ACS Publications. Most Trusted. Most Cited. Most Read
From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape
My Activity
    Review

    From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape
    Click to copy article linkArticle link copied!

    Other Access Options

    Chemical Reviews

    Cite this: Chem. Rev. 2021, 121, 8, 4962–4998
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemrev.0c00998
    Published March 31, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Since the advent of the first computers, chemists have been at the forefront of using computers to understand and solve complex chemical problems. As the hardware and software have evolved, so have the theoretical and computational chemistry methods and algorithms. Parallel computers clearly changed the common computing paradigm in the late 1970s and 80s, and the field has again seen a paradigm shift with the advent of graphical processing units. This review explores the challenges and some of the solutions in transforming software from the terascale to the petascale and now to the upcoming exascale computers. While discussing the field in general, NWChem and its redesign, NWChemEx, will be highlighted as one of the early codesign projects to take advantage of massively parallel computers and emerging software standards to enable large scientific challenges to be tackled.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 50 publications.

    1. Andy Jiang, Henry F. Schaefer, III, Justin M. Turney. Linear-Scaling Local Natural Orbital-Based Full Triples Treatment in Coupled-Cluster Theory. Journal of Chemical Theory and Computation 2025, 21 (5) , 2386-2401. https://doi.org/10.1021/acs.jctc.4c01716
    2. Inkoo Kim, Daun Jeong, Leah P. Weisburn, Alexandra Alexiu, Troy Van Voorhis, Young Min Rhee, Won-Joon Son, Hyung-Jin Kim, Jinkyu Yim, Sungmin Kim, Yeonchoo Cho, Inkook Jang, Seungmin Lee, Dae Sin Kim. Very-Large-Scale GPU-Accelerated Nuclear Gradient of Time-Dependent Density Functional Theory with Tamm–Dancoff Approximation and Range-Separated Hybrid Functionals. Journal of Chemical Theory and Computation 2024, 20 (20) , 9018-9031. https://doi.org/10.1021/acs.jctc.4c01003
    3. Duo Song, Eric J. Bylaska, Kevin M. Rosso, Maria L. Sushko. Role of Dynamic Polarization Interactions in the Electrical Double Layer at Calcite (104) Interfaces with Aqueous Solutions. The Journal of Physical Chemistry C 2024, 128 (13) , 5686-5696. https://doi.org/10.1021/acs.jpcc.3c07837
    4. Xin Wan, Tianchu Zhao, Qinghua Ren, Gangchang Zhou. Role of TMEDA in Iron-Catalyzed C(sp2)–C(sp3) Cross-Coupling Reactions: A Mechanistic Study Using DFT Calculations. Organometallics 2024, 43 (4) , 449-456. https://doi.org/10.1021/acs.organomet.3c00391
    5. Maximilian H. Kriebel, Paweł Tecmer, Marta Gałyńska, Aleksandra Leszczyk, Katharina Boguslawski. Accelerating Pythonic Coupled-Cluster Implementations: A Comparison Between CPUs and GPUs. Journal of Chemical Theory and Computation 2024, 20 (3) , 1130-1142. https://doi.org/10.1021/acs.jctc.3c01110
    6. Rosa Di Felice, Maricris L. Mayes, Ryan M. Richard, David B. Williams-Young, Garnet Kin-Lic Chan, Wibe A. de Jong, Niranjan Govind, Martin Head-Gordon, Matthew R. Hermes, Karol Kowalski, Xiaosong Li, Hans Lischka, Karl T. Mueller, Erdal Mutlu, Anders M. N. Niklasson, Mark R. Pederson, Bo Peng, Ron Shepard, Edward F. Valeev, Mark van Schilfgaarde, Bess Vlaisavljevich, Theresa L. Windus, Sotiris S. Xantheas, Xing Zhang, Paul M. Zimmerman. A Perspective on Sustainable Computational Chemistry Software Development and Integration. Journal of Chemical Theory and Computation 2023, 19 (20) , 7056-7076. https://doi.org/10.1021/acs.jctc.3c00419
    7. Daniel Mejia-Rodriguez, Edoardo Aprà, Jochen Autschbach, Nicholas P. Bauman, Eric J. Bylaska, Niranjan Govind, Jeff R. Hammond, Karol Kowalski, Alexander Kunitsa, Ajay Panyala, Bo Peng, John J. Rehr, Huajing Song, Sergei Tretiak, Marat Valiev, Fernando D. Vila. NWChem: Recent and Ongoing Developments. Journal of Chemical Theory and Computation 2023, 19 (20) , 7077-7096. https://doi.org/10.1021/acs.jctc.3c00421
    8. Melisa Alkan, Buu Q. Pham, Jeff R. Hammond, Mark S. Gordon. Enabling Fortran Standard Parallelism in GAMESS for Accelerated Quantum Chemistry Calculations. Journal of Chemical Theory and Computation 2023, 19 (13) , 3798-3805. https://doi.org/10.1021/acs.jctc.3c00380
    9. Vinayak Bhat, Connor P. Callaway, Chad Risko. Computational Approaches for Organic Semiconductors: From Chemical and Physical Understanding to Predicting New Materials. Chemical Reviews 2023, 123 (12) , 7498-7547. https://doi.org/10.1021/acs.chemrev.2c00704
    10. Bharath Raghavan, Mirko Paulikat, Katya Ahmad, Lara Callea, Andrea Rizzi, Emiliano Ippoliti, Davide Mandelli, Laura Bonati, Marco De Vivo, Paolo Carloni. Drug Design in the Exascale Era: A Perspective from Massively Parallel QM/MM Simulations. Journal of Chemical Information and Modeling 2023, 63 (12) , 3647-3658. https://doi.org/10.1021/acs.jcim.3c00557
    11. Katharina Kohse-Höinghaus. Combustion, Chemistry, and Carbon Neutrality. Chemical Reviews 2023, 123 (8) , 5139-5219. https://doi.org/10.1021/acs.chemrev.2c00828
    12. Himadri Pathak, Ajay Panyala, Bo Peng, Nicholas P. Bauman, Erdal Mutlu, John J. Rehr, Fernando D. Vila, Karol Kowalski. Real-Time Equation-of-Motion Coupled-Cluster Cumulant Green’s Function Method: Heterogeneous Parallel Implementation Based on the Tensor Algebra for Many-Body Methods Infrastructure. Journal of Chemical Theory and Computation 2023, 19 (8) , 2248-2257. https://doi.org/10.1021/acs.jctc.3c00045
    13. Andy Jiang, Justin M. Turney, Henry F. Schaefer, III. Tensor Hypercontraction Form of the Perturbative Triples Energy in Coupled-Cluster Theory. Journal of Chemical Theory and Computation 2023, 19 (5) , 1476-1486. https://doi.org/10.1021/acs.jctc.2c00996
    14. Madushanka Manathunga, Hasan Metin Aktulga, Andreas W. Götz, Kenneth M. Merz, Jr.. Quantum Mechanics/Molecular Mechanics Simulations on NVIDIA and AMD Graphics Processing Units. Journal of Chemical Information and Modeling 2023, 63 (3) , 711-717. https://doi.org/10.1021/acs.jcim.2c01505
    15. Eric J. Bylaska, Paul G. Tratnyek, Tifany L. Torralba-Sanchez, Kyle C. Edwards, David A. Dixon, Joseph J. Pignatello, Wenqing Xu. Computational Predictions of the Hydrolysis of 2,4,6-Trinitrotoluene (TNT) and 2,4-Dinitroanisole (DNAN). The Journal of Physical Chemistry A 2022, 126 (48) , 9059-9075. https://doi.org/10.1021/acs.jpca.2c06014
    16. Jonathan M. Waldrop, Theresa L. Windus, Niranjan Govind. Projector-Based Quantum Embedding for Molecular Systems: An Investigation of Three Partitioning Approaches. The Journal of Physical Chemistry A 2021, 125 (29) , 6384-6393. https://doi.org/10.1021/acs.jpca.1c03821
    17. Madushanka Manathunga, Chi Jin, Vinícius Wilian D. Cruzeiro, Yipu Miao, Dawei Mu, Kamesh Arumugam, Kristopher Keipert, Hasan Metin Aktulga, Kenneth M. Merz, Jr., Andreas W. Götz. Harnessing the Power of Multi-GPU Acceleration into the Quantum Interaction Computational Kernel Program. Journal of Chemical Theory and Computation 2021, 17 (7) , 3955-3966. https://doi.org/10.1021/acs.jctc.1c00145
    18. Andy Jiang, Henry F. Schaefer, Justin M. Turney. Linear-scaling quadruple excitations in local pair natural orbital coupled-cluster theory. The Journal of Chemical Physics 2025, 162 (14) https://doi.org/10.1063/5.0257672
    19. Heike Jagode, Anthony Danalis, Giuseppe Congiu, Daniel Barry, Anthony Castaldo, Jack Dongarra. Advancements of PAPI for the exascale generation. The International Journal of High Performance Computing Applications 2025, 39 (2) , 251-268. https://doi.org/10.1177/10943420241303884
    20. Mark Gates, Ahmad Abdelfattah, Kadir Akbudak, Mohammed Al Farhan, Rabab Alomairy, Daniel Bielich, Treece Burgess, Sébastien Cayrols, Neil Lindquist, Dalal Sukkari, Asim YarKhan. Evolution of the SLATE linear algebra library. The International Journal of High Performance Computing Applications 2025, 39 (1) , 3-17. https://doi.org/10.1177/10943420241286531
    21. Aurelien Bouteiller, Thomas Herault, Qinglei Cao, Joseph Schuchart, George Bosilca. PaRSEC: Scalability, flexibility, and hybrid architecture support for task-based applications in ECP. The International Journal of High Performance Computing Applications 2025, 39 (1) , 147-166. https://doi.org/10.1177/10943420241290520
    22. Koki Matsumura, Tetsuya Morimoto, Takenobu Sakai. Evaluation of the curing reaction of epoxy resins by electrochemical measurement and molecular orbital method. Advanced Composite Materials 2024, 33 (6) , 1160-1174. https://doi.org/10.1080/09243046.2024.2325639
    23. Melisa Alkan, Buu Q. Pham, Daniel Del Angel Cruz, Jeff R. Hammond, Taylor A. Barnes, Mark S. Gordon. LibERI—A portable and performant multi-GPU accelerated library for electron repulsion integrals via OpenMP offloading and standard language parallelism. The Journal of Chemical Physics 2024, 161 (8) https://doi.org/10.1063/5.0215352
    24. Andy Jiang, Zachary L. Glick, David Poole, Justin M. Turney, C. David Sherrill, Henry F. Schaefer. Accurate and efficient open-source implementation of domain-based local pair natural orbital (DLPNO) coupled-cluster theory using a t1-transformed Hamiltonian. The Journal of Chemical Physics 2024, 161 (8) https://doi.org/10.1063/5.0219963
    25. David Poole, David B. Williams-Young, Andy Jiang, Zachary L. Glick, C. David Sherrill. A modular, composite framework for the utilization of reduced-scaling Coulomb and exchange construction algorithms: Design and implementation. The Journal of Chemical Physics 2024, 161 (5) https://doi.org/10.1063/5.0216760
    26. T. A. Barnes, S. Ellis, J. Chen, S. J. Plimpton, J. A. Nash. Plugin-based interoperability and ecosystem management for the MolSSI Driver Interface Project. The Journal of Chemical Physics 2024, 160 (21) https://doi.org/10.1063/5.0214279
    27. David Carrasco-Busturia, Emiliano Ippoliti, Simone Meloni, Ursula Rothlisberger, Jógvan Magnus Haugaard Olsen. Multiscale biomolecular simulations in the exascale era. Current Opinion in Structural Biology 2024, 86 , 102821. https://doi.org/10.1016/j.sbi.2024.102821
    28. William Dawson, Louis Beal, Laura E Ratcliff, Martina Stella, Takahito Nakajima, Luigi Genovese. Exploratory data science on supercomputers for quantum mechanical calculations. Electronic Structure 2024, 6 (2) , 027003. https://doi.org/10.1088/2516-1075/ad4b80
    29. Xin‐Yang Li, Zu‐An Hu, Qian Liu, Tian Xie, Xian‐Wen Wang, Lu Huang, Ying‐Peng Wu. Reconfigurable and Parallel Computable Soft Mechanical Switch by Liquid Metal. Advanced Functional Materials 2024, 34 (19) https://doi.org/10.1002/adfm.202312511
    30. Duo Song, Eric J. Bylaska, Maria L. Sushko, Kevin M. Rosso. Development and application of hybrid AIMD/cDFT simulations for atomic-to-mesoscale chemistry. The Journal of Chemical Physics 2024, 160 (6) https://doi.org/10.1063/5.0190686
    31. Eric J. Bylaska, Duo Song, Eugene S. Ilton, Abhishek Bagusetty, David Bross, Alvaro Vazquez-Mayagoitia, Raymundo Hernandez, Nitin Gawande. NWChem and NWChemEx Plane-Wave Methods. 2024, 518-543. https://doi.org/10.1016/B978-0-12-821978-2.00094-5
    32. Duo Song, Nicholas P. Bauman, Guen Prawiroatmodjo, Bo Peng, Cassandra Granade, Kevin M. Rosso, Guang Hao Low, Martin Roetteler, Karol Kowalski, Eric J. Bylaska. Periodic plane-wave electronic structure calculations on quantum computers. Materials Theory 2023, 7 (1) https://doi.org/10.1186/s41313-022-00049-5
    33. Jonathan Wittmer, Jacob Badger, Hari Sundar, Tan Bui-Thanh. An autoencoder compression approach for accelerating large-scale inverse problems. Inverse Problems 2023, 39 (11) , 115009. https://doi.org/10.1088/1361-6420/acfbe1
    34. Vikram Gavini, Stefano Baroni, Volker Blum, David R Bowler, Alexander Buccheri, James R Chelikowsky, Sambit Das, William Dawson, Pietro Delugas, Mehmet Dogan, Claudia Draxl, Giulia Galli, Luigi Genovese, Paolo Giannozzi, Matteo Giantomassi, Xavier Gonze, Marco Govoni, François Gygi, Andris Gulans, John M Herbert, Sebastian Kokott, Thomas D Kühne, Kai-Hsin Liou, Tsuyoshi Miyazaki, Phani Motamarri, Ayako Nakata, John E Pask, Christian Plessl, Laura E Ratcliff, Ryan M Richard, Mariana Rossi, Robert Schade, Matthias Scheffler, Ole Schütt, Phanish Suryanarayana, Marc Torrent, Lionel Truflandier, Theresa L Windus, Qimen Xu, Victor W-Z Yu, D Perez. Roadmap on electronic structure codes in the exascale era. Modelling and Simulation in Materials Science and Engineering 2023, 31 (6) , 063301. https://doi.org/10.1088/1361-651X/acdf06
    35. Christoph Gorgulla. Recent Developments in Ultralarge and Structure-Based Virtual Screening Approaches. Annual Review of Biomedical Data Science 2023, 6 (1) , 229-258. https://doi.org/10.1146/annurev-biodatasci-020222-025013
    36. Agung Danu Wijaya, Dedy Farhamsa, Darmawati Darwis. netDFT: JAVA Density Functional Theory for solid. SoftwareX 2023, 23 , 101445. https://doi.org/10.1016/j.softx.2023.101445
    37. David B. Williams-Young, Andrey Asadchev, Doru Thom Popovici, David Clark, Jonathan Waldrop, Theresa L. Windus, Edward F. Valeev, Wibe A. de Jong. Distributed memory, GPU accelerated Fock construction for hybrid, Gaussian basis density functional theory. The Journal of Chemical Physics 2023, 158 (23) https://doi.org/10.1063/5.0151070
    38. Ryan M. Richard, Kristopher Keipert, Jonathan Waldrop, Murat Keçeli, David Williams-Young, Raymond Bair, Jeffery Boschen, Zachery Crandall, Kevin Gasperich, Quazi Ishtiaque Mahmud, Ajay Panyala, Edward Valeev, Hubertus van Dam, Wibe A. de Jong, Theresa L. Windus. PluginPlay: Enabling exascale scientific software one module at a time. The Journal of Chemical Physics 2023, 158 (18) https://doi.org/10.1063/5.0147903
    39. Yingjin Ma, ZhiYing Li, Xin Chen, Bowen Ding, Ning Li, Teng Lu, Baohua Zhang, BingBing Suo, Zhong Jin. Machine‐learning assisted scheduling optimization and its application in quantum chemical calculations. Journal of Computational Chemistry 2023, 44 (12) , 1174-1188. https://doi.org/10.1002/jcc.27075
    40. Dmitri G. Fedorov, Buu Q. Pham. Multi-level parallelization of quantum-chemical calculations. The Journal of Chemical Physics 2023, 158 (16) https://doi.org/10.1063/5.0144917
    41. Jan P. Unsleber, Hongbin Liu, Leopold Talirz, Thomas Weymuth, Maximilian Mörchen, Adam Grofe, Dave Wecker, Christopher J. Stein, Ajay Panyala, Bo Peng, Karol Kowalski, Matthias Troyer, Markus Reiher. High-throughput ab initio reaction mechanism exploration in the cloud with automated multi-reference validation. The Journal of Chemical Physics 2023, 158 (8) https://doi.org/10.1063/5.0136526
    42. Abhishek Bagusetty, Ajay Panyala, Gordon Brown, Jack Kirk. Towards Cross-Platform Portability of Coupled-Cluster Methods with Perturbative Triples using SYCL. 2022, 81-88. https://doi.org/10.1109/P3HPC56579.2022.00013
    43. Binbin Zhou, Lu Lu. An effective 3-D fast fourier transform framework for multi-GPU accelerated distributed-memory systems. The Journal of Supercomputing 2022, 78 (15) , 17055-17073. https://doi.org/10.1007/s11227-022-04491-7
    44. Mirat Karibayev, Sandugash Kalybekkyzy, Yanwei Wang, Almagul Mentbayeva. Molecular Modeling in Anion Exchange Membrane Research: A Brief Review of Recent Applications. Molecules 2022, 27 (11) , 3574. https://doi.org/10.3390/molecules27113574
    45. Mohit Pandey, Michael Fernandez, Francesco Gentile, Olexandr Isayev, Alexander Tropsha, Abraham C. Stern, Artem Cherkasov. The transformational role of GPU computing and deep learning in drug discovery. Nature Machine Intelligence 2022, 4 (3) , 211-221. https://doi.org/10.1038/s42256-022-00463-x
    46. Michał Lesiuk. Quintic-scaling rank-reduced coupled cluster theory with single and double excitations. The Journal of Chemical Physics 2022, 156 (6) https://doi.org/10.1063/5.0071916
    47. David B. Williams-Young, Abhishek Bagusetty, Wibe A. de Jong, Douglas Doerfler, Hubertus J.J. van Dam, Álvaro Vázquez-Mayagoitia, Theresa L. Windus, Chao Yang. Achieving performance portability in Gaussian basis set density functional theory on accelerator based architectures in NWChemEx. Parallel Computing 2021, 108 , 102829. https://doi.org/10.1016/j.parco.2021.102829
    48. Wei Hu, Mohan Chen. Editorial: Advances in Density Functional Theory and Beyond for Computational Chemistry. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.705762
    49. Bo Peng, Nicholas P Bauman, Sahil Gulania, Karol Kowalski. Coupled cluster Green's function: Past, present, and future. 2021, 23-53. https://doi.org/10.1016/bs.arcc.2021.08.002
    50. Eric J. Bylaska, Duo Song, Eugene S. Ilton, Shaun O’Leary, Tifany L. Torralba-Sánchez, Paul G. Tratnyek. Building toward the future in chemical and materials simulation with accessible and intelligently designed web applications. 2021, 163-208. https://doi.org/10.1016/bs.arcc.2021.09.003

    Chemical Reviews

    Cite this: Chem. Rev. 2021, 121, 8, 4962–4998
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemrev.0c00998
    Published March 31, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    4145

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.