fu, Zhun Dong, Wenda Hu, Ming Lei, De‐en Jiang, Hongfei Lin, Jianzhi Hu, Kathryn A. McGarry, Ilja Popovs, Meijia Li, Alexander S. Ivanov, Zhenzhen Yang, Sheng Dai. Harnessing the Hybridization of a Metal‐Organic Framework and Superbase‐Derived Ionic Liquid for High‐Performance Direct Air Capture of CO 2. Small 2023, https://doi.org/10.1002/smll.202302708
    72. Chaohui He, Peng Zhang, Sai Ma, Yujuan Zhang, Tuoping Hu. Efficient separation of CO 2 from CH 4 and N 2 in an ultra-stable microporous metal–organic framework. Dalton Transactions 2023, 52 (23) , 7975-7981. https://doi.org/10.1039/D3DT01022H
    73. Wen Li, Xinyao Liu, Guanghua Li, Yunling Liu. A Fluorescent In(III) Metal-Organic Framework for Explosives Detection. Chemical Research in Chinese Universities 2023, 74 https://doi.org/10.1007/s40242-023-3058-5
    74. Haotian Jiang, Yinglai Hou, Zengwei Liu, Ruizhe Yuan, Yu Du, Xiaofei Ji, Zhizhi Sheng, Xuetong Zhang. Liquid‐in‐Aerogel Porous Composite Allows Efficient CO 2 Capture and CO 2 /N 2 Separation. Small 2023, https://doi.org/10.1002/smll.202302627
    75. Hadi Tabesh, Mohammad Hossein Gholami, Marjan Marefat, . The Effect of Sweeping Media and Temperature on Aqueous CO2 Removal Using Hollow Fiber Membrane Contactor (HFMC): An Experimental Determination. International Journal of Chemical Engineering 2023, 2023 , 1-10. https://doi.org/10.1155/2023/3577656
    76. Paul E. Savas, Wala A. Algozeeb, Zhe Wang, Carter Kittrell, Xiaowei Wu, Jacklyn N. Hall, Thomas B. Malloy, Praveen Bollini, James M. Tour. Carbon Dioxide Sorbent from Construction and Textile Plastic Waste. Advanced Sustainable Systems 2023, 7 (6) https://doi.org/10.1002/adsu.202200436
    77. Hanwen Jian, Kaiming Deng, Tongyu Wang, Chengxi Huang, Fang Wu, Hailing Huo, Bo Ouyang, Xuan Liu, Jingjing Ma, Erjun Kan, Ang Li. High-density triple-phase contact points for enhanced photocatalytic CO2 reduction to methanol. Chinese Chemical Letters 2023, 10 , 108651. https://doi.org/10.1016/j.cclet.2023.108651
    78. Zhen Huang, Lingri Ying, Fengchun Gong, Jianfeng Lu, Weilong Wang, Jing Ding, Jinyue Yan. Aminosilane-functionalized Ti-based metal–organic framework for efficient and selective CO2 adsorption. Journal of Environmental Chemical Engineering 2023, 11 (3) , 109739. https://doi.org/10.1016/j.jece.2023.109739
    79. A. Thomas, S. Kamalakannan, A. Cheriyan, M. Prakash. Theoretical studies on the role of water in ionic liquids at ZIF (IL@ZIF) complex and its effect on selective CO2 separation. Materials Today Sustainability 2023, 22 , 100376. https://doi.org/10.1016/j.mtsust.2023.100376
    80. Meng Yang, Shujuan Wang, Lizhen Xu. Hydrophobic functionalized amine-impregnated resin for CO2 capture in humid air. Separation and Purification Technology 2023, 315 , 123606. https://doi.org/10.1016/j.seppur.2023.123606
    81. Yiqun Guo, Xuxin Kang, Shan Gao, Xiangmei Duan. Charge-controlled switchable CO 2 capture and gas separation using BC 3 nanosheets. Physical Chemistry Chemical Physics 2023, 25 (17) , 12420-12425. https://doi.org/10.1039/D3CP00653K
    82. Yanzheng Ji, Xingyu Liu, Haochen Li, Xuan Jiao, Xinquan Yu, Youfa Zhang. Hydrophobic ZIF-8 covered active carbon for CO2 capture from humid gas. Journal of Industrial and Engineering Chemistry 2023, 121 , 331-337. https://doi.org/10.1016/j.jiec.2023.01.036
    83. Xiaoyang Shi, Gahyun Annie Lee, Shuohan Liu, Dongjae Kim, Ammar Alahmed, Aqil Jamal, Lei Wang, Ah-Hyung Alissa Park. Water-stable MOFs and hydrophobically encapsulated MOFs for CO2 capture from ambient air and wet flue gas. Materials Today 2023, 65 , 207-226. https://doi.org/10.1016/j.mattod.2023.03.004
    84. Daniel Pereira, Rita Fonseca, Ildefonso Marin-Montesinos, Mariana Sardo, Luís Mafra. Understanding CO2 adsorption mechanisms in porous adsorbents: A solid-state NMR survey. Current Opinion in Colloid & Interface Science 2023, 64 , 101690. https://doi.org/10.1016/j.cocis.2023.101690
    85. Fan-Ming Yang, Xiao-Yao Zhou, Xi-Da Li, Zhi-Cheng Yi, Rong Feng, Guo-Wen He. Hollow urchin-shaped NCM811 ternary-structure for high rate charge/discharge capability and efficient CO2 adsorption. Journal of Environmental Chemical Engineering 2023, 11 (2) , 109445. https://doi.org/10.1016/j.jece.2023.109445
    86. Cheol-Hwan Shin, Ha-Young Lee, Caleb Gyan-Barimah, Jeong-Hoon Yu, Jong-Sung Yu. Magnesium: properties and rich chemistry for new material synthesis and energy applications. Chemical Society Reviews 2023, 52 (6) , 2145-2192. https://doi.org/10.1039/D2CS00810F
    87. Qing Wu, Chongchong Wu. Mechanism insights on single-atom catalysts for CO 2 conversion. Journal of Materials Chemistry A 2023, 11 (10) , 4876-4906. https://doi.org/10.1039/D2TA06949K
    88. E. Maruccia, A. Piovano, M.A.O. Lourenço, T. Priamushko, M. Cavallo, S. Bocchini, F. Bonino, F.C. Pirri, F. Kleitz, C. Gerbaldi. Revealing the competitive effect of N2 and H2O towards CO2 adsorption in N-rich ordered mesoporous carbons. Materials Today Sustainability 2023, 21 , 100270. https://doi.org/10.1016/j.mtsust.2022.100270
    89. Zhe Wang, Zhuo Li, Liying Liu, Peizhi Cao, Shupeng Li, Gang Kevin Li. Green synthesis of polypyrrole for CO 2 capture from humid flue gases. Green Chemistry 2023, 25 (4) , 1513-1521. https://doi.org/10.1039/D2GC04877A
    90. Yasser Abdullatif, Ahmed Sodiq, Namra Mir, Yusuf Bicer, Tareq Al-Ansari, Muftah H. El-Naas, Abdulkarem I. Amhamed. Emerging trends in direct air capture of CO 2 : a review of technology options targeting net-zero emissions. RSC Advances 2023, 13 (9) , 5687-5722. https://doi.org/10.1039/D2RA07940B
    91. Yi Wang, Zhuoqun Yang, Na Zhang, Danqi Wang, Ruicong Wang, Wencai Peng, Jianshu Zhang, Jichang Liu, Jinli Zhang. CO2 capture and separation with metalloporphyrin nanosheets in an electric field: A DFT study. Applied Surface Science 2023, 610 , 155340. https://doi.org/10.1016/j.apsusc.2022.155340
    92. Shuai Wang, Changrui Shi, Huiquan Liu, Lunxiang Zhang, Jiafei Zhao, Yongchen Song, Zheng Ling. Methionine aqueous solution loaded vermiculite/MXene aerogels for efficient CO2 storage via gas hydrate. Fuel 2023, 334 , 126833. https://doi.org/10.1016/j.fuel.2022.126833
    93. Al Ibtida Sultana, Robert W. Cheatham, M. Toufiq Reza. Deep eutectic solvent pretreatment alters surface morphology and functionality of activated hydrochar resulting in enhanced carbon dioxide capture. Journal of CO2 Utilization 2023, 68 , 102350. https://doi.org/10.1016/j.jcou.2022.102350
    94. Shudan Chi, Yi Ye, Xinglei Zhao, Junteng Liu, Junsu Jin, Le Du, Jianguo Mi. Porous molecular sieve polymer composite with high CO2 adsorption efficiency and hydrophobicity. Separation and Purification Technology 2023, 307 , 122738. https://doi.org/10.1016/j.seppur.2022.122738
    95. Archit Datar, Qiang Lyu, Li‐Chiang Lin. Machine Learning‐Aided Discovery of Nanoporous Materials for Energy‐ and Environmental‐Related Applications. 2023, 283-318. https://doi.org/10.1002/9781119819783.ch11
    96. Mary E. Zick, Donovan Cho, Jianheng Ling, Phillip J. Milner. Carbon Capture Beyond Amines: CO 2 Sorption at Nucleophilic Oxygen Sites in Materials. ChemNanoMat 2023, 9 (1) https://doi.org/10.1002/cnma.202200436
    97. Neeraj Kumar, Rashi Gusain, Suprakas Sinha Ray. Nano-engineered 2D Materials for CO2 Capture. 2023, 409-439. https://doi.org/10.1007/978-3-031-28756-5_14
    98. Jiangnan Wang, Xia Lv, Lu Huang, Long Li, Xueqin Li, Jinli Zhang. Construction of amphiphilic networks in blend membranes for CO2 separation. Korean Journal of Chemical Engineering 2023, 40 (1) , 175-184. https://doi.org/10.1007/s11814-022-1236-7
    99. May-Yin (Ashlyn) Low, Lucy Victoria Barton, Ronny Pini, Camille Petit. Analytical review of the current state of knowledge of adsorption materials and processes for direct air capture. Chemical Engineering Research and Design 2023, 189 , 745-767. https://doi.org/10.1016/j.cherd.2022.11.040
    100. Wadha Al-Hajri, Yannis De Luna, Nasr Bensalah. Review on Recent Applications of Nitrogen‐Doped Carbon Materials in CO 2 Capture and Energy Conversion and Storage. Energy Technology 2022, 10 (12) https://doi.org/10.1002/ente.202200498
    Load all citations

    Chemical Reviews

    Cite this: Chem. Rev. 2021, 121, 13, 7280–7345
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemrev.0c00762
    Published May 11, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    18k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.