Analytical and Biochemical Perspectives of Protein O-GlcNAcylation
- Junfeng Ma*Junfeng Ma*E-mail: [email protected]; [email protected]. Phone: 202-687-3802.Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United StatesMore by Junfeng Ma
- ,
- Ci WuCi WuDepartment of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United StatesMore by Ci Wu
- , and
- Gerald W. Hart*Gerald W. Hart*E-mail: [email protected]. Phone: 706-583-5550.Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United StatesMore by Gerald W. Hart
Abstract

Protein O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) is a unique monosaccharide modification discovered in the early 1980s. With the technological advances in the past several decades, great progress has been made to reveal the biochemistry of O-GlcNAcylation, the substrates of O-GlcNAcylation, and the functional importance of protein O-GlcNAcylation. As a nutrient sensor, protein O-GlcNAcylation plays important roles in almost all biochemical processes examined. Although the functional importance of O-GlcNAcylation of proteins has been extensively reviewed previously, the chemical and biochemical aspects have not been fully addressed. In this review, by critically evaluating key publications in the past 35 years, we aim to provide a comprehensive understanding of this important post-translational modification (PTM) from analytical and biochemical perspectives. Specifically, we will cover (1) multiple analytical advances in the characterization of O-GlcNAc cycling components (i.e., the substrate donor UDP-GlcNAc, the two key enzymes O-GlcNAc transferase and O-GlcNAcase, and O-GlcNAc substrate proteins), (2) the biochemical characterization of the enzymes with a variety of chemical tools, and (3) exploration of O-GlcNAc cycling and its modulating chemicals as potential biomarkers and therapeutic drugs for diseases. Last but not least, we will discuss the challenges and possible solutions for basic and translational research of protein O-GlcNAcylation in the future.
Cited By
This article is cited by 70 publications.
- Stuart P. Moon, Binyou Wang, Benjamin S. Ahn, Andrew H. Ryu, Eldon R. Hard, Afraah Javed, Matthew R. Pratt. O-GlcNAc Modification Alters the Chaperone Activity of HSP27 Charcot-Marie-Tooth Type 2 (CMT2) Variants in a Mutation-Selective Fashion. ACS Chemical Biology 2023, 18 (8) , 1705-1712. https://doi.org/10.1021/acschembio.3c00292
- Binyou Wang, Stuart P. Moon, Giuliano Cutolo, Afraah Javed, Benjamin S. Ahn, Andrew H. Ryu, Matthew R. Pratt. HSP27 Inhibitory Activity against Caspase-3 Cleavage and Activation by Caspase-9 Is Enhanced by Chaperone O-GlcNAc Modification in Vitro. ACS Chemical Biology 2023, 18 (8) , 1698-1704. https://doi.org/10.1021/acschembio.3c00270
- Yawen Luo, Yuqiu Wang, Yinping Tian, Hu Zhou, Liuqing Wen. “Two Birds One Stone” Strategy for the Site-Specific Analysis of Core Fucosylation and O-GlcNAcylation. Journal of the American Chemical Society 2023, 145 (29) , 15879-15887. https://doi.org/10.1021/jacs.3c02976
- Senhan Xu, Kejun Yin, Ronghu Wu. Combining Selective Enrichment and a Boosting Approach to Globally and Site-Specifically Characterize Protein Co-translational O-GlcNAcylation. Analytical Chemistry 2023, 95 (9) , 4371-4380. https://doi.org/10.1021/acs.analchem.2c04779
- Guoli Wang, Yang Li, Ting Wang, Jun Wang, Jun Yao, Guoquan Yan, Ying Zhang, Haojie Lu. Multi-comparative Thermal Proteome Profiling Uncovers New O-GlcNAc Proteins in a System-wide Method. Analytical Chemistry 2023, 95 (2) , 881-888. https://doi.org/10.1021/acs.analchem.2c03371
- Zhongke Shen, Qin Tang, Wei Jiao, Huawu Shao, Xiaofeng Ma. One-Pot Synthesis of 2-C-Branched Glycosyl Triazoles by Integrating 1,2-Cyclopropanated Sugar Ring-Opening Azidation and CuAAC Reaction. The Journal of Organic Chemistry 2022, 87 (24) , 16736-16742. https://doi.org/10.1021/acs.joc.2c02390
- Junfeng Ma, Chunyan Hou, Ci Wu. Demystifying the O-GlcNAc Code: A Systems View. Chemical Reviews 2022, 122 (20) , 15822-15864. https://doi.org/10.1021/acs.chemrev.1c01006
- Ci Wu, Song Shi, Chunyan Hou, Yang Luo, Stephen Byers, Junfeng Ma. Design and Preparation of Novel Nitro-Oxide-Grafted Nanospheres with Enhanced Hydrogen Bonding Interaction for O-GlcNAc Analysis. ACS Applied Materials & Interfaces 2022, 14 (42) , 47482-47490. https://doi.org/10.1021/acsami.2c15039
- Weiyu Li, Chunyan Hou, Yaoxiang Li, Ci Wu, Junfeng Ma. HexNAcQuest: A Tool to Distinguish O-GlcNAc and O-GalNAc. Journal of the American Society for Mass Spectrometry 2022, 33 (10) , 2008-2012. https://doi.org/10.1021/jasms.2c00172
- Jiahui He, Zhiya Fan, Yinping Tian, Weiwei Yang, Yichao Zhou, Qiang Zhu, Wanjun Zhang, Weijie Qin, Wen Yi. Spatiotemporal Activation of Protein O-GlcNAcylation in Living Cells. Journal of the American Chemical Society 2022, 144 (10) , 4289-4293. https://doi.org/10.1021/jacs.1c11041
- Yao Chen, Hongqiang Qin, Xuyang Yue, Jiahua Zhou, Luyao Liu, Yongzhan Nie, Mingliang Ye. Highly Efficient Enrichment of O-GlcNAc Glycopeptides Based on Chemical Oxidation and Reversible Hydrazide Chemistry. Analytical Chemistry 2021, 93 (49) , 16618-16627. https://doi.org/10.1021/acs.analchem.1c04031
- Jianing Tang, Guo Long, Xuanxuan Li, Ledu Zhou, Yangying Zhou, Zheyu Wu. The deubiquitinase EIF3H promotes hepatocellular carcinoma progression by stabilizing OGT and inhibiting ferroptosis. Cell Communication and Signaling 2023, 21 (1) https://doi.org/10.1186/s12964-023-01220-2
- Ana Galesic, Buyan Pan, Jennifer Ramirez, Elizabeth Rhoades, Matthew R. Pratt, E. James Petersson. Combining non-canonical amino acid mutagenesis and native chemical ligation for multiply modifying proteins: A case study of α-synuclein post-translational modifications. Methods 2023, 218 , 101-109. https://doi.org/10.1016/j.ymeth.2023.08.002
- Isadora de Araújo Oliveira, Daniela Maria dos Santos Lucena, Bruno da Costa Rodrigues, Victória Trindade Maller, Rodrigo Nunes da Fonseca, Diego Allonso, Adriane Regina Todeschini. From metabolism to disease: the biological roles of glutamine:fructose-6-phosphate amidotransferase (GFAT). Pure and Applied Chemistry 2023, 95 (9) , 1009-1026. https://doi.org/10.1515/pac-2023-0503
- Xiaoqun Shan, Rong Jiang, Dongmei Gou, Jin Xiang, Peng Zhou, Jie Xia, Kai Wang, Ailong Huang, Ni Tang, Luyi Huang. Identification of a diketopiperazine‐based O‐GlcNAc transferase inhibitor sensitizing hepatocellular carcinoma to CDK9 inhibition. The FEBS Journal 2023, 290 (18) , 4543-4561. https://doi.org/10.1111/febs.16877
- Huanhuan Cai, Wei Xiong, Haoyan Zhu, Qiongxin Wang, Shi Liu, Zhibing Lu. Protein O-GlcNAcylation in multiple immune cells and its therapeutic potential. Frontiers in Immunology 2023, 14 https://doi.org/10.3389/fimmu.2023.1209970
- Shwee Khuan Leong, Yi‐Ju Chen, Jye‐Chian Hsiao, Chun‐Yi Tsai, Jiun‐Jie Shie. Site‐Specific and Multiple Fluorogenic Metabolic Glycan Labeling and Glycoproteomic Profiling in Live Cells. ChemBioChem 2023, 27 https://doi.org/10.1002/cbic.202300522
- Yangzhi Liu, Kairan Yu, Keren Zhang, Mingshan Niu, Qiushi Chen, Yajie Liu, Lingyan Wang, Nana Zhang, Wenli Li, Xiaomin Zhong, Guohui Li, Sijin Wu, Jianing Zhang, Yubo Liu. O ‐GlcNAcylation promotes topoisomerase IIα catalytic activity in breast cancer chemoresistance. EMBO reports 2023, 24 (7) https://doi.org/10.15252/embr.202256458
- Xue-Fen He, Xiaoli Hu, Gao-Jing Wen, Zhiwei Wang, Wen-Jing Lin. O-GlcNAcylation in cancer development and immunotherapy. Cancer Letters 2023, 566 , 216258. https://doi.org/10.1016/j.canlet.2023.216258
- Matthew R. Pratt. A sticky solution to protein-selective sugar installation. Cell Research 2023, 33 (7) , 493-494. https://doi.org/10.1038/s41422-023-00787-2
- Marc Sunden, Divya Upadhyay, Rishi Banerjee, Nina Sipari, Vineta Fellman, Jukka Kallijärvi, Janne Purhonen. Enzymatic assay for UDP-GlcNAc and its application in the parallel assessment of substrate availability and protein O-GlcNAcylation. Cell Reports Methods 2023, 3 (7) , 100518. https://doi.org/10.1016/j.crmeth.2023.100518
- Lianghao Zhai, Xiaoshan Yang, Jian Dong, Luomeng Qian, Yunge Gao, Yanhong Lv, Ligang Chen, Biliang Chen, Fuxing Zhou. O ‑GlcNAcylation mediates endometrial cancer progression by regulating the Hippo‑YAP pathway. International Journal of Oncology 2023, 63 (2) https://doi.org/10.3892/ijo.2023.5538
- Xiaochen Jia, Hongyan Zhang, Hongqiang Qin, Kuikui Li, Xiaoyan Liu, Wenxia Wang, Mingliang Ye, Heng Yin. Protein O ‐GlcNAcylation impairment caused by N ‐acetylglucosamine phosphate mutase deficiency leads to growth variations in Arabidopsis thaliana. The Plant Journal 2023, 114 (3) , 613-635. https://doi.org/10.1111/tpj.16156
- Yang Bi, Ruben Shrestha, Zhenzhen Zhang, Chuan-Chih Hsu, Andres V Reyes, Sumudu Karunadasa, Peter R Baker, Jason C Maynard, Yang Liu, Amirmansoor Hakimi, Daniel Lopez-Ferrer, Tahmid Hassan, Robert J Chalkley, Shou-Ling Xu, Zhi-Yong Wang. SPINDLY mediates O -fucosylation of hundreds of proteins and sugar-dependent growth in Arabidopsis. The Plant Cell 2023, 35 (5) , 1318-1333. https://doi.org/10.1093/plcell/koad023
- Giang Le Minh, Emily M. Esquea, Tejsi T. Dhameliya, Jessica Merzy, Mi-Hye Lee, Lauren E. Ball, Mauricio J. Reginato. Kruppel-like factor 8 regulates triple negative breast cancer stem cell-like activity. Frontiers in Oncology 2023, 13 https://doi.org/10.3389/fonc.2023.1141834
- Pedro Henrique Rodrigues de Alencar Azevedo, Bruna Rachel de Britto Peçanha, Luiz Augusto Pinheiro Flores-Junior, Tatiana Fialho Alves, Luiza Rosaria Sousa Dias, Estela Maris Freitas Muri, Camilo Henrique da Silva Lima. In silico drug repurposing by combining machine learning classification model and molecular dynamics to identify a potential OGT inhibitor. Journal of Biomolecular Structure and Dynamics 2023, 457 , 1-12. https://doi.org/10.1080/07391102.2023.2199868
- Yanmei Chen, Jiao Lv, Guowei Zu, Fan Yang, Jiasheng Geng, Zhengying You, Caiying Jiang, Qing Sheng, Zuoming Nie. BmCBP Catalyzes the Acetylation of BmApoLp-II Protein and Regulates Its Stability in Silkworm, Bombyx mori. Insects 2023, 14 (4) , 309. https://doi.org/10.3390/insects14040309
- Céline Schulz, Quentin Lemaire, Alexandre Berthier, Amandine Descat, Mostafa Kouach, Anne‐Sophie Vercoutter‐Edouart, Ikram El Yazidi‐Belkoura, Stéphan Hardivillé, Jean‐François Goossens, Philippe Lefebvre, Tony Lefebvre. Control of lipid metabolism by the dynamic and nutrient‐dependent post‐translational modification O ‐GlcNAcylation. Natural Sciences 2023, 3 (2) https://doi.org/10.1002/ntls.20220006
- Steven S. Cheng, Christina M. Woo. Dual-specificity RNA aptamers: A sweet new tool for studying O-GlcNAc biology. Molecular Cell 2023, 83 (5) , 657-659. https://doi.org/10.1016/j.molcel.2023.01.025
- Jiajia Wang, Wei Cao, Wei Zhang, Biao Dou, Xueke Zeng, Shihao Su, Hongtai Cao, Xin Ding, Jing Ma, Xia Li. Ac34FGlcNAz is an effective metabolic chemical reporter for O-GlcNAcylated proteins with decreased S-glyco-modification. Bioorganic Chemistry 2023, 131 , 106139. https://doi.org/10.1016/j.bioorg.2022.106139
- Lu Zheng, Wei Cao, Biao Dou, Xueke Zeng, Mingya Cao, Jiajia Wang, Xia Li. Ac36deoGlcNAz could selectively label O-GlcNAc modified proteins with minimal S-glyco-modification. Chinese Chemical Letters 2023, 34 (2) , 107598. https://doi.org/10.1016/j.cclet.2022.06.021
- Xiaoli He, Nan Wu, Renlong Li, Haohao Zhang, Yu Zhao, Yongzhan Nie, Jing Wu. IDH2, a novel target of OGT, facilitates glucose uptake and cellular bioenergy production via NF-κB signaling to promote colorectal cancer progression. Cellular Oncology 2023, 46 (1) , 145-164. https://doi.org/10.1007/s13402-022-00740-2
- Abhijit Saha, Alberto Fernández-Tejada. Chemical biology tools to interrogate the roles of O-GlcNAc in immunity. Frontiers in Immunology 2023, 13 https://doi.org/10.3389/fimmu.2022.1089824
- Markus Kufleitner, Lisa Maria Haiber, Valentin Wittmann. Metabolic glycoengineering – exploring glycosylation with bioorthogonal chemistry. Chemical Society Reviews 2023, 52 (2) , 510-535. https://doi.org/10.1039/D2CS00764A
- Xue Li, Peifu Han, Wenqi Chen, Changnan Gao, Shuang Wang, Tao Song, Muyuan Niu, Alfonso Rodriguez-Patón. MARPPI: boosting prediction of protein–protein interactions with multi-scale architecture residual network. Briefings in Bioinformatics 2023, 24 (1) https://doi.org/10.1093/bib/bbac524
- Sriram Neelamegham, Yusen Zhou, Theodore Groth. Human GlycoEnzymes and Related Genes. 2023, 452-472. https://doi.org/10.1016/B978-0-12-821618-7.00022-5
- Anirban Goutam Mukherjee, Uddesh Ramesh Wanjari, Abilash Valsala Gopalakrishnan, Pragya Bradu, Aarthi Sukumar, Megha Patil, Kaviyarasi Renu, Abhijit Dey, Balachandar Vellingiri, Alex George, Raja Ganesan. Implications of cancer stem cells in diabetes and pancreatic cancer. Life Sciences 2023, 312 , 121211. https://doi.org/10.1016/j.lfs.2022.121211
- Hui-fang Wang, Yi-xuan Wang, Yu-ping Zhou, Yun-peng Wei, Yi Yan, Ze-jian Zhang, Zhi-cheng Jing. Protein O-GlcNAcylation in cardiovascular diseases. Acta Pharmacologica Sinica 2023, 44 (1) , 8-18. https://doi.org/10.1038/s41401-022-00934-2
- Xin Sun, Yang Zhang, Xiao-Feng Chen, Xiaoqiang Tang. Acylations in cardiovascular biology and diseases, what's beyond acetylation. eBioMedicine 2023, 87 , 104418. https://doi.org/10.1016/j.ebiom.2022.104418
- Xue Li, Peifu Han, Gan Wang, Wenqi Chen, Shuang Wang, Tao Song. SDNN-PPI: self-attention with deep neural network effect on protein-protein interaction prediction. BMC Genomics 2022, 23 (1) https://doi.org/10.1186/s12864-022-08687-2
- Karim Almahayni, Malte Spiekermann, Antonio Fiore, Guoqiang Yu, Kayvon Pedram, Leonhard Möckl. Small molecule inhibitors of mammalian glycosylation. Matrix Biology Plus 2022, 16 , 100108. https://doi.org/10.1016/j.mbplus.2022.100108
- Nan Zhang, Si Liu, Junxuan Xu, Tingting Ning, Sian Xie, Li Min, Shengquan Zhu, Shutian Zhang, Shengtao Zhu. PGM3 regulates beta-catenin activity to promote colorectal cancer cell progression. Experimental Biology and Medicine 2022, 247 (17) , 1518-1528. https://doi.org/10.1177/15353702221101810
- Min-Jae Kim, In-Hyun Ryu, Su-Il Do. Heat-Shock Triggers Inverted Induction of Hypo-S-Nitrosylation and Hyper-O-GlcNAcylation. Protein & Peptide Letters 2022, 29 (9) , 769-774. https://doi.org/10.2174/0929866529666220805151725
- Amber Lockridge, John A. Hanover. A nexus of lipid and O-Glcnac metabolism in physiology and disease. Frontiers in Endocrinology 2022, 13 https://doi.org/10.3389/fendo.2022.943576
- Ninon Very, Ikram El Yazidi-Belkoura. Targeting O-GlcNAcylation to overcome resistance to anti-cancer therapies. Frontiers in Oncology 2022, 12 https://doi.org/10.3389/fonc.2022.960312
- Jing Wu, Jiayu Liu, Kalina Lapenta, Reina Desrouleaux, Min-Dian Li, Xiaoyong Yang, . Regulation of the urea cycle by CPS1 O -GlcNAcylation in response to dietary restriction and aging. Journal of Molecular Cell Biology 2022, 14 (3) https://doi.org/10.1093/jmcb/mjac016
- Teng-Fei Wang, Zhi-Qiang Feng, Ya-Wen Sun, Shan-Jiang Zhao, Hui-Ying Zou, Hai-Sheng Hao, Wei-Hua Du, Xue-Ming Zhao, Hua-Bin Zhu, Yun-Wei Pang. Disruption of O-GlcNAcylation Homeostasis Induced Ovarian Granulosa Cell Injury in Bovine. International Journal of Molecular Sciences 2022, 23 (14) , 7815. https://doi.org/10.3390/ijms23147815
- Matthew E. Griffin, Linda C. Hsieh-Wilson. Tools for mammalian glycoscience research. Cell 2022, 185 (15) , 2657-2677. https://doi.org/10.1016/j.cell.2022.06.016
- Yao Chen, Feng Tang, Hongqiang Qin, Xuyang Yue, Yongzhan Nie, Wei Huang, Mingliang Ye. Endo‐M Mediated Chemoenzymatic Approach Enables Reversible Glycopeptide Labeling for O ‐GlcNAcylation Analysis. Angewandte Chemie 2022, 134 (23) https://doi.org/10.1002/ange.202117849
- Yao Chen, Feng Tang, Hongqiang Qin, Xuyang Yue, Yongzhan Nie, Wei Huang, Mingliang Ye. Endo‐M Mediated Chemoenzymatic Approach Enables Reversible Glycopeptide Labeling for O ‐GlcNAcylation Analysis. Angewandte Chemie International Edition 2022, 61 (23) https://doi.org/10.1002/anie.202117849
- Imad A. Haidar Ahmad, Gioacchino Luca Losacco, Vladimir Shchurik, Xiao Wang, Ryan D. Cohen, Alastair N. Herron, Sheenagh Aiken, Daniele Fiorito, Heather Wang, Mikhail Reibarkh, Timothy Nowak, Alexey A. Makarov, Dwight R. Stoll, Davy Guillarme, Ian Mangion, Varinder K. Aggarwal, Jin‐Quan Yu, Erik L. Regalado. Trapping‐Enrichment Multi‐dimensional Liquid Chromatography with On‐Line Deuterated Solvent Exchange for Streamlined Structure Elucidation at the Microgram Scale. Angewandte Chemie International Edition 2022, 61 (21) https://doi.org/10.1002/anie.202117655
- Imad A. Haidar Ahmad, Gioacchino Luca Losacco, Vladimir Shchurik, Xiao Wang, Ryan D. Cohen, Alastair N. Herron, Sheenagh Aiken, Daniele Fiorito, Heather Wang, Mikhail Reibarkh, Timothy Nowak, Alexey A. Makarov, Dwight R. Stoll, Davy Guillarme, Ian Mangion, Varinder K. Aggarwal, Jin‐Quan Yu, Erik L. Regalado. Trapping‐Enrichment Multi‐dimensional Liquid Chromatography with On‐Line Deuterated Solvent Exchange for Streamlined Structure Elucidation at the Microgram Scale. Angewandte Chemie 2022, 134 (21) https://doi.org/10.1002/ange.202117655
- Jordan M. Broekhuis, Benjamin C. James, Richard D. Cummings, Per-Olof Hasselgren. Posttranslational Modifications in Thyroid Cancer: Implications for Pathogenesis, Diagnosis, Classification, and Treatment. Cancers 2022, 14 (7) , 1610. https://doi.org/10.3390/cancers14071610
- Mariann Kiss, István Timári, Teréz Barna, Zuzana Mészáros, Kristýna Slámová, Pavla Bojarová, Vladimír Křen, Joseph M. Hayes, László Somsák. 2-Acetamido-2-deoxy-d-glucono-1,5-lactone Sulfonylhydrazones: Synthesis and Evaluation as Inhibitors of Human OGA and HexB Enzymes. International Journal of Molecular Sciences 2022, 23 (3) , 1037. https://doi.org/10.3390/ijms23031037
- Zhongyan Li, Shangfu Li, Mengqi Luo, Jhih-Hua Jhong, Wenshuo Li, Lantian Yao, Yuxuan Pang, Zhuo Wang, Rulan Wang, Renfei Ma, Jinhan Yu, Yuqi Huang, Xiaoning Zhu, Qifan Cheng, Hexiang Feng, Jiahong Zhang, Chunxuan Wang, Justin Bo-Kai Hsu, Wen-Chi Chang, Feng-Xiang Wei, Hsien-Da Huang, Tzong-Yi Lee. dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post-translational modifications. Nucleic Acids Research 2022, 50 (D1) , D471-D479. https://doi.org/10.1093/nar/gkab1017
- Yun Ge, Christina M. Woo. Writing and erasing O- GlcNAc from target proteins in cells. Biochemical Society Transactions 2021, 49 (6) , 2891-2901. https://doi.org/10.1042/BST20210865
- Rabia Javeed, Dilshad Hussain, Fahmida Jabeen, Muhammad Salman Sajid, Batool Fatima, Muhammad Naeem Ashiq, Muhammad Najam-ul-Haq. Apo-H (beta-2-glycoprotein) intact N-glycan analysis by MALDI-TOF-MS using sialic acid derivatization. Analytical and Bioanalytical Chemistry 2021, 413 (30) , 7441-7449. https://doi.org/10.1007/s00216-021-03701-0
- Mariann Kiss, Erna Szabó, Boglárka Bocska, Luu Thanh Sinh, Conceicao Piedade Fernandes, István Timári, Joseph M. Hayes, László Somsák, Teréz Barna. Nanomolar inhibition of human OGA by 2-acetamido-2-deoxy-d-glucono-1,5-lactone semicarbazone derivatives. European Journal of Medicinal Chemistry 2021, 223 , 113649. https://doi.org/10.1016/j.ejmech.2021.113649
- Yao Weng, Ziyi Wang, Yoko Fukuhara, Airi Tanai, Mika Ikegame, Daisuke Yamada, Takeshi Takarada, Takashi Izawa, Satoru Hayano, Kaya Yoshida, Hiroshi Kamioka, Hirohiko Okamura. O‐GlcNAcylation drives calcium signaling toward osteoblast differentiation: A bioinformatics‐oriented study. BioFactors 2021, 47 (6) , 992-1015. https://doi.org/10.1002/biof.1774
- Jiajia Wang, Biao Dou, Lu Zheng, Wei Cao, Peiyu Dong, Yingyi Chen, Xueke Zeng, Yinhang Wen, Wenxuan Pan, Jing Ma, Jingying Chen, Xia Li. The Metabolic Chemical Reporter Ac46AzGal Could Incorporate Intracellular Protein Modification in the Form of UDP-6AzGlc Mediated by OGT and Enzymes in the Leloir Pathway. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.708306
- Hui Xu, Mingzhi Du, Yuntian Shen, Yumin Yang, Fei Ding, Shu Yu. Enhancement of O-GlcNAcylation on Mitochondrial Proteins with 2-(4-Methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-d-pyranoside, Contributes to the Mitochondrial Network, Cellular Bioenergetics and Stress Response in Neuronal Cells under Ischemic-like Conditions. Molecules 2021, 26 (19) , 5883. https://doi.org/10.3390/molecules26195883
- Vyacheslav Akimov, Mirjam Fehling-Kaschek, Inigo Barrio-Hernandez, Michele Puglia, Jakob Bunkenborg, Mogens M. Nielsen, Jens Timmer, Jörn Dengjel, Blagoy Blagoev. Magnitude of Ubiquitination Determines the Fate of Epidermal Growth Factor Receptor Upon Ligand Stimulation. Journal of Molecular Biology 2021, 433 (21) , 167240. https://doi.org/10.1016/j.jmb.2021.167240
- Fulvio Reggiori, Hans-Joachim Gabius, Massimo Aureli, Winfried Römer, Sandro Sonnino, Eeva-Liisa Eskelinen. Glycans in autophagy, endocytosis and lysosomal functions. Glycoconjugate Journal 2021, 38 (5) , 625-647. https://doi.org/10.1007/s10719-021-10007-x
- Van N Huynh, Sheng Wang, Xiaosen Ouyang, Willayat Y Wani, Michelle S Johnson, Balu K Chacko, Anil G Jegga, Wei-Jun Qian, John C Chatham, Victor M Darley-Usmar, Jianhua Zhang. Defining the Dynamic Regulation of O-GlcNAc Proteome in the Mouse Cortex---the O-GlcNAcylation of Synaptic and Trafficking Proteins Related to Neurodegenerative Diseases. Frontiers in Aging 2021, 2 https://doi.org/10.3389/fragi.2021.757801
- Junfeng Ma, Chunyan Hou, Yaoxiang Li, Shufu Chen, Ci Wu. OGT Protein Interaction Network (OGT-PIN): A Curated Database of Experimentally Identified Interaction Proteins of OGT. International Journal of Molecular Sciences 2021, 22 (17) , 9620. https://doi.org/10.3390/ijms22179620
- Junfeng Ma, Yaoxiang Li, Chunyan Hou, Ci Wu. O-GlcNAcAtlas: A database of experimentally identified O-GlcNAc sites and proteins. Glycobiology 2021, 31 (7) , 719-723. https://doi.org/10.1093/glycob/cwab003
- Jingli Lu, Yan Liang, Haiyang Meng, Ailing Zhang, Junjie Zhao, Chengliang Zhang. Metabolic Controls on Epigenetic Reprogramming in Regulatory T Cells. Frontiers in Immunology 2021, 12 https://doi.org/10.3389/fimmu.2021.728783
- Yuning Pang, Xiang Xu, Xiaojun Xiang, Yongnan Li, Zengqi Zhao, Jiamin Li, Shengnan Gao, Qiangde Liu, Kangsen Mai, Qinghui Ai. High Fat Activates O-GlcNAcylation and Affects AMPK/ACC Pathway to Regulate Lipid Metabolism. Nutrients 2021, 13 (6) , 1740. https://doi.org/10.3390/nu13061740
- Vojtěch Hamala, Lucie Červenková Šťastná, Martin Kurfiřt, Petra Cuřínová, Martin Balouch, Roman Hrstka, Petr Voňka, Jindřich Karban. The effect of deoxyfluorination and O -acylation on the cytotoxicity of N -acetyl- d -gluco- and d -galactosamine hemiacetals. Organic & Biomolecular Chemistry 2021, 19 (20) , 4497-4506. https://doi.org/10.1039/D1OB00497B
- Cyril Balsollier, Roland J. Pieters, Marko Anderluh. Overview of the Assays to Probe O-Linked β-N-Acetylglucosamine Transferase Binding and Activity. Molecules 2021, 26 (4) , 1037. https://doi.org/10.3390/molecules26041037