Benchmarking Quantum Gates and CircuitsClick to copy article linkArticle link copied!
- Vinay TripathiVinay TripathiDepartment of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, United StatesCenter for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089, United StatesMore by Vinay Tripathi
- Daria KowsariDaria KowsariDepartment of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, United StatesCenter for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089, United StatesMore by Daria Kowsari
- Kumar SauravKumar SauravCenter for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089, United StatesMing Hsieh Department of Electrical & Computer Engineering, University of Southern California, Los Angeles, California 90089, United StatesMore by Kumar Saurav
- Haimeng ZhangHaimeng ZhangCenter for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089, United StatesMing Hsieh Department of Electrical & Computer Engineering, University of Southern California, Los Angeles, California 90089, United StatesMore by Haimeng Zhang
- Eli M. Levenson-Falk*Eli M. Levenson-Falk*E-mail: [email protected]Department of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, United StatesCenter for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089, United StatesMing Hsieh Department of Electrical & Computer Engineering, University of Southern California, Los Angeles, California 90089, United StatesMore by Eli M. Levenson-Falk
- Daniel A. Lidar*Daniel A. Lidar*E-mail: [email protected]Department of Chemistry, University of Southern California, Los Angeles, California 90089, United StatesMing Hsieh Department of Electrical & Computer Engineering, University of Southern California, Los Angeles, California 90089, United StatesDepartment of Physics & Astronomy, University of Southern California, Los Angeles, California 90089, United StatesCenter for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089, United StatesMore by Daniel A. Lidar
Abstract
Accurate noise characterization in quantum gates and circuits is vital for the development of reliable quantum simulations for chemically relevant systems and fault-tolerant quantum computing. This paper reviews a variety of key benchmarking techniques, including Randomized Benchmarking, Quantum Process Tomography, Gate Set Tomography, Process Fidelity Estimation, Direct Fidelity Estimation, and Cross-Entropy Benchmarking. We evaluate each method’s complexities, the resources they require, and their effectiveness in addressing coherent, incoherent, and state preparation and measurement (SPAM) errors. Furthermore, we introduce Deterministic Benchmarking (DB), a novel protocol that minimizes the number of experimental runs, exhibits resilience to SPAM errors, and effectively characterizes both coherent and incoherent errors. The implementation of DB is experimentally validated using a superconducting transmon qubit, and the results are substantiated with a simple analytical model and master equation simulations. With the addition of DB to the toolkit of available benchmarking methods, this article serves as a practical guide for choosing and applying benchmarking protocols to advance quantum computing technologies.
This publication is licensed under
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
Special Issue
Published as part of Chemical Reviews special issue “Quantum Computing”.
1. Introduction
2. Gate Errors
2.1. Quantum Dynamical Maps
2.2. Coherent and Incoherent Errors
2.3. Single-Qubit Gate Errors
Relaxation from the qubit state to the equilibrium state. These bit-flip errors are typically modeled as Markovian processes leading to an exponential decay with characteristic time T1. Importantly, relaxation at finite temperature leads to a nonzero state purity as the system relaxes toward its ground state.
Dephasing due to noise in the qubit frequency relative to a reference (where the noise may originate from the qubit or the reference). These phase-flip errors may have both Markovian and non-Markovian components, and, in many condensed matter or solid-state systems, are typically modeled as a Markovian error plus a classical noise with a 1/f power spectrum. (71)
2.4. Two-Qubit Gate Errors
3. Gate and Circuit Benchmarking Protocols
3.1. Randomized Benchmarking
3.1.1. Standard RB
Preparation: Initialize the n-qubit quantum system in a reference state |0⟩⊗n, typically the ground state.
Random Gate Sequence: Apply a sequence of m randomly selected Clifford gates {Ci}i = 1m:
(8)Inversion Gate: Apply the inverse of the accumulated operation to ideally return the system to the initial state:
The inverse can be calculated efficiently classically. (103)(9)Measurement: Measure the system in the computational basis (the eigenbasis of the Pauli σz matrix) and record whether it has returned to the initial state.
Averaging: Average the measurement outcomes over K different random sequences for a given m to obtain the survival probability P(m). Repeat the process for various sequence lengths m to get a sequence of survival probabilities {P(m)}.
Fitting to exponential: The final step is to fit the measured survival probability to an exponential function Apm + B in order to extract p, which can be used to quantify the average gate fidelity of the Clifford gate sequences. Here, A and B capture the SPAM errors.
3.1.2. RB Theory
3.1.3. Interleaved RB
3.2. Quantum Process Tomography
3.2.1. Standard Quantum Process Tomography
Figure 1
Figure 1. Three different QPT methods. (a) Schematic of SQPT. An ensemble of states {ρj} is prepared and each state is subjected to the map followed by measurements {Em}. (b) Schematic of separable AAPT. A “faithful” input state ρ is subjected to the map . The operators {Ej} are measured on the joint system, which results in the required joint probability distributions or expectation values. (c) Schematic of DCQD. The system and the ancilla are prepared in one of the input states as in Table 1 and are subjected to the map . The joint system is measured in the Bell-state basis (Bell State Measurement).
3.2.2. Ancilla-Assisted Process Tomography
3.2.3. Direct Characterization of Quantum Dynamics
Measurement | Output | |||
---|---|---|---|---|
Input state | Stabilizer | Normalizer | Bell state measurement | χmn |
|Φ+⟩ | ZAZB, XAXB | N/A | PΨ±, PΦ± | χ00, χ11, χ22, χ33 |
|Φα+⟩ | ZAZB | XAXB | PΦ+ ± PΦ–, PΨ+ ± PΨ– | χ03, χ12 |
|Φα+⟩X | XAXB | ZAZB | PΦ+ ± PΨ+, PΦ– ± PΨ– | χ01, χ23 |
|Φα+⟩Y | YAYB | ZAZB | PΦ+ ± PΨ–, PΦ– ± PΨ+ | χ02, χ13 |
Here |Φα+⟩ = α|00⟩ + β|11⟩ (), |Φα+⟩X(Y) = α|++⟩X(Y) + β|−–⟩X(Y) (
and Im(αβ*) ≠ 0) and {|0⟩, |1⟩}, {|±⟩X}, {|±⟩Y} are eigenstates of the Pauli operators Z, X, and Y. The fourth column shows the Bell state measurement (BSM) equivalent of the stabilizer + normalizer measurements. The last column is the output: all elements of the process matrix χ.
3.3. Gate Set Tomography
Figure 2
Figure 2. Gate set tomography circuit consisting of the fiducial gates Fi (Fj) as well as the measurement operators M and the native gate Gk performed on the initial state ρ. Figure adapted from ref (141). Copyright 2021 Quantum.
1. | Initialize the qubit in a pure state: ρ = |0⟩⟨0|. | ||||
2. | For a particular choice of i, j, and k apply the gate sequence FiGkFj. | ||||
3. | Measure the POVM Mi. Typically in experiments, Mi = |0⟩⟨0|. | ||||
4. | Repeat steps 1–3 many times (typically ∼2000). Average and record the results to obtain mijk. | ||||
5. | Repeat steps 1–4 for all i, j, and k. | ||||
6. | Solve the MLE problem using the likelihood function defined in eq 39 to extract the optimized vector θ⃗ to reconstruct the entire gate set , as well as the process matrices using the aforementioned Cholesky decomposition. |
3.4. Direct Fidelity Estimation
1. | Determine the tuple of Pauli operators (Pj, Pk) for which . Call this set A. | ||||||||||||||||
2. | Sample a tuple of Pauli operators, each of length log2(D), from the set A according to the probability distribution . This is done via importance sampling. Note that here it is relatively easy to sample because it is possible to calculate the entire probability distribution. | ||||||||||||||||
3. | Prepare the D eigenstates for Pj, which require only local operations.
| ||||||||||||||||
4. | Repeat the procedure N times. The average of the sample estimates gives . |
Figure 3
Figure 3. Schematic of DFE: To estimate the state fidelity, expectations of random Pauli strings Pj are calculated for the input state ρ. The distribution of the random Pauli strings depends on the state with respect to which the fidelity is being calculated.
3.5. Process Fidelity Estimation
3.6. Cross-Entropy Benchmarking
1. | Sample a random circuit Ci from an ensemble of random circuits RCS(n, P) with n qubits and depth P, where P denotes the layers of two-qubit gates independently drawn from the Haar measure on . | ||||
2. | Estimate the fidelity of Ci (denoted F̂P,i). | ||||
3. | Repeat step 1–2 for L instances of random circuits and obtain the average fidelity . | ||||
4. | Repeat step 1–3 for varying depths to obtain a sequence of average fidelities . | ||||
5. | Fit the average fidelities to an exponentially decaying function F = Ae–λP, where the fitted parameter λ characterizes the overall noise strength. |
Figure 4
4. Deterministic Benchmarking
Figure 5
Figure 5. Schematic representations of the gate sequences for (a) randomized benchmarking (RB) and (b) deterministic benchmarking (DB), respectively. RB uses N random Clifford gates Ci, followed by a single recovery gate Cr = CN†···C1†. DB prepares an initial state via U|0⟩, applies n repetitions of a fixed, deterministic two-pulse sequence P1P2, and unprepares the initial state via U†.
4.1. Qubit Model
4.2. Four Key Parameters


4.3. Protocol
1. | {free;|1⟩}: This is a standard T1 measurement, where we do not apply any pulses (free evolution). eq 76 reduces to in this case which we fit to determine T1. This yields the relaxation component of the Lindbladian. | ||||
2. | {XX;|+⟩}: Fitting this experiment with eq 76 yields TD = T2, the coherence time from which we deduce the pure dephasing time Tϕ = 2T1T2/(2T1 – T2). This is analogous to an echo-Ramsey measurement (188) and yields the dephasing component of the Lindbladian. This experiment is also sensitive to leakage (discussed below); here we assume leakage is small. | ||||
3. | {YY;|+⟩}: This yields fidelity oscillations which we fit to find the rotation error δθ where ω ≈ δθ/(2tg) in eq 76. | ||||
4. | {XX;|+⟩}: Similarly, this yields fidelity oscillations which we fit to find the phase error δϕ where ω = δϕ/tg in eq 76. The decay times TD obtained here and in step 3 are a combination of the incoherent and coherent noise and hence different from T2 obtained in step 2. We now have all four parameters, which we use to numerically calculate predictions for the test experiments. | ||||
5. | Test 1: {YY;|+⟩} and {YY;|+⟩}: This highlights the interplay of asymmetric relaxation noise and gate operations and can also be used to characterize the qubit temperature (see Section 4.10). | ||||
6. | Test 2: Various other experiments. Here, we report tests using the UR6 dynamical decoupling sequence. (189) |
4.4. Experimental Results
Figure 6
Figure 6. Empirical (F̃, symbols), analytical fit (F, solid curves), and Lindblad-based (F̅, dashed curves) fidelities for the initial states |1⟩ under free evolution and |+⟩ under various gate sequences P1P2. The analytical fit yields T1 = 23.36 ± 0.40 μs, T2 = 44.13 ± 2.49 μs, δθ = 0.398 ± 0.004°, and δϕ = 0.426 ± 0.004°. With the exception of the XX (orange) and YY (green) cases, the Lindblad-based results are indistinguishable from the analytical fits.
Figure 7
Figure 7. Randomized benchmarking measurement for the same gate calibration parameters used in Figure 6. The error bars represent the deviation of the averaged benchmarking results across 30 distinct random sequences with a maximum number of Cliffords (NCliffords) of 700, which are smaller than the marker sizes.
4.5. Fidelity with Coherent Errors
4.6. Open System Model
4.7. Sensitivity to Coherent Errors
Figure 8
Figure 8. Experimental fidelities F̃|+⟩ showing the very different sensitivity of DB and RB to coherent errors. (a) δθ = 0°, δϕ = 0°, (b) δθ = 0°, δϕ = 0.893 ± 0.002°, (c) δθ = 0.932 ± 0.007°, δϕ = 0°, (d) δθ = 0.995 ± 0.009°, δϕ = 0.90 ± 0.002°. These angles are obtained from fits using eq 76. Dashed curves are the numerically computed fidelities F|+⟩ from the open system Lindblad model using the DB parameters above along with the corresponding T1 and T2. The UR6 sequence suppresses even large coherent errors.
4.8. Interplay of T1 Asymmetry and Gates
Figure 9
Figure 9. Asymmetry in the decay pattern of DB sequences due to the interplay of gates and T1. Fidelity decay for (a) XX and (b) YY applied to two pairs of orthogonal initial states. Dashed curves represent the Lindblad master equation simulation results with parameters obtained by fitting eq 76.
4.9. Derivations: Fidelities of the YY and XX Sequences
4.9.1. Background
4.9.2. YY Sequence
Exact Solution for Δerr = 0

Perturbation Theory for Δerr = 0
Perturbation Theory for Δerr ≠ 0
4.9.3. XX̅ Sequence
4.10. Finite Temperature
4.10.1. Numerical
4.10.2. Experimental
4.10.3. Analytical
4.11. Leakage
Figure 10
Figure 10. Simulated survival fidelity of the |+⟩ state after repetitions of the XX sequence, where each gate is a cosine pulse length of 20 ns (blue circles) or 10 ns (orange squares). A third state in the simulation represents leakage, with a detuning (anharmonicity) of −150 MHz relative to the qubit transition. Both the amplitude and frequency of oscillations increase as the gate duration is decreased and leakage becomes more significant.
4.12. DB Summary and Future Research Directions
5. Conclusions and Outlook
Biographies
Vinay Tripathi
Vinay Tripathi received his PhD in Physics from the University of Southern California in 2024, focusing on noise characterization and suppression in superconducting quantum processors. Upon graduation, he joined the IBM Quantum team as a Research Scientist, contributing to advancements in quantum computing hardware and noise mitigation techniques.
Daria Kowsari
Daria Kowsari received his PhD in Physics from Washington University in St. Louis in 2023. Upon graduation, he joined USC as a postdoctoral scholar. His research focuses on the realization of novel open quantum systems utilizing qubit processors as well as developing new methods to characterize the errors in quantum gates and circuits.
Kumar Saurav
Kumar Saurav is a PhD student in the ECE department of the University of Southern California and is a Viterbi Graduate Fellowship recipient. Prior to USC, Saurav completed his Bachelor’s degree with Honors in Computer Science from IIT Bombay, following which he worked as a Software Engineer at Google for two years. His current research interests mainly include quantum control and device physics.
Haimeng Zhang
Haimeng Zhang received her PhD in Electrical Engineering from the University of Southern California in 2023. Her research focuses on noise characterization and suppression in superconducting qubits. After graduation, she joined IBM as a quantum algorithm engineer, where she works on benchmarking transpilation methods and developing error suppression and mitigation techniques to improve the implementation of quantum algorithms on quantum computers.
Eli M. Levenson-Falk
Eli M. Levenson-Falk is an Associate Professor in the Department of Physics & Astronomy and the Ming Hsieh Department of Electrical & Computer Engineering at the University of Southern California. He is the principal investigator of the Levenson-Falk Lab (LFL) which conducts experimental research using superconducting circuits. Eli received his PhD in Physics from the University of California Berkeley in 2013. He is a 2018 Air Force Office of Scientific Research Young Investigator, a 2021 Office of Naval Research Young Investigator, and a 2021 Cottrell Scholar.
Daniel A. Lidar
Daniel A. Lidar is the holder of the Viterbi Professorship of Engineering at the University of Southern California, and a Professor of Electrical & Computer Engineering, Chemistry, and Physics & Astronomy. He holds a PhD in Physics from the Hebrew University of Jerusalem. He did his postdoctoral work in Theoretical Chemistry at UC Berkeley. Prior to joining USC in 2005 he was a faculty member at the University of Toronto. His main research interest is quantum information processing, where he works on quantum control, quantum error correction, the theory of open quantum systems, and quantum algorithms. He is the Director of the USC Center for Quantum Information Science and Technology, the Director of the USC-IBM Quantum Innovation Center, and the co-Director (Scientific Director) of the USC Center for Quantum Computing. He is a recipient of a Sloan Research Fellowship, a Guggenheim Fellowship and is a Fellow of the AAAS, APS, and IEEE.
Acknowledgments
We thank Namit Anand, Nic Ezzell and Alexandru Paler for useful discussions. Devices were fabricated and provided by the Superconducting Qubits at Lincoln Laboratory (SQUILL) Foundry at MIT Lincoln Laboratory, with funding from the Laboratory for Physical Sciences (LPS) Qubit Collaboratory. This research was supported by the National Science Foundation, the Quantum Leap Big Idea under Grant No. OMA-1936388, the U. S. Army Research Laboratory and the U. S. Army Research Office contract/grant number W911NF2310255, and the Intelligence Advanced Research Projects Activity (IARPA) under Cooperative Agreement No. W911NF-23-2-0216.
Appendix
A. Device Design and Experimental Setup
ωq/2π | |η|/2π | χqc/2π | ωc/2π |
---|---|---|---|
4.37 GHz | 215 MHz | 230 kHz | 6.95 GHz |
κ/2π | T1 | T2* |
---|---|---|
150 kHz | 20 μs | 32 μs |
B. Conventional Single-Qubit Gate Calibration
1. | Find the resonance frequencies of the cavity and the qubit using conventional spectroscopy techniques. | ||||
2. | Look for a monotone signal sent at the frequency of the qubit (cavity) at the output spectrum of the microwave mixers and try to minimize the leakage and the mirror signals caused by the mixer’s electrical offset and imbalance. | ||||
3. | Perform simple Rabi experiments to find the right gate length for a specific gate amplitude. We chose a gate length of 80 ns and a cosine-shaped gate envelope for the experiments reported here. Note that there is a padding of 8 ns between consecutive pulses, and hence the effective pulse interval is 88 ns. | ||||
4. | Characterize the relaxation and decoherence rates of the device and use the Ramsey experiments to fine-tune the qubit’s frequency. | ||||
5. | Optimize the readout fidelity by using the previously calibrated Rx(π) pulses and varying the readout tone’s frequency and amplitude. | ||||
6. | Apply consecutive Rx(π) and Rx(π/2) pulses to the system initialized in the ground state, such that after each measurement the qubit ideally returns to its ground state, i.e., 4N × Rx(π/2) and 2N × Rx(π) pulses with N ∈ [1, ..., 20]. Using this method we can observe the ground state fidelity of the qubit and pick an amplitude that pins the qubit to its ground state without exhibiting any oscillations. As described above, calibrating the pulses along the x-axis automatically calibrates them along the y-axis as well. | ||||
7. | Optimize the DRAG weighting parameter (α) by applying multiple pairs of Rx(π)Rx(−π) pulses to the system initialized in its ground state, (211) observe the ground state fidelity, and choose the parameter values for which the qubit remains in its ground state. |
C. ζ’s Components
References
This article references 211 other publications.
- 1Bharti, K.; Cervera-Lierta, A.; Kyaw, T. H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J. S.; Menke, T.; Mok, W.-K.; Sim, S.; Kwek, L.-C.; Aspuru-Guzik, A. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 2022, 94, 015004 DOI: 10.1103/RevModPhys.94.015004Google ScholarThere is no corresponding record for this reference.
- 2Dalzell, A. M.; McArdle, S.; Berta, M.; Bienias, P.; Chen, C.-F.; Gilyén, A.; Hann, C. T.; Kastoryano, M. J.; Khabiboulline, E. T.; Kubica, A.; Salton, G.; Wang, S.; Brandão, F. G. S. L. Quantum algorithms: A survey of applications and end-to-end complexities. 2023; https://arxiv.org/abs/2310.03011 (accessed 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 3Shor, P. Fault-tolerant quantum computation. Proceedings of 37th Conference on Foundations of Computer Science. 1996; pp 56– 65.Google ScholarThere is no corresponding record for this reference.
- 4Aharonov, D.; Ben-Or, M. Fault tolerant quantum computation with constant error. Proceedings of 29th Annual ACM Symposium on Theory of Computing (STOC). New York, NY, 1997; p 176.Google ScholarThere is no corresponding record for this reference.
- 5Knill, E.; Laflamme, R.; Zurek, W. H. Resilient Quantum Computation. Science 1998, 279, 342– 345, DOI: 10.1126/science.279.5349.342Google ScholarThere is no corresponding record for this reference.
- 6Aliferis, P.; Gottesman, D.; Preskill, J. Quantum accuracy threshold for concatenated distance-3 codes. Quant. Inf. Comput. 2006, 6, 97, DOI: 10.26421/QIC6.2-1Google ScholarThere is no corresponding record for this reference.
- 7Campbell, E. T.; Terhal, B. M.; Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 2017, 549, 172, DOI: 10.1038/nature23460Google ScholarThere is no corresponding record for this reference.
- 8Reiher, M.; Wiebe, N.; Svore, K. M.; Wecker, D.; Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 7555– 7560, DOI: 10.1073/pnas.1619152114Google ScholarThere is no corresponding record for this reference.
- 9Kassal, I.; Whitfield, J. D.; Perdomo-Ortiz, A.; Yung, M.-H.; Aspuru-Guzik, A. Simulating Chemistry Using Quantum Computers. Annu. Rev. Phys. Chem. 2011, 62, 185– 207, DOI: 10.1146/annurev-physchem-032210-103512Google ScholarThere is no corresponding record for this reference.
- 10Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79, DOI: 10.22331/q-2018-08-06-79Google ScholarThere is no corresponding record for this reference.
- 11O’Malley, P. J. J. Scalable Quantum Simulation of Molecular Energies. Physical Review X 2016, 6, 031007 DOI: 10.1103/PhysRevX.6.031007Google ScholarThere is no corresponding record for this reference.
- 12Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J. M.; Gambetta, J. M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 2017, 549, 242, DOI: 10.1038/nature23879Google ScholarThere is no corresponding record for this reference.
- 13Lidar, D. A.; Wang, H. Calculating the thermal rate constant with exponential speedup on a quantum computer. Phys. Rev. E 1999, 59, 2429– 2438, DOI: 10.1103/PhysRevE.59.2429Google ScholarThere is no corresponding record for this reference.
- 14Aspuru-Guzik, A.; Dutoi, A. D.; Love, P. J.; Head-Gordon, M. Simulated Quantum Computation of Molecular Energies. Science 2005, 309, 1704, DOI: 10.1126/science.1113479Google ScholarThere is no corresponding record for this reference.
- 15Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.; Love, P. J.; Aspuru-Guzik, A.; O’Brien, J. L. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014, 5, 4213, DOI: 10.1038/ncomms5213Google ScholarThere is no corresponding record for this reference.
- 16McClean, J. R.; Romero, J.; Babbush, R.; Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New J. Phys. 2016, 18, 023023 DOI: 10.1088/1367-2630/18/2/023023Google ScholarThere is no corresponding record for this reference.
- 17McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S. C.; Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 2020, 92, 015003 DOI: 10.1103/RevModPhys.92.015003Google ScholarThere is no corresponding record for this reference.
- 18Tilly, J.; Chen, H.; Cao, S.; Picozzi, D.; Setia, K.; Li, Y.; Grant, E.; Wossnig, L.; Rungger, I.; Booth, G. H.; Tennyson, J. The Variational Quantum Eigensolver: A review of methods and best practices. Phys. Rep. 2022, 986, 1– 128, DOI: 10.1016/j.physrep.2022.08.003Google ScholarThere is no corresponding record for this reference.
- 19Kitaev, A. Y. Quantum measurements and the Abelian Stabilizer Problem. 1995; https://arxiv.org/abs/quant-ph/9511026 (accessed 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 20Cao, Y.; Romero, J.; Olson, J. P.; Degroote, M.; Johnson, P. D.; Kieferová, M.; Kivlichan, I. D.; Menke, T.; Peropadre, B.; Sawaya, N. P. D.; Sim, S.; Veis, L.; Aspuru-Guzik, A. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 119, 10856– 10915, DOI: 10.1021/acs.chemrev.8b00803Google ScholarThere is no corresponding record for this reference.
- 21Lee, S. Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nat. Commun. 2023, 14, 1952, DOI: 10.1038/s41467-023-37587-6Google ScholarThere is no corresponding record for this reference.
- 22Huggins, W. J.; McClean, J. R.; Rubin, N. C.; Jiang, Z.; Wiebe, N.; Whaley, K. B.; Babbush, R. Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers. npj Quantum Information 2021, 7, 23, DOI: 10.1038/s41534-020-00341-7Google ScholarThere is no corresponding record for this reference.
- 23Hashim, A. . A Practical Introduction to Benchmarking and Characterization of Quantum Computers. 2024; https://arxiv.org/abs/2408.12064 (accessed 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 24Chuang, I. L.; Nielsen, M. A. Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 1997, 44, 2455, DOI: 10.1080/09500349708231894Google ScholarThere is no corresponding record for this reference.
- 25Poyatos, J. F.; Cirac, J. I.; Zoller, P. Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate. Phys. Rev. Lett. 1997, 78, 390– 393, DOI: 10.1103/PhysRevLett.78.390Google ScholarThere is no corresponding record for this reference.
- 26Mohseni, M.; Rezakhani, A. T.; Lidar, D. A. Quantum-process tomography: Resource analysis of different strategies. Phys. Rev. A 2008, 77, 032322 DOI: 10.1103/PhysRevA.77.032322Google ScholarThere is no corresponding record for this reference.
- 27Emerson, J.; Alicki, R.; Życzkowski, K. Scalable noise estimation with random unitary operators. Journal of Optics B: Quantum and Semiclassical Optics 2005, 7, S347, DOI: 10.1088/1464-4266/7/10/021Google ScholarThere is no corresponding record for this reference.
- 28Knill, E.; Leibfried, D.; Reichle, R.; Britton, J.; Blakestad, R. B.; Jost, J. D.; Langer, C.; Ozeri, R.; Seidelin, S.; Wineland, D. J. Randomized benchmarking of quantum gates. Phys. Rev. A 2008, 77, 012307 DOI: 10.1103/PhysRevA.77.012307Google ScholarThere is no corresponding record for this reference.
- 29Magesan, E.; Gambetta, J. M.; Emerson, J. Scalable and Robust Randomized Benchmarking of Quantum Processes. Phys. Rev. Lett. 2011, 106, 180504, DOI: 10.1103/PhysRevLett.106.180504Google ScholarThere is no corresponding record for this reference.
- 30Helsen, J.; Roth, I.; Onorati, E.; Werner, A. H.; Eisert, J. General Framework for Randomized Benchmarking. PRX Quantum 2022, 3, 020357 DOI: 10.1103/PRXQuantum.3.020357Google ScholarThere is no corresponding record for this reference.
- 31Merkel, S. T.; Gambetta, J. M.; Smolin, J. A.; Poletto, S.; Córcoles, A. D.; Johnson, B. R.; Ryan, C. A.; Steffen, M. Self-consistent quantum process tomography. Phys. Rev. A 2013, 87, 062119 DOI: 10.1103/PhysRevA.87.062119Google ScholarThere is no corresponding record for this reference.
- 32Blume-Kohout, R.; Gamble, J. K.; Nielsen, E.; Mizrahi, J.; Sterk, J. D.; Maunz, P. Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit. 2013; https://arxiv.org/abs/1310.4492 (accessed 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 33Kim, D.; Ward, D. R.; Simmons, C. B.; Gamble, J. K.; Blume-Kohout, R.; Nielsen, E.; Savage, D. E.; Lagally, M. G.; Friesen, M.; Coppersmith, S. N.; Eriksson, M. A. Microwave-driven coherent operation of a semiconductor quantum dot charge qubit. Nat. Nanotechnol. 2015, 10, 243– 247, DOI: 10.1038/nnano.2014.336Google ScholarThere is no corresponding record for this reference.
- 34Bäumer, E.; Tripathi, V.; Seif, A.; Lidar, D.; Wang, D. S. Quantum Fourier Transform Using Dynamic Circuits. Phys. Rev. Lett. 2024, 133, 150602– 150609, DOI: 10.1103/PhysRevLett.133.150602Google ScholarThere is no corresponding record for this reference.
- 35da Silva, M. P.; Landon-Cardinal, O.; Poulin, D. Practical characterization of quantum devices without tomography. Phys. Rev. Lett. 2011, 107, 210404– 210409, DOI: 10.1103/PhysRevLett.107.210404Google ScholarThere is no corresponding record for this reference.
- 36Flammia, S. T.; Liu, Y.-K. Direct Fidelity Estimation from Few Pauli Measurements. Phys. Rev. Lett. 2011, 106, 230501, DOI: 10.1103/PhysRevLett.106.230501Google ScholarThere is no corresponding record for this reference.
- 37Neill, C. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 2018, 360, 195– 199, DOI: 10.1126/science.aao4309Google ScholarThere is no corresponding record for this reference.
- 38Boixo, S.; Isakov, S. V.; Smelyanskiy, V. N.; Babbush, R.; Ding, N.; Jiang, Z.; Bremner, M. J.; Martinis, J. M.; Neven, H. Characterizing quantum supremacy in near-term devices. Nature Physics 2018, 14, 595– 600Google ScholarThere is no corresponding record for this reference.
- 39Arute, F. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505– 510Google ScholarThere is no corresponding record for this reference.
- 40Kueng, R.; Long, D. M.; Doherty, A. C.; Flammia, S. T. Comparing Experiments to the Fault-Tolerance Threshold. Phys. Rev. Lett. 2016, 117, 170502, DOI: 10.1103/PhysRevLett.117.170502Google ScholarThere is no corresponding record for this reference.
- 41Barnes, J. P.; Trout, C. J.; Lucarelli, D.; Clader, B. D. Quantum error-correction failure distributions: Comparison of coherent and stochastic error models. Phys. Rev. A 2017, 95, 062338 DOI: 10.1103/PhysRevA.95.062338Google ScholarThere is no corresponding record for this reference.
- 42Ng, H. K.; Preskill, J. Fault-tolerant quantum computation versus Gaussian noise. Phys. Rev. A 2009, 79, 032318. DOI: 10.1103/PhysRevA.79.032318Google ScholarThere is no corresponding record for this reference.
- 43Wallman, J.; Granade, C.; Harper, R.; Flammia, S. T. Estimating the coherence of noise. New J. Phys. 2015, 17, 113020, DOI: 10.1088/1367-2630/17/11/113020Google ScholarThere is no corresponding record for this reference.
- 44Sanders, Y. R.; Wallman, J. J.; Sanders, B. C. Bounding quantum gate error rate based on reported average fidelity. New J. Phys. 2016, 18, 012002 DOI: 10.1088/1367-2630/18/1/012002Google ScholarThere is no corresponding record for this reference.
- 45Hashim, A.; Seritan, S.; Proctor, T.; Rudinger, K.; Goss, N.; Naik, R. K.; Kreikebaum, J. M.; Santiago, D. I.; Siddiqi, I. Benchmarking quantum logic operations relative to thresholds for fault tolerance. npj Quantum Information 2023, 9, 109, DOI: 10.1038/s41534-023-00764-yGoogle ScholarThere is no corresponding record for this reference.
- 46Wallman, J. J.; Emerson, J. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A 2016, 94, 052325– 052334, DOI: 10.1103/PhysRevA.94.052325Google ScholarThere is no corresponding record for this reference.
- 47Hashim, A.; Naik, R. K.; Morvan, A.; Ville, J.-L.; Mitchell, B.; Kreikebaum, J. M.; Davis, M.; Smith, E.; Iancu, C.; O’Brien, K. P.; Hincks, I.; Wallman, J. J.; Emerson, J.; Siddiqi, I. Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor. Phys. Rev. X 2021, 11, 041039 DOI: 10.1103/PhysRevX.11.041039Google ScholarThere is no corresponding record for this reference.
- 48van den Berg, E.; Minev, Z. K.; Kandala, A.; Temme, K. Probabilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors. Nat. Phys. 2023, 19, 1116– 1121, DOI: 10.1038/s41567-023-02042-2Google ScholarThere is no corresponding record for this reference.
- 49Seif, A.; Liao, H.; Tripathi, V.; Krsulich, K.; Malekakhlagh, M.; Amico, M.; Jurcevic, P.; Javadi-Abhari, A. Suppressing Correlated Noise in Quantum Computers via Context-Aware Compiling. 51st Annual International Symposium on Computer Architecture (ISCA) 2024, 310– 324Google ScholarThere is no corresponding record for this reference.
- 50Gross, J. A.; Genois, E.; Debroy, D. M.; Zhang, Y.; Mruczkiewicz, W.; Cian, Z.-P.; Jiang, Z. Characterizing Coherent Errors using Matrix-Element Amplification. npj Quantum Information 2024, 10, 123, DOI: 10.1038/s41534-024-00917-7Google ScholarThere is no corresponding record for this reference.
- 51Bravyi, S.; Englbrecht, M.; König, R.; Peard, N. Correcting coherent errors with surface codes. npj Quantum Information 2018, 4, 55, DOI: 10.1038/s41534-018-0106-yGoogle ScholarThere is no corresponding record for this reference.
- 52Barenco, A.; Bennett, C. H.; Cleve, R.; DiVincenzo, D. P.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J. A.; Weinfurter, H. Elementary gates for quantum computation. Phys. Rev. A 1995, 52, 3457– 3467, DOI: 10.1103/PhysRevA.52.3457Google ScholarThere is no corresponding record for this reference.
- 53Erhard, A.; Wallman, J. J.; Postler, L.; Meth, M.; Stricker, R.; Martinez, E. A.; Schindler, P.; Monz, T.; Emerson, J.; Blatt, R. Characterizing large-scale quantum computers via cycle benchmarking. Nat. Commun. 2019, 10, 5347, DOI: 10.1038/s41467-019-13068-7Google ScholarThere is no corresponding record for this reference.
- 54McKay, D. C.; Wood, C. J.; Sheldon, S.; Chow, J. M.; Gambetta, J. M. Efficient Z gates for quantum computing. Phys. Rev. A 2017, 96, 022330 DOI: 10.1103/PhysRevA.96.022330Google ScholarThere is no corresponding record for this reference.
- 55Cross, A. W.; Bishop, L. S.; Sheldon, S.; Nation, P. D.; Gambetta, J. M. Validating quantum computers using randomized model circuits. Phys. Rev. A 2019, 100, 032328 DOI: 10.1103/PhysRevA.100.032328Google ScholarThere is no corresponding record for this reference.
- 56Dankert, C.; Cleve, R.; Emerson, J.; Livine, E. Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A 2009, 80, 012304 DOI: 10.1103/PhysRevA.80.012304Google ScholarThere is no corresponding record for this reference.
- 57Proctor, T.; Rudinger, K.; Young, K.; Nielsen, E.; Blume-Kohout, R. Measuring the capabilities of quantum computers. Nat. Phys. 2022, 18, 75– 79, DOI: 10.1038/s41567-021-01409-7Google ScholarThere is no corresponding record for this reference.
- 58Cincio, L.; Subası, Y.; Sornborger, A. T; Coles, P. J Learning the quantum algorithm for state overlap. New J. Phys. 2018, 20, 113022, DOI: 10.1088/1367-2630/aae94aGoogle ScholarThere is no corresponding record for this reference.
- 59Reich, D. M.; Gualdi, G.; Koch, C. P. Optimal Strategies for Estimating the Average Fidelity of Quantum Gates. Phys. Rev. Lett. 2013, 111, 200401– 200406, DOI: 10.1103/PhysRevLett.111.200401Google ScholarThere is no corresponding record for this reference.
- 60Torlai, G.; Mazzola, G.; Carrasquilla, J.; Troyer, M.; Melko, R.; Carleo, G. Neural-network quantum state tomography. Nat. Phys. 2018, 14, 447– 450, DOI: 10.1038/s41567-018-0048-5Google ScholarThere is no corresponding record for this reference.
- 61Koutny, D.; Motka, L.; Hradil, Z.; Rehacek, J.; Sanchez-Soto, L. L. Neural-network quantum state tomography. Phys. Rev. A 2022, 106. DOI: 10.1103/PhysRevA.106.012409Google ScholarThere is no corresponding record for this reference.
- 62Gu, Y.; Zhuang, W.-F.; Chai, X.; Liu, D. E. Benchmarking universal quantum gates via channel spectrum. Nat. Commun. 2023, 14, 5880, DOI: 10.1038/s41467-023-41598-8Google ScholarThere is no corresponding record for this reference.
- 63McKay, D. C.; Hincks, I.; Pritchett, E. J.; Carroll, M.; Govia, L. C. G.; Merkel, S. T. Benchmarking Quantum Processor Performance at Scale. 2023; https://arxiv.org/abs/2311.05933 (accessed: 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 64Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, 2002.Google ScholarThere is no corresponding record for this reference.
- 65Kraus, K. States, Effects and Operations; Fundamental Notions of Quantum Theory; Academic, 1983.Google ScholarThere is no corresponding record for this reference.
- 66Nielsen, M. A.; Chuang, I. L. Quantum computation and quantum information; Cambridge University Press, 2010.Google ScholarThere is no corresponding record for this reference.
- 67Jamiołkowski, A. Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 1972, 3, 275– 278, DOI: 10.1016/0034-4877(72)90011-0Google ScholarThere is no corresponding record for this reference.
- 68Choi, M.-D. Completely positive linear maps on complex matrices. Linear Algebra and its Applications 1975, 10, 285– 290, DOI: 10.1016/0024-3795(75)90075-0Google ScholarThere is no corresponding record for this reference.
- 69Uhlmann, A. The “transition probability”in the state space of a ∗-algebra. Reports on Mathematical Physics 1976, 9, 273– 279, DOI: 10.1016/0034-4877(76)90060-4Google ScholarThere is no corresponding record for this reference.
- 70Knill, E.; Laflamme, R. Theory of quantum error-correcting codes. Phys. Rev. A 1997, 55, 900– 911, DOI: 10.1103/PhysRevA.55.900Google ScholarThere is no corresponding record for this reference.
- 71Tripathi, V.; Chen, H.; Levenson-Falk, E.; Lidar, D. A. Modeling Low- and High-Frequency Noise in Transmon Qubits with Resource-Efficient Measurement. PRX Quantum 2024, 5, 010320 DOI: 10.1103/PRXQuantum.5.010320Google ScholarThere is no corresponding record for this reference.
- 72Byrd, M. S.; Lidar, D. A.; Wu, L.-A.; Zanardi, P. Universal leakage elimination. Phys. Rev. A 2005, 71, 052301 DOI: 10.1103/PhysRevA.71.052301Google ScholarThere is no corresponding record for this reference.
- 73Koch, J.; Yu, T. M.; Gambetta, J.; Houck, A. A.; Schuster, D. I.; Majer, J.; Blais, A.; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 2007, 76, 042319 DOI: 10.1103/PhysRevA.76.042319Google ScholarThere is no corresponding record for this reference.
- 74Wu, L.-A.; Walther, P.; Lidar, D. A. No-go theorem for passive single-rail linear optical quantum computing. Sci. Rep. 2013, 3, 1394, DOI: 10.1038/srep01394Google ScholarThere is no corresponding record for this reference.
- 75Levine, H. Demonstrating a Long-Coherence Dual-Rail Erasure Qubit Using Tunable Transmons. Physical Review X 2024, 14, 011051– 011072, DOI: 10.1103/PhysRevX.14.011051Google ScholarThere is no corresponding record for this reference.
- 76Grünzweig, T.; Hilliard, A.; McGovern, M.; Andersen, M. F. Near-deterministic preparation of a single atom in an optical microtrap. Nat. Phys. 2010, 6, 951– 954, DOI: 10.1038/nphys1778Google ScholarThere is no corresponding record for this reference.
- 77Wu, Y.; Kolkowitz, S.; Puri, S.; Thompson, J. D. Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nat. Commun. 2022, 13, 4657, DOI: 10.1038/s41467-022-32094-6Google ScholarThere is no corresponding record for this reference.
- 78Varbanov, B. M.; Battistel, F.; Tarasinski, B. M.; Ostroukh, V. P.; O’Brien, T. E.; DiCarlo, L.; Terhal, B. M. Leakage detection for a transmon-based surface code. npj Quantum Information 2020, 6, 102, DOI: 10.1038/s41534-020-00330-wGoogle ScholarThere is no corresponding record for this reference.
- 79McEwen, M. Removing leakage-induced correlated errors in superconducting quantum error correction. Nat. Commun. 2021, 12, 1761, DOI: 10.1038/s41467-021-21982-yGoogle ScholarThere is no corresponding record for this reference.
- 80Gourlay, I.; Snowdon, J. F. Concatenated Coding in the Presence of Dephasing. Phys. Rev. A 2000, 62, 022308 DOI: 10.1103/PhysRevA.62.022308Google ScholarThere is no corresponding record for this reference.
- 81Evans, Z. W. E.; Stephens, A. M.; Cole, J. H.; Hollenberg, L. C. L. Error Correction Optimisation in the Presence of X/Z Asymmetry. 2007.Google ScholarThere is no corresponding record for this reference.
- 82Stephens, A. M.; Evans, Z. W. E.; Devitt, S. J.; Hollenberg, L. C. L. Asymmetric Quantum Error Correction via Code Conversion. Phys. Rev. A 2008, 77, 062335 DOI: 10.1103/PhysRevA.77.062335Google ScholarThere is no corresponding record for this reference.
- 83Aliferis, P.; Preskill, J. Fault-tolerant quantum computation against biased noise. Phys. Rev. A 2008, 78, 052331 DOI: 10.1103/PhysRevA.78.052331Google ScholarThere is no corresponding record for this reference.
- 84Stephens, A. M.; Munro, W. J.; Nemoto, K. High-Threshold Topological Quantum Error Correction against Biased Noise. Phys. Rev. A 2013, 88, 060301 DOI: 10.1103/PhysRevA.88.060301Google ScholarThere is no corresponding record for this reference.
- 85Brooks, P.; Preskill, J. Fault-Tolerant Quantum Computation with Asymmetric Bacon-Shor Codes. Phys. Rev. A 2013, 87, 032310 DOI: 10.1103/PhysRevA.87.032310Google ScholarThere is no corresponding record for this reference.
- 86Bonilla Ataides, J. P.; Tuckett, D. K.; Bartlett, S. D.; Flammia, S. T.; Brown, B. J. The XZZX surface code. Nat. Commun. 2021, 12, 2172, DOI: 10.1038/s41467-021-22274-1Google ScholarThere is no corresponding record for this reference.
- 87Chruscinski, D.; Kossakowski, A. Non-Markovian Quantum Dynamics: Local versus Nonlocal. Phys. Rev. Lett. 2010, 104, 070406 DOI: 10.1103/PhysRevLett.104.070406Google ScholarThere is no corresponding record for this reference.
- 88Rivas, Á.; Huelga, S. F.; Plenio, M. B. Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 2014, 77, 094001 DOI: 10.1088/0034-4885/77/9/094001Google ScholarThere is no corresponding record for this reference.
- 89Shabani, A.; Lidar, D. A. Completely positive post-Markovian master equation via a measurement approach. Phys. Rev. A 2005, 71, 020101 DOI: 10.1103/PhysRevA.71.020101Google ScholarThere is no corresponding record for this reference.
- 90Zhang, H.; Pokharel, B.; Levenson-Falk, E.; Lidar, D. Predicting Non-Markovian Superconducting-Qubit Dynamics from Tomographic Reconstruction. Physical Review Applied 2022, 17, 054018 DOI: 10.1103/PhysRevApplied.17.054018Google ScholarThere is no corresponding record for this reference.
- 91Zhang, J.; Vala, J.; Sastry, S.; Whaley, K. B. Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 2003, 67, 042313 DOI: 10.1103/PhysRevA.67.042313Google ScholarThere is no corresponding record for this reference.
- 92Sete, E. A.; Didier, N.; Chen, A. Q.; Kulshreshtha, S.; Manenti, R.; Poletto, S. Parametric-Resonance Entangling Gates with a Tunable Coupler. Phys. Rev. Appl. 2021, 16, 024050 DOI: 10.1103/PhysRevApplied.16.024050Google ScholarThere is no corresponding record for this reference.
- 93Sete, E. A.; Tripathi, V.; Valery, J. A.; Lidar, D.; Mutus, J. Y. Error Budget of a Parametric Resonance Entangling Gate with a Tunable Coupler. Physical Review Applied 2024, 22, 014059 DOI: 10.1103/PhysRevApplied.22.014059Google ScholarThere is no corresponding record for this reference.
- 94Tripathi, V.; Khezri, M.; Korotkov, A. N. Operation and intrinsic error budget of a two-qubit cross-resonance gate. Phys. Rev. A 2019, 100, 012301 DOI: 10.1103/PhysRevA.100.012301Google ScholarThere is no corresponding record for this reference.
- 95Gaikwad, C.; Kowsari, D.; Brame, C.; Song, X.; Zhang, H.; Esposito, M.; Ranadive, A.; Cappelli, G.; Roch, N.; Levenson-Falk, E. M.; Murch, K. W. Entanglement Assisted Probe of the Non-Markovian to Markovian Transition in Open Quantum System Dynamics. Phys. Rev. Lett. 2024, 132, 200401, DOI: 10.1103/PhysRevLett.132.200401Google ScholarThere is no corresponding record for this reference.
- 96Dubi, Y.; Di Ventra, M. Relaxation times in an open interacting two-qubit system. Phys. Rev. A 2009, 79, 012328 DOI: 10.1103/PhysRevA.79.012328Google ScholarThere is no corresponding record for this reference.
- 97Greenbaum, D. Introduction to Quantum Gate Set Tomography. 2015, arXiv:1509.02921 [quant-ph] (accessed: 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 98Brown, W. G.; Eastin, B. Randomized Benchmarking with Restricted Gate Sets. Phys. Rev. A 2018, 97, 062323 DOI: 10.1103/PhysRevA.97.062323Google ScholarThere is no corresponding record for this reference.
- 99Seif, A.; Chen, S.; Majumder, S.; Liao, H.; Wang, D. S.; Malekakhlagh, M.; Javadi-Abhari, A.; Jiang, L.; Minev, Z. K. Entanglement-enhanced learning of quantum processes at scale. 2024; https://arxiv.org/abs/2408.03376 (accessed: 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 100Khan, M. Q.; Dong, W.; Norris, L. M.; Viola, L. Multiaxis quantum noise spectroscopy robust to errors in state preparation and measurement. Physical Review Applied 2024, 22, 024074 DOI: 10.1103/PhysRevApplied.22.024074Google ScholarThere is no corresponding record for this reference.
- 101Merkel, S. T.; Gambetta, J. M.; Smolin, J. A.; Poletto, S.; Córcoles, A. D.; Johnson, B. R.; Ryan, C. A.; Steffen, M. Self-consistent quantum process tomography. Phys. Rev. A 2013, 87, 062119 DOI: 10.1103/PhysRevA.87.062119Google ScholarThere is no corresponding record for this reference.
- 102Magesan, E.; Gambetta, J. M.; Emerson, J. Characterizing quantum gates via randomized benchmarking. Phys. Rev. A 2012, 85, 042311 DOI: 10.1103/PhysRevA.85.042311Google ScholarThere is no corresponding record for this reference.
- 103Aaronson, S.; Gottesman, D. Improved simulation of stabilizer circuits. Phys. Rev. A 2004, 70, 052328 DOI: 10.1103/PhysRevA.70.052328Google ScholarThere is no corresponding record for this reference.
- 104Nielsen, M. A. A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A 2002, 303, 249– 252, DOI: 10.1016/S0375-9601(02)01272-0Google ScholarThere is no corresponding record for this reference.
- 105Viola, L.; Knill, E. Random Decoupling Schemes for Quantum Dynamical Control and Error Suppression. Phys. Rev. Lett. 2005, 94, 060502 DOI: 10.1103/PhysRevLett.94.060502Google ScholarThere is no corresponding record for this reference.
- 106Santos, L. F.; Viola, L. Dynamical control of qubit coherence: Random versus deterministic schemes. Phys. Rev. A 2005, 72, 062303 DOI: 10.1103/PhysRevA.72.062303Google ScholarThere is no corresponding record for this reference.
- 107Santos, L. F.; Viola, L. Enhanced Convergence and Robust Performance of Randomized Dynamical Decoupling. Phys. Rev. Lett. 2006, 97, 150501, DOI: 10.1103/PhysRevLett.97.150501Google ScholarThere is no corresponding record for this reference.
- 108Magesan, E.; Gambetta, J. M.; Johnson, B. R.; Ryan, C. A.; Chow, J. M.; Merkel, S. T.; da Silva, M. P.; Keefe, G. A.; Rothwell, M. B.; Ohki, T. A.; Ketchen, M. B.; Steffen, M. Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking. Phys. Rev. Lett. 2012, 109, 080505 DOI: 10.1103/PhysRevLett.109.080505Google ScholarThere is no corresponding record for this reference.
- 109Gambetta, J. M.; Córcoles, A. D.; Merkel, S. T.; Johnson, B. R.; Smolin, J. A.; Chow, J. M.; Ryan, C. A.; Rigetti, C.; Poletto, S.; Ohki, T. A.; Ketchen, M. B.; Steffen, M. Characterization of Addressability by Simultaneous Randomized Benchmarking. Phys. Rev. Lett. 2012, 109, 240504, DOI: 10.1103/PhysRevLett.109.240504Google ScholarThere is no corresponding record for this reference.
- 110Wallman, J. J.; Barnhill, M.; Emerson, J. Robust characterization of leakage errors. New J. Phys. 2016, 18, 043021 DOI: 10.1088/1367-2630/18/4/043021Google ScholarThere is no corresponding record for this reference.
- 111Wood, C. J.; Gambetta, J. M. Quantification and characterization of leakage errors. Phys. Rev. A 2018, 97, 032306 DOI: 10.1103/PhysRevA.97.032306Google ScholarThere is no corresponding record for this reference.
- 112Fogarty, M. A.; Veldhorst, M.; Harper, R.; Yang, C. H.; Bartlett, S. D.; Flammia, S. T.; Dzurak, A. S. Nonexponential fidelity decay in randomized benchmarking with low-frequency noise. Phys. Rev. A 2015, 92, 022326 DOI: 10.1103/PhysRevA.92.022326Google ScholarThere is no corresponding record for this reference.
- 113Wallman, J. J. Randomized benchmarking with gate-dependent noise. Quantum 2018, 2, 47, DOI: 10.22331/q-2018-01-29-47Google ScholarThere is no corresponding record for this reference.
- 114Proctor, T.; Seritan, S.; Rudinger, K.; Nielsen, E.; Blume-Kohout, R.; Young, K. Scalable Randomized Benchmarking of Quantum Computers Using Mirror Circuits. Phys. Rev. Lett. 2022, 129, 150502, DOI: 10.1103/PhysRevLett.129.150502Google ScholarThere is no corresponding record for this reference.
- 115Helsen, J.; Xue, X.; Vandersypen, L. M. K.; Wehner, S. A new class of efficient randomized benchmarking protocols. npj Quantum Information 2019, 5, 71, DOI: 10.1038/s41534-019-0182-7Google ScholarThere is no corresponding record for this reference.
- 116Helsen, J.; Roth, I.; Onorati, E.; Werner, A.; Eisert, J. General Framework for Randomized Benchmarking. PRX Quantum 2022, 3, 020357 DOI: 10.1103/PRXQuantum.3.020357Google ScholarThere is no corresponding record for this reference.
- 117Arrighi, P.; Patricot, C. On quantum operations as quantum states. Annals of Physics 2004, 311, 26– 52, DOI: 10.1016/j.aop.2003.11.005Google ScholarThere is no corresponding record for this reference.
- 118D’Ariano, G. M.; Lo Presti, P. Quantum Tomography for Measuring Experimentally the Matrix Elements of an Arbitrary Quantum Operation. Phys. Rev. Lett. 2001, 86, 4195– 4198, DOI: 10.1103/PhysRevLett.86.4195Google ScholarThere is no corresponding record for this reference.
- 119Leung, D. W. Choi’s proof as a recipe for quantum process tomography. Journal of Mathematical Physics 2003, 44, 528, DOI: 10.1063/1.1518554Google ScholarThere is no corresponding record for this reference.
- 120Altepeter, J. B.; Branning, D.; Jeffrey, E.; Wei, T. C.; Kwiat, P. G.; Thew, R. T.; O’Brien, J. L.; Nielsen, M. A.; White, A. G. Ancilla-Assisted Quantum Process Tomography. Phys. Rev. Lett. 2003, 90, 193601, DOI: 10.1103/PhysRevLett.90.193601Google ScholarThere is no corresponding record for this reference.
- 121D’Ariano, G. M.; Lo Presti, P. Imprinting Complete Information about a Quantum Channel on its Output State. Phys. Rev. Lett. 2003, 91, 047902 DOI: 10.1103/PhysRevLett.91.047902Google ScholarThere is no corresponding record for this reference.
- 122Mohseni, M.; Lidar, D. A. Direct Characterization of Quantum Dynamics. Phys. Rev. Lett. 2006, 97, 170501, DOI: 10.1103/PhysRevLett.97.170501Google ScholarThere is no corresponding record for this reference.
- 123Mohseni, M.; Lidar, D. A. Direct characterization of quantum dynamics: General theory. Phys. Rev. A 2007, 75, 062331 DOI: 10.1103/PhysRevA.75.062331Google ScholarThere is no corresponding record for this reference.
- 124Mohseni, M.; Rezakhani, A. T.; Aspuru-Guzik, A. Direct estimation of single- and two-qubit Hamiltonians and relaxation rates. Phys. Rev. A 2008, 77, 042320. DOI: 10.1103/PhysRevA.77.042320Google ScholarThere is no corresponding record for this reference.
- 125Graham, T. M.; Barreiro, J. T.; Mohseni, M.; Kwiat, P. G. Hyperentanglement-Enabled Direct Characterization of Quantum Dynamics. Phys. Rev. Lett. 2013, 110, 060404 DOI: 10.1103/PhysRevLett.110.060404Google ScholarThere is no corresponding record for this reference.
- 126Nigg, D.; Barreiro, J. T.; Schindler, P.; Mohseni, M.; Monz, T.; Chwalla, M.; Hennrich, M.; Blatt, R. Experimental Characterization of Quantum Dynamics Through Many-Body Interactions. Phys. Rev. Lett. 2013, 110, 060403 DOI: 10.1103/PhysRevLett.110.060403Google ScholarThere is no corresponding record for this reference.
- 127Gottesman, D. Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 1996, 54, 1862, DOI: 10.1103/PhysRevA.54.1862Google ScholarThere is no corresponding record for this reference.
- 128Blume-Kohout, R.; Gamble, J. K.; Nielsen, E.; Rudinger, K.; Mizrahi, J.; Fortier, K.; Maunz, P. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography. Nat. Commun. 2017, 8, 14485, DOI: 10.1038/ncomms14485Google ScholarThere is no corresponding record for this reference.
- 129Rol, M. A.; Bultink, C. C.; O’Brien, T. E.; de Jong, S. R.; Theis, L. S.; Fu, X.; Luthi, F.; Vermeulen, R. F. L.; de Sterke, J. C.; Bruno, A.; Deurloo, D.; Schouten, R. N.; Wilhelm, F. K.; DiCarlo, L. Restless Tuneup of High-Fidelity Qubit Gates. Phys. Rev. Appl. 2017, 7, 041001 DOI: 10.1103/PhysRevApplied.7.041001Google ScholarThere is no corresponding record for this reference.
- 130Mavadia, S.; Edmunds, C. L.; Hempel, C.; Ball, H.; Roy, F.; Stace, T. M.; Biercuk, M. J. Experimental quantum verification in the presence of temporally correlated noise. npj Quantum Information 2018, 4, 7, DOI: 10.1038/s41534-017-0052-0Google ScholarThere is no corresponding record for this reference.
- 131Hempel, C.; Maier, C.; Romero, J.; McClean, J.; Monz, T.; Shen, H.; Jurcevic, P.; Lanyon, B. P.; Love, P.; Babbush, R.; Aspuru-Guzik, A.; Blatt, R.; Roos, C. F. Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator. Phys. Rev. X 2018, 8, 031022 DOI: 10.1103/PhysRevX.8.031022Google ScholarThere is no corresponding record for this reference.
- 132Song, C.; Cui, J.; Wang, H.; Hao, J.; Feng, H.; Li, Y. Quantum computation with universal error mitigation on a superconducting quantum processor. Science Advances 2019, 5, eaaw5686 DOI: 10.1126/sciadv.aaw5686Google ScholarThere is no corresponding record for this reference.
- 133Cincio, L.; Rudinger, K.; Sarovar, M.; Coles, P. J. Machine Learning of Noise-Resilient Quantum Circuits. PRX Quantum 2021, 2, 010324 DOI: 10.1103/PRXQuantum.2.010324Google ScholarThere is no corresponding record for this reference.
- 134Hong, S. S.; Papageorge, A. T.; Sivarajah, P.; Crossman, G.; Didier, N.; Polloreno, A. M.; Sete, E. A.; Turkowski, S. W.; da Silva, M. P.; Johnson, B. R. Demonstration of a parametrically activated entangling gate protected from flux noise. Phys. Rev. A 2020, 101, 012302 DOI: 10.1103/PhysRevA.101.012302Google ScholarThere is no corresponding record for this reference.
- 135Joshi, M. K.; Elben, A.; Vermersch, B.; Brydges, T.; Maier, C.; Zoller, P.; Blatt, R.; Roos, C. F. Quantum Information Scrambling in a Trapped-Ion Quantum Simulator with Tunable Range Interactions. Phys. Rev. Lett. 2020, 124, 240505, DOI: 10.1103/PhysRevLett.124.240505Google ScholarThere is no corresponding record for this reference.
- 136Zhang, S.; Lu, Y.; Zhang, K.; Chen, W.; Li, Y.; Zhang, J.-N.; Kim, K. Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system. Nat. Commun. 2020, 11, 587, DOI: 10.1038/s41467-020-14376-zGoogle ScholarThere is no corresponding record for this reference.
- 137Ware, M.; Ribeill, G.; Ristè, D.; Ryan, C. A.; Johnson, B.; da Silva, M. P. Experimental Pauli-frame randomization on a superconducting qubit. Phys. Rev. A 2021, 103, 042604 DOI: 10.1103/PhysRevA.103.042604Google ScholarThere is no corresponding record for this reference.
- 138Dehollain, J. P.; Muhonen, J. T.; Blume-Kohout, R.; Rudinger, K. M.; Gamble, J. K.; Nielsen, E.; Laucht, A.; Simmons, S.; Kalra, R.; Dzurak, A. S.; Morello, A. Optimization of a solid-state electron spin qubit using gate set tomography. New J. Phys. 2016, 18, 103018, DOI: 10.1088/1367-2630/18/10/103018Google ScholarThere is no corresponding record for this reference.
- 139Kitaev, A.; Shen, A.; Vyalyi, M. Classical and Quantum Computation; Graduate studies in mathematics; American Mathematical Society, 2002.Google ScholarThere is no corresponding record for this reference.
- 140Scott, A. J. Tight informationally complete quantum measurements. Journal of Physics A: Mathematical and General 2006, 39, 13507, DOI: 10.1088/0305-4470/39/43/009Google ScholarThere is no corresponding record for this reference.
- 141Nielsen, E.; Gamble, J. K.; Rudinger, K.; Scholten, T.; Young, K.; Blume-Kohout, R. Gate Set Tomography. Quantum 2021, 5, 557, DOI: 10.22331/q-2021-10-05-557Google ScholarThere is no corresponding record for this reference.
- 142Householder, A. The Theory of Matrices in Numerical Analysis; Dover Books on Mathematics; Dover Publications, 2013.Google ScholarThere is no corresponding record for this reference.
- 143Nielsen, E.; Rudinger, K.; Proctor, T.; Russo, A.; Young, K.; Blume-Kohout, R. Probing quantum processor performance with pyGSTi. Quantum Science and Technology 2020, 5, 044002 DOI: 10.1088/2058-9565/ab8aa4Google ScholarThere is no corresponding record for this reference.
- 144Proctor, T.; Revelle, M.; Nielsen, E.; Rudinger, K.; Lobser, D.; Maunz, P.; Blume-Kohout, R.; Young, K. Detecting and tracking drift in quantum information processors. Nat. Commun. 2020, 11, 5396, DOI: 10.1038/s41467-020-19074-4Google ScholarThere is no corresponding record for this reference.
- 145Rudinger, K. M.; Ostrove, C. I.; Seritan, S. K.; Grace, M. D.; Nielsen, E.; Blume-Kohout, R. J.; Young, K. C. Two-Qubit Gate Set Tomography with Fewer Circuits. 2023; https://arxiv.org/abs/2307.15767 (accessed: 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 146Horodecki, M.; Horodecki, P.; Horodecki, R. General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 1999, 60, 1888– 1898, DOI: 10.1103/PhysRevA.60.1888Google ScholarThere is no corresponding record for this reference.
- 147Lu, D.; Li, H.; Trottier, D.-A.; Li, J.; Brodutch, A.; Krismanich, A. P.; Ghavami, A.; Dmitrienko, G. I.; Long, G.; Baugh, J.; Laflamme, R. Experimental Estimation of Average Fidelity of a Clifford Gate on a 7-qubit Quantum Processor. Phys. Rev. Lett. 2015, 114, 140505, DOI: 10.1103/PhysRevLett.114.140505Google ScholarThere is no corresponding record for this reference.
- 148Fedorov, A.; Steffen, L.; Baur, M.; da Silva, M. P.; Wallraff, A. Implementation of a Toffoli Gate with Superconducting Circuits. Nature 2012, 481, 170– 172, DOI: 10.1038/nature10713Google ScholarThere is no corresponding record for this reference.
- 149Wallman, J. J.; Flammia, S. T. Randomized benchmarking with confidence. New J. Phys. 2014, 16, 103032, DOI: 10.1088/1367-2630/16/10/103032Google ScholarThere is no corresponding record for this reference.
- 150Roth, I.; Kueng, R.; Kimmel, S.; Liu, Y.-K.; Gross, D.; Eisert, J.; Kliesch, M. Recovering quantum gates from few average gate fidelities. Phys. Rev. Lett. 2018, 121, 170502, DOI: 10.1103/PhysRevLett.121.170502Google ScholarThere is no corresponding record for this reference.
- 151Kalev, A.; Kyrillidis, A.; Linke, N. M. Validating and certifying stabilizer states. Phys. Rev. A 2019, 99, 042337 DOI: 10.1103/PhysRevA.99.042337Google ScholarThere is no corresponding record for this reference.
- 152Seshadri, A.; Ringbauer, M.; Spainhour, J.; Monz, T.; Becker, S. Theory of versatile fidelity estimation with confidence. Phys. Rev. A 2024, 110, 012431 DOI: 10.1103/PhysRevA.110.012431Google ScholarThere is no corresponding record for this reference.
- 153Seshadri, A.; Ringbauer, M.; Spainhour, J.; Blatt, R.; Monz, T.; Becker, S. Versatile Fidelity Estimation with Confidence. Phys. Rev. Lett. 2024, 133, 020402 DOI: 10.1103/PhysRevLett.133.020402Google ScholarThere is no corresponding record for this reference.
- 154Kosut, R. L.; Rabitz, H.; Grace, M. D. Adaptive quantum control via direct fidelity estimation and indirect model-based parametric process tomography. 52nd IEEE Conference on Decision and Control. Firenze, 2013; pp 1247– 1252.Google ScholarThere is no corresponding record for this reference.
- 155Lu, Y.; Sim, J. Y.; Suzuki, J.; Englert, B.-G.; Ng, H. K. Direct estimation of minimum gate fidelity. Phys. Rev. A 2020, 102, 022410 DOI: 10.1103/PhysRevA.102.022410Google ScholarThere is no corresponding record for this reference.
- 156Liu, Y.; Otten, M.; Bassirianjahromi, R.; Jiang, L.; Fefferman, B. Benchmarking near-term quantum computers via random circuit sampling. 2022; http://arxiv.org/abs/2105.05232, arXiv: 2105.05232 [quant-ph] (accessed: 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 157Elements of Information Theory; John Wiley & Sons, Ltd, 2005; Chapter 4, pp 71– 101.Google ScholarThere is no corresponding record for this reference.
- 158Ledoux, M. The Concentration of Measure Phenomenon; American Mathematical Soc., 2001; Google-Books-ID: rRKChz4Om6gC.Google ScholarThere is no corresponding record for this reference.
- 159Boixo, S.; Smelyanskiy, V. N.; Neven, H. Fourier analysis of sampling from noisy chaotic quantum circuits. 2017; http://arxiv.org/abs/1708.01875, arXiv: 1708.01875 [quant-ph] (accessed: 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 160Choi, J.; Shaw, A. L.; Madjarov, I. S.; Xie, X.; Finkelstein, R.; Covey, J. P.; Cotler, J. S.; Mark, D. K.; Huang, H.-Y.; Kale, A.; Pichler, H.; Brandão, F. G. S. L.; Choi, S.; Endres, M. Preparing random states and benchmarking with many-body quantum chaos. Nature 2023, 613, 468– 473, DOI: 10.1038/s41586-022-05442-1Google ScholarThere is no corresponding record for this reference.
- 161Rinott, Y.; Shoham, T.; Kalai, G. Statistical Aspects of the Quantum Supremacy Demonstration. Statistical Science 2022, 37, 322– 347Google ScholarThere is no corresponding record for this reference.
- 162Dalzell, A. M.; Hunter-Jones, N.; Brandão, F. G. S. L. Random Quantum Circuits Anticoncentrate in Log Depth. PRX Quantum 2022, 3, 010333Google ScholarThere is no corresponding record for this reference.
- 163Huang, C.; Zhang, F.; Newman, M.; Cai, J.; Gao, X.; Tian, Z.; Wu, J.; Xu, H.; Yu, H.; Yuan, B.; Szegedy, M.; Shi, Y.; Chen, J. Classical Simulation of Quantum Supremacy Circuits. arXiv 2020 (accessed 2025-02-23). DOI: 10.48550/arXiv.2005.06787Google ScholarThere is no corresponding record for this reference.
- 164Zlokapa, A.; Villalonga, B.; Boixo, S.; Lidar, D. A. Boundaries of quantum supremacy via random circuit sampling. npj Quantum Information 2023, 9, 36, DOI: 10.1038/s41534-023-00703-xGoogle ScholarThere is no corresponding record for this reference.
- 165Kechedzhi, K.; Isakov, S. V.; Mandrà, S.; Villalonga, B.; Mi, X.; Boixo, S.; Smelyanskiy, V. Effective quantum volume, fidelity and computational cost of noisy quantum processing experiments. Future Generation Computer Systems 2024, 153, 431– 441, DOI: 10.1016/j.future.2023.12.002Google ScholarThere is no corresponding record for this reference.
- 166Arute, F. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505– 510, DOI: 10.1038/s41586-019-1666-5Google ScholarThere is no corresponding record for this reference.
- 167Harrow, A. W.; Mehraban, S. Approximate Unitary t-Designs by Short Random Quantum Circuits Using Nearest-Neighbor and Long-Range Gates. Communications in Mathematical Physics 2023, 401, 1531– 1626, DOI: 10.1007/s00220-023-04675-zGoogle ScholarThere is no corresponding record for this reference.
- 168Haferkamp, J.; Montealegre-Mora, F.; Heinrich, M.; Eisert, J.; Gross, D.; Roth, I. Efficient Unitary Designs with a System-Size Independent Number of Non-Clifford Gates. Communications in Mathematical Physics 2023, 397, 995– 1041, DOI: 10.1007/s00220-022-04507-6Google ScholarThere is no corresponding record for this reference.
- 169Gao, X.; Kalinowski, M.; Chou, C.-N.; Lukin, M. D.; Barak, B.; Choi, S. Limitations of Linear Cross-Entropy as a Measure for Quantum Advantage. PRX Quantum 2024, 5, 010334 DOI: 10.1103/PRXQuantum.5.010334Google ScholarThere is no corresponding record for this reference.
- 170Tripathi, V.; Kowsari, D.; Saurav, K.; Zhang, H.; M.Levenson-Falk, E.; Lidar, D. A. Benchmarking quantum gates and circuits. 2024; https://arxiv.org/abs/2407.09942 (accessed: 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 171Burnett, J. J.; Bengtsson, A.; Scigliuzzo, M.; Niepce, D.; Kudra, M.; Delsing, P.; Bylander, J. Decoherence benchmarking of superconducting qubits. npj Quantum Information 2019, 5, 54, DOI: 10.1038/s41534-019-0168-5Google ScholarThere is no corresponding record for this reference.
- 172Hahn, E. L. Spin Echoes. Phys. Rev. 1950, 80, 580– 594, DOI: 10.1103/PhysRev.80.580Google ScholarThere is no corresponding record for this reference.
- 173Carr, H. Y.; Purcell, E. M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 1954, 94, 630– 638, DOI: 10.1103/PhysRev.94.630Google ScholarThere is no corresponding record for this reference.
- 174Meiboom, S.; Gill, D. Modified Spin?Echo Method for Measuring Nuclear Relaxation Times. Rev. Sci. Instrum. 1958, 29, 688– 691, DOI: 10.1063/1.1716296Google ScholarThere is no corresponding record for this reference.
- 175Viola, L.; Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 1998, 58, 2733– 2744, DOI: 10.1103/PhysRevA.58.2733Google ScholarThere is no corresponding record for this reference.
- 176Uhrig, G. S. Keeping a Quantum Bit Alive by Optimized π-Pulse Sequences. Phys. Rev. Lett. 2007, 98, 100504, DOI: 10.1103/PhysRevLett.98.100504Google ScholarThere is no corresponding record for this reference.
- 177Suter, D.; Álvarez, G. A. Colloquium: Protecting quantum information against environmental noise. Rev. Mod. Phys. 2016, 88, 041001 DOI: 10.1103/RevModPhys.88.041001Google ScholarThere is no corresponding record for this reference.
- 178Jurcevic, P. Demonstration of Quantum Volume 64 on a Superconducting Quantum Computing System. Quantum Sci. Technol. 2021, 6, 025020 DOI: 10.1088/2058-9565/abe519Google ScholarThere is no corresponding record for this reference.
- 179Pokharel, B.; Lidar, D. A. Demonstration of Algorithmic Quantum Speedup. Phys. Rev. Lett. 2023, 130, 210602, DOI: 10.1103/PhysRevLett.130.210602Google ScholarThere is no corresponding record for this reference.
- 180Tripathi, V.; Chen, H.; Khezri, M.; Yip, K.-W.; Levenson-Falk, E.; Lidar, D. A. Suppression of Crosstalk in Superconducting Qubits Using Dynamical Decoupling. Phys. Rev. Appl. 2022, 18, 024068 DOI: 10.1103/PhysRevApplied.18.024068Google ScholarThere is no corresponding record for this reference.
- 181Zhou, Z.; Sitler, R.; Oda, Y.; Schultz, K.; Quiroz, G. Quantum Crosstalk Robust Quantum Control. Phys. Rev. Lett. 2023, 131, 210802, DOI: 10.1103/PhysRevLett.131.210802Google ScholarThere is no corresponding record for this reference.
- 182Bäumer, E.; Tripathi, V.; Wang, D. S.; Rall, P.; Chen, E. H.; Majumder, S.; Seif, A.; Minev, Z. K. Efficient Long-Range Entanglement using Dynamic Circuits. 2023.Google ScholarThere is no corresponding record for this reference.
- 183Shirizly, L.; Misguich, G.; Landa, H. Dissipative Dynamics of Graph-State Stabilizers with Superconducting Qubits. Phys. Rev. Lett. 2024, 132, 010601 DOI: 10.1103/PhysRevLett.132.010601Google ScholarThere is no corresponding record for this reference.
- 184Niu, S.; Todri-Sanial, A.; Bronn, N. T. Multi-qubit dynamical decoupling for enhanced crosstalk suppression. Quantum Science and Technology 2024, 9, 045003 DOI: 10.1088/2058-9565/ad5a37Google ScholarThere is no corresponding record for this reference.
- 185Evert, B.; Izquierdo, Z. G.; Sud, J.; Hu, H.-Y.; Grabbe, S.; Rieffel, E. G.; Reagor, M. J.; Wang, Z. Syncopated Dynamical Decoupling for Suppressing Crosstalk in Quantum Circuits. 2024; https://arxiv.org/abs/2403.07836 (accessed: 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 186Brown, A. F.; Lidar, D. A. Efficient Chromatic-Number-Based Multi-Qubit Decoherence and Crosstalk Suppression. 2024. https://arxiv.org/abs/2406.13901(accessed: 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 187Martinis, J. M.; Geller, M. R. Fast adiabatic qubit gates using only σz control. Phys. Rev. A 2014, 90, 022307 DOI: 10.1103/PhysRevA.90.022307Google ScholarThere is no corresponding record for this reference.
- 188Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T. P.; Gustavsson, S.; Oliver, W. D. A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews 2019, 6, 021318 DOI: 10.1063/1.5089550Google ScholarThere is no corresponding record for this reference.
- 189Genov, G. T.; Schraft, D.; Vitanov, N. V.; Halfmann, T. Arbitrarily Accurate Pulse Sequences for Robust Dynamical Decoupling. Phys. Rev. Lett. 2017, 118, 133202, DOI: 10.1103/PhysRevLett.118.133202Google ScholarThere is no corresponding record for this reference.
- 190Motzoi, F.; Gambetta, J. M.; Rebentrost, P.; Wilhelm, F. K. Simple Pulses for Elimination of Leakage in Weakly Nonlinear Qubits. Phys. Rev. Lett. 2009, 103, 110501, DOI: 10.1103/PhysRevLett.103.110501Google ScholarThere is no corresponding record for this reference.
- 191Chow, J. M.; Gambetta, J. M.; Tornberg, L.; Koch, J.; Bishop, L. S.; Houck, A. A.; Johnson, B. R.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J. Randomized Benchmarking and Process Tomography for Gate Errors in a Solid-State Qubit. Phys. Rev. Lett. 2009, 102, 090502 DOI: 10.1103/PhysRevLett.102.090502Google ScholarThere is no corresponding record for this reference.
- 192Albash, T.; Boixo, S.; Lidar, D. A.; Zanardi, P. Quantum adiabatic Markovian master equations. New J. of Phys. 2012, 14, 123016, DOI: 10.1088/1367-2630/14/12/123016Google ScholarThere is no corresponding record for this reference.
- 193Dann, R.; Levy, A.; Kosloff, R. Time-dependent Markovian quantum master equation. Phys. Rev. A 2018, 98, 052129 DOI: 10.1103/PhysRevA.98.052129Google ScholarThere is no corresponding record for this reference.
- 194Campos Venuti, L.; Lidar, D. A. Error reduction in quantum annealing using boundary cancellation: Only the end matters. Phys. Rev. A 2018, 98, 022315 DOI: 10.1103/PhysRevA.98.022315Google ScholarThere is no corresponding record for this reference.
- 195Mozgunov, E.; Lidar, D. Completely positive master equation for arbitrary driving and small level spacing. Quantum 2020, 4, 227, DOI: 10.22331/q-2020-02-06-227Google ScholarThere is no corresponding record for this reference.
- 196Nathan, F.; Rudner, M. S. Universal Lindblad equation for open quantum systems. Phys. Rev. B 2020, 102, 115109, DOI: 10.1103/PhysRevB.102.115109Google ScholarThere is no corresponding record for this reference.
- 197Davidović, D. Completely Positive, Simple, and Possibly Highly Accurate Approximation of the Redfield Equation. Quantum 2020, 4, 326, DOI: 10.22331/q-2020-09-21-326Google ScholarThere is no corresponding record for this reference.
- 198Davidović, D. Geometric-arithmetic master equation in large and fast open quantum systems. Journal of Physics A: Mathematical and Theoretical 2022, 55, 455301, DOI: 10.1088/1751-8121/ac9f30Google ScholarThere is no corresponding record for this reference.
- 199Kasatkin, V.; Gu, L.; Lidar, D. A. Which differential equations correspond to the Lindblad equation?. Physical Review Research 2023, 5, 043163 DOI: 10.1103/PhysRevResearch.5.043163Google ScholarThere is no corresponding record for this reference.
- 200Perko, L. Differential Equations and Dynamical Systems; Springer New York: New York, NY, 2001; pp 1– 63.Google ScholarThere is no corresponding record for this reference.
- 201Geerlings, K.; Leghtas, Z.; Pop, I. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H. Demonstrating a Driven Reset Protocol for a Superconducting Qubit. Phys. Rev. Lett. 2013, 110, 120501, DOI: 10.1103/PhysRevLett.110.120501Google ScholarThere is no corresponding record for this reference.
- 202Goss, N.; Morvan, A.; Marinelli, B.; Mitchell, B. K.; Nguyen, L. B.; Naik, R. K.; Chen, L.; Jünger, C.; Kreikebaum, J. M.; Santiago, D. I.; Wallman, J. J.; Siddiqi, I. High-fidelity qutrit entangling gates for superconducting circuits. Nat. Commun. 2022, 13, 7481, DOI: 10.1038/s41467-022-34851-zGoogle ScholarThere is no corresponding record for this reference.
- 203Tripathi, V.; Goss, N.; Vezvaee, A.; Nguyen, L. B.; Siddiqi, I.; Lidar, D. A. Qudit Dynamical Decoupling on a Superconducting Quantum Processor. Phys. Rev. Lett. 2025, 134, 050601 DOI: 10.1103/PhysRevLett.134.050601Google ScholarThere is no corresponding record for this reference.
- 204Krishnan Vijayan, M.; Paler, A.; Gavriel, J.; Myers, C. R.; Rohde, P. P.; Devitt, S. J. Compilation of algorithm-specific graph states for quantum circuits. Quantum Science and Technology 2024, 9, 025005 DOI: 10.1088/2058-9565/ad1f39Google ScholarThere is no corresponding record for this reference.
- 205Beverland, M. E.; Murali, P.; Troyer, M.; Svore, K. M.; Hoefler, T.; Kliuchnikov, V.; Low, G. H.; Soeken, M.; Sundaram, A.; Vaschillo, A. Assessing requirements to scale to practical quantum advantage. 2022. https://arxiv.org/abs/2211.07629 (accessed 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 206Agrawal, A. A.; Job, J.; Wilson, T. L.; Saadatmand, S. N.; Hodson, M. J.; Mutus, J. Y.; Caesura, A.; Johnson, P. D.; Elenewski, J. E.; Morrell, K. J.; Kemper, A. F. Quantifying fault tolerant simulation of strongly correlated systems using the Fermi-Hubbard model. 2024; https://arxiv.org/abs/2406.06511(accessed: 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 207Barends, R. Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits. Phys. Rev. Lett. 2013, 111, 080502 DOI: 10.1103/PhysRevLett.111.080502Google ScholarThere is no corresponding record for this reference.
- 208Shanto, S.; Kuo, A.; Miyamoto, C.; Zhang, H.; Maurya, V.; Vlachos, E.; Hecht, M.; Shum, C. W.; Levenson-Falk, E. SQuADDS: A Validated Design Database and Simulation Workflow for Superconducting Qubit Design. Quantum 2024, 8, 1465, DOI: 10.22331/q-2024-09-09-1465Google ScholarThere is no corresponding record for this reference.
- 209Shah, P. A. . qiskit-community/qiskit-metal: Qiskit Metal 0.1.5a1 (2023). 2023; DOI: 10.5281/zenodo.8061781 (accessed 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 210Minev, Z. K.; Leghtas, Z.; Reinhold, P.; Mundhada, S. O.; Diringer, A.; Hillel, D. C.; Wang, D. Z.-R.; Facchini, M.; Shah, P. A.; Devoret, M. pyEPR: The energy-participation-ratio (EPR) open- source framework for quantum device design. 2021; DOI: 10.5281/zenodo.4744448 , https://github.com/zlatko-minev/pyEPR; https://pyepr-docs.readthedocs.io/en/latest/ (accessed 2025-02-23).Google ScholarThere is no corresponding record for this reference.
- 211Chen, Z. Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit. Phys. Rev. Lett. 2016, 116, 020501 DOI: 10.1103/PhysRevLett.116.020501Google ScholarThere is no corresponding record for this reference.
Cited By
This article has not yet been cited by other publications.
Article Views
Altmetric
Citations
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Abstract
Figure 1
Figure 1. Three different QPT methods. (a) Schematic of SQPT. An ensemble of states {ρj} is prepared and each state is subjected to the map followed by measurements {Em}. (b) Schematic of separable AAPT. A “faithful” input state ρ is subjected to the map . The operators {Ej} are measured on the joint system, which results in the required joint probability distributions or expectation values. (c) Schematic of DCQD. The system and the ancilla are prepared in one of the input states as in Table 1 and are subjected to the map . The joint system is measured in the Bell-state basis (Bell State Measurement).
Figure 2
Figure 2. Gate set tomography circuit consisting of the fiducial gates Fi (Fj) as well as the measurement operators M and the native gate Gk performed on the initial state ρ. Figure adapted from ref (141). Copyright 2021 Quantum.
Figure 3
Figure 3. Schematic of DFE: To estimate the state fidelity, expectations of random Pauli strings Pj are calculated for the input state ρ. The distribution of the random Pauli strings depends on the state with respect to which the fidelity is being calculated.
Figure 4
Figure 5
Figure 5. Schematic representations of the gate sequences for (a) randomized benchmarking (RB) and (b) deterministic benchmarking (DB), respectively. RB uses N random Clifford gates Ci, followed by a single recovery gate Cr = CN†···C1†. DB prepares an initial state via U|0⟩, applies n repetitions of a fixed, deterministic two-pulse sequence P1P2, and unprepares the initial state via U†.
Figure 6
Figure 6. Empirical (F̃, symbols), analytical fit (F, solid curves), and Lindblad-based (F̅, dashed curves) fidelities for the initial states |1⟩ under free evolution and |+⟩ under various gate sequences P1P2. The analytical fit yields T1 = 23.36 ± 0.40 μs, T2 = 44.13 ± 2.49 μs, δθ = 0.398 ± 0.004°, and δϕ = 0.426 ± 0.004°. With the exception of the XX (orange) and YY (green) cases, the Lindblad-based results are indistinguishable from the analytical fits.
Figure 7
Figure 7. Randomized benchmarking measurement for the same gate calibration parameters used in Figure 6. The error bars represent the deviation of the averaged benchmarking results across 30 distinct random sequences with a maximum number of Cliffords (NCliffords) of 700, which are smaller than the marker sizes.
Figure 8
Figure 8. Experimental fidelities F̃|+⟩ showing the very different sensitivity of DB and RB to coherent errors. (a) δθ = 0°, δϕ = 0°, (b) δθ = 0°, δϕ = 0.893 ± 0.002°, (c) δθ = 0.932 ± 0.007°, δϕ = 0°, (d) δθ = 0.995 ± 0.009°, δϕ = 0.90 ± 0.002°. These angles are obtained from fits using eq 76. Dashed curves are the numerically computed fidelities F|+⟩ from the open system Lindblad model using the DB parameters above along with the corresponding T1 and T2. The UR6 sequence suppresses even large coherent errors.
Figure 9
Figure 9. Asymmetry in the decay pattern of DB sequences due to the interplay of gates and T1. Fidelity decay for (a) XX and (b) YY applied to two pairs of orthogonal initial states. Dashed curves represent the Lindblad master equation simulation results with parameters obtained by fitting eq 76.
Figure 10
Figure 10. Simulated survival fidelity of the |+⟩ state after repetitions of the XX sequence, where each gate is a cosine pulse length of 20 ns (blue circles) or 10 ns (orange squares). A third state in the simulation represents leakage, with a detuning (anharmonicity) of −150 MHz relative to the qubit transition. Both the amplitude and frequency of oscillations increase as the gate duration is decreased and leakage becomes more significant.
References
This article references 211 other publications.
- 1Bharti, K.; Cervera-Lierta, A.; Kyaw, T. H.; Haug, T.; Alperin-Lea, S.; Anand, A.; Degroote, M.; Heimonen, H.; Kottmann, J. S.; Menke, T.; Mok, W.-K.; Sim, S.; Kwek, L.-C.; Aspuru-Guzik, A. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 2022, 94, 015004 DOI: 10.1103/RevModPhys.94.015004There is no corresponding record for this reference.
- 2Dalzell, A. M.; McArdle, S.; Berta, M.; Bienias, P.; Chen, C.-F.; Gilyén, A.; Hann, C. T.; Kastoryano, M. J.; Khabiboulline, E. T.; Kubica, A.; Salton, G.; Wang, S.; Brandão, F. G. S. L. Quantum algorithms: A survey of applications and end-to-end complexities. 2023; https://arxiv.org/abs/2310.03011 (accessed 2025-02-23).There is no corresponding record for this reference.
- 3Shor, P. Fault-tolerant quantum computation. Proceedings of 37th Conference on Foundations of Computer Science. 1996; pp 56– 65.There is no corresponding record for this reference.
- 4Aharonov, D.; Ben-Or, M. Fault tolerant quantum computation with constant error. Proceedings of 29th Annual ACM Symposium on Theory of Computing (STOC). New York, NY, 1997; p 176.There is no corresponding record for this reference.
- 5Knill, E.; Laflamme, R.; Zurek, W. H. Resilient Quantum Computation. Science 1998, 279, 342– 345, DOI: 10.1126/science.279.5349.342There is no corresponding record for this reference.
- 6Aliferis, P.; Gottesman, D.; Preskill, J. Quantum accuracy threshold for concatenated distance-3 codes. Quant. Inf. Comput. 2006, 6, 97, DOI: 10.26421/QIC6.2-1There is no corresponding record for this reference.
- 7Campbell, E. T.; Terhal, B. M.; Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 2017, 549, 172, DOI: 10.1038/nature23460There is no corresponding record for this reference.
- 8Reiher, M.; Wiebe, N.; Svore, K. M.; Wecker, D.; Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 7555– 7560, DOI: 10.1073/pnas.1619152114There is no corresponding record for this reference.
- 9Kassal, I.; Whitfield, J. D.; Perdomo-Ortiz, A.; Yung, M.-H.; Aspuru-Guzik, A. Simulating Chemistry Using Quantum Computers. Annu. Rev. Phys. Chem. 2011, 62, 185– 207, DOI: 10.1146/annurev-physchem-032210-103512There is no corresponding record for this reference.
- 10Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79, DOI: 10.22331/q-2018-08-06-79There is no corresponding record for this reference.
- 11O’Malley, P. J. J. Scalable Quantum Simulation of Molecular Energies. Physical Review X 2016, 6, 031007 DOI: 10.1103/PhysRevX.6.031007There is no corresponding record for this reference.
- 12Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J. M.; Gambetta, J. M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 2017, 549, 242, DOI: 10.1038/nature23879There is no corresponding record for this reference.
- 13Lidar, D. A.; Wang, H. Calculating the thermal rate constant with exponential speedup on a quantum computer. Phys. Rev. E 1999, 59, 2429– 2438, DOI: 10.1103/PhysRevE.59.2429There is no corresponding record for this reference.
- 14Aspuru-Guzik, A.; Dutoi, A. D.; Love, P. J.; Head-Gordon, M. Simulated Quantum Computation of Molecular Energies. Science 2005, 309, 1704, DOI: 10.1126/science.1113479There is no corresponding record for this reference.
- 15Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.; Love, P. J.; Aspuru-Guzik, A.; O’Brien, J. L. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 2014, 5, 4213, DOI: 10.1038/ncomms5213There is no corresponding record for this reference.
- 16McClean, J. R.; Romero, J.; Babbush, R.; Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. New J. Phys. 2016, 18, 023023 DOI: 10.1088/1367-2630/18/2/023023There is no corresponding record for this reference.
- 17McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S. C.; Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 2020, 92, 015003 DOI: 10.1103/RevModPhys.92.015003There is no corresponding record for this reference.
- 18Tilly, J.; Chen, H.; Cao, S.; Picozzi, D.; Setia, K.; Li, Y.; Grant, E.; Wossnig, L.; Rungger, I.; Booth, G. H.; Tennyson, J. The Variational Quantum Eigensolver: A review of methods and best practices. Phys. Rep. 2022, 986, 1– 128, DOI: 10.1016/j.physrep.2022.08.003There is no corresponding record for this reference.
- 19Kitaev, A. Y. Quantum measurements and the Abelian Stabilizer Problem. 1995; https://arxiv.org/abs/quant-ph/9511026 (accessed 2025-02-23).There is no corresponding record for this reference.
- 20Cao, Y.; Romero, J.; Olson, J. P.; Degroote, M.; Johnson, P. D.; Kieferová, M.; Kivlichan, I. D.; Menke, T.; Peropadre, B.; Sawaya, N. P. D.; Sim, S.; Veis, L.; Aspuru-Guzik, A. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 119, 10856– 10915, DOI: 10.1021/acs.chemrev.8b00803There is no corresponding record for this reference.
- 21Lee, S. Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nat. Commun. 2023, 14, 1952, DOI: 10.1038/s41467-023-37587-6There is no corresponding record for this reference.
- 22Huggins, W. J.; McClean, J. R.; Rubin, N. C.; Jiang, Z.; Wiebe, N.; Whaley, K. B.; Babbush, R. Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers. npj Quantum Information 2021, 7, 23, DOI: 10.1038/s41534-020-00341-7There is no corresponding record for this reference.
- 23Hashim, A. . A Practical Introduction to Benchmarking and Characterization of Quantum Computers. 2024; https://arxiv.org/abs/2408.12064 (accessed 2025-02-23).There is no corresponding record for this reference.
- 24Chuang, I. L.; Nielsen, M. A. Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 1997, 44, 2455, DOI: 10.1080/09500349708231894There is no corresponding record for this reference.
- 25Poyatos, J. F.; Cirac, J. I.; Zoller, P. Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate. Phys. Rev. Lett. 1997, 78, 390– 393, DOI: 10.1103/PhysRevLett.78.390There is no corresponding record for this reference.
- 26Mohseni, M.; Rezakhani, A. T.; Lidar, D. A. Quantum-process tomography: Resource analysis of different strategies. Phys. Rev. A 2008, 77, 032322 DOI: 10.1103/PhysRevA.77.032322There is no corresponding record for this reference.
- 27Emerson, J.; Alicki, R.; Życzkowski, K. Scalable noise estimation with random unitary operators. Journal of Optics B: Quantum and Semiclassical Optics 2005, 7, S347, DOI: 10.1088/1464-4266/7/10/021There is no corresponding record for this reference.
- 28Knill, E.; Leibfried, D.; Reichle, R.; Britton, J.; Blakestad, R. B.; Jost, J. D.; Langer, C.; Ozeri, R.; Seidelin, S.; Wineland, D. J. Randomized benchmarking of quantum gates. Phys. Rev. A 2008, 77, 012307 DOI: 10.1103/PhysRevA.77.012307There is no corresponding record for this reference.
- 29Magesan, E.; Gambetta, J. M.; Emerson, J. Scalable and Robust Randomized Benchmarking of Quantum Processes. Phys. Rev. Lett. 2011, 106, 180504, DOI: 10.1103/PhysRevLett.106.180504There is no corresponding record for this reference.
- 30Helsen, J.; Roth, I.; Onorati, E.; Werner, A. H.; Eisert, J. General Framework for Randomized Benchmarking. PRX Quantum 2022, 3, 020357 DOI: 10.1103/PRXQuantum.3.020357There is no corresponding record for this reference.
- 31Merkel, S. T.; Gambetta, J. M.; Smolin, J. A.; Poletto, S.; Córcoles, A. D.; Johnson, B. R.; Ryan, C. A.; Steffen, M. Self-consistent quantum process tomography. Phys. Rev. A 2013, 87, 062119 DOI: 10.1103/PhysRevA.87.062119There is no corresponding record for this reference.
- 32Blume-Kohout, R.; Gamble, J. K.; Nielsen, E.; Mizrahi, J.; Sterk, J. D.; Maunz, P. Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit. 2013; https://arxiv.org/abs/1310.4492 (accessed 2025-02-23).There is no corresponding record for this reference.
- 33Kim, D.; Ward, D. R.; Simmons, C. B.; Gamble, J. K.; Blume-Kohout, R.; Nielsen, E.; Savage, D. E.; Lagally, M. G.; Friesen, M.; Coppersmith, S. N.; Eriksson, M. A. Microwave-driven coherent operation of a semiconductor quantum dot charge qubit. Nat. Nanotechnol. 2015, 10, 243– 247, DOI: 10.1038/nnano.2014.336There is no corresponding record for this reference.
- 34Bäumer, E.; Tripathi, V.; Seif, A.; Lidar, D.; Wang, D. S. Quantum Fourier Transform Using Dynamic Circuits. Phys. Rev. Lett. 2024, 133, 150602– 150609, DOI: 10.1103/PhysRevLett.133.150602There is no corresponding record for this reference.
- 35da Silva, M. P.; Landon-Cardinal, O.; Poulin, D. Practical characterization of quantum devices without tomography. Phys. Rev. Lett. 2011, 107, 210404– 210409, DOI: 10.1103/PhysRevLett.107.210404There is no corresponding record for this reference.
- 36Flammia, S. T.; Liu, Y.-K. Direct Fidelity Estimation from Few Pauli Measurements. Phys. Rev. Lett. 2011, 106, 230501, DOI: 10.1103/PhysRevLett.106.230501There is no corresponding record for this reference.
- 37Neill, C. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 2018, 360, 195– 199, DOI: 10.1126/science.aao4309There is no corresponding record for this reference.
- 38Boixo, S.; Isakov, S. V.; Smelyanskiy, V. N.; Babbush, R.; Ding, N.; Jiang, Z.; Bremner, M. J.; Martinis, J. M.; Neven, H. Characterizing quantum supremacy in near-term devices. Nature Physics 2018, 14, 595– 600There is no corresponding record for this reference.
- 39Arute, F. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505– 510There is no corresponding record for this reference.
- 40Kueng, R.; Long, D. M.; Doherty, A. C.; Flammia, S. T. Comparing Experiments to the Fault-Tolerance Threshold. Phys. Rev. Lett. 2016, 117, 170502, DOI: 10.1103/PhysRevLett.117.170502There is no corresponding record for this reference.
- 41Barnes, J. P.; Trout, C. J.; Lucarelli, D.; Clader, B. D. Quantum error-correction failure distributions: Comparison of coherent and stochastic error models. Phys. Rev. A 2017, 95, 062338 DOI: 10.1103/PhysRevA.95.062338There is no corresponding record for this reference.
- 42Ng, H. K.; Preskill, J. Fault-tolerant quantum computation versus Gaussian noise. Phys. Rev. A 2009, 79, 032318. DOI: 10.1103/PhysRevA.79.032318There is no corresponding record for this reference.
- 43Wallman, J.; Granade, C.; Harper, R.; Flammia, S. T. Estimating the coherence of noise. New J. Phys. 2015, 17, 113020, DOI: 10.1088/1367-2630/17/11/113020There is no corresponding record for this reference.
- 44Sanders, Y. R.; Wallman, J. J.; Sanders, B. C. Bounding quantum gate error rate based on reported average fidelity. New J. Phys. 2016, 18, 012002 DOI: 10.1088/1367-2630/18/1/012002There is no corresponding record for this reference.
- 45Hashim, A.; Seritan, S.; Proctor, T.; Rudinger, K.; Goss, N.; Naik, R. K.; Kreikebaum, J. M.; Santiago, D. I.; Siddiqi, I. Benchmarking quantum logic operations relative to thresholds for fault tolerance. npj Quantum Information 2023, 9, 109, DOI: 10.1038/s41534-023-00764-yThere is no corresponding record for this reference.
- 46Wallman, J. J.; Emerson, J. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A 2016, 94, 052325– 052334, DOI: 10.1103/PhysRevA.94.052325There is no corresponding record for this reference.
- 47Hashim, A.; Naik, R. K.; Morvan, A.; Ville, J.-L.; Mitchell, B.; Kreikebaum, J. M.; Davis, M.; Smith, E.; Iancu, C.; O’Brien, K. P.; Hincks, I.; Wallman, J. J.; Emerson, J.; Siddiqi, I. Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor. Phys. Rev. X 2021, 11, 041039 DOI: 10.1103/PhysRevX.11.041039There is no corresponding record for this reference.
- 48van den Berg, E.; Minev, Z. K.; Kandala, A.; Temme, K. Probabilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors. Nat. Phys. 2023, 19, 1116– 1121, DOI: 10.1038/s41567-023-02042-2There is no corresponding record for this reference.
- 49Seif, A.; Liao, H.; Tripathi, V.; Krsulich, K.; Malekakhlagh, M.; Amico, M.; Jurcevic, P.; Javadi-Abhari, A. Suppressing Correlated Noise in Quantum Computers via Context-Aware Compiling. 51st Annual International Symposium on Computer Architecture (ISCA) 2024, 310– 324There is no corresponding record for this reference.
- 50Gross, J. A.; Genois, E.; Debroy, D. M.; Zhang, Y.; Mruczkiewicz, W.; Cian, Z.-P.; Jiang, Z. Characterizing Coherent Errors using Matrix-Element Amplification. npj Quantum Information 2024, 10, 123, DOI: 10.1038/s41534-024-00917-7There is no corresponding record for this reference.
- 51Bravyi, S.; Englbrecht, M.; König, R.; Peard, N. Correcting coherent errors with surface codes. npj Quantum Information 2018, 4, 55, DOI: 10.1038/s41534-018-0106-yThere is no corresponding record for this reference.
- 52Barenco, A.; Bennett, C. H.; Cleve, R.; DiVincenzo, D. P.; Margolus, N.; Shor, P.; Sleator, T.; Smolin, J. A.; Weinfurter, H. Elementary gates for quantum computation. Phys. Rev. A 1995, 52, 3457– 3467, DOI: 10.1103/PhysRevA.52.3457There is no corresponding record for this reference.
- 53Erhard, A.; Wallman, J. J.; Postler, L.; Meth, M.; Stricker, R.; Martinez, E. A.; Schindler, P.; Monz, T.; Emerson, J.; Blatt, R. Characterizing large-scale quantum computers via cycle benchmarking. Nat. Commun. 2019, 10, 5347, DOI: 10.1038/s41467-019-13068-7There is no corresponding record for this reference.
- 54McKay, D. C.; Wood, C. J.; Sheldon, S.; Chow, J. M.; Gambetta, J. M. Efficient Z gates for quantum computing. Phys. Rev. A 2017, 96, 022330 DOI: 10.1103/PhysRevA.96.022330There is no corresponding record for this reference.
- 55Cross, A. W.; Bishop, L. S.; Sheldon, S.; Nation, P. D.; Gambetta, J. M. Validating quantum computers using randomized model circuits. Phys. Rev. A 2019, 100, 032328 DOI: 10.1103/PhysRevA.100.032328There is no corresponding record for this reference.
- 56Dankert, C.; Cleve, R.; Emerson, J.; Livine, E. Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A 2009, 80, 012304 DOI: 10.1103/PhysRevA.80.012304There is no corresponding record for this reference.
- 57Proctor, T.; Rudinger, K.; Young, K.; Nielsen, E.; Blume-Kohout, R. Measuring the capabilities of quantum computers. Nat. Phys. 2022, 18, 75– 79, DOI: 10.1038/s41567-021-01409-7There is no corresponding record for this reference.
- 58Cincio, L.; Subası, Y.; Sornborger, A. T; Coles, P. J Learning the quantum algorithm for state overlap. New J. Phys. 2018, 20, 113022, DOI: 10.1088/1367-2630/aae94aThere is no corresponding record for this reference.
- 59Reich, D. M.; Gualdi, G.; Koch, C. P. Optimal Strategies for Estimating the Average Fidelity of Quantum Gates. Phys. Rev. Lett. 2013, 111, 200401– 200406, DOI: 10.1103/PhysRevLett.111.200401There is no corresponding record for this reference.
- 60Torlai, G.; Mazzola, G.; Carrasquilla, J.; Troyer, M.; Melko, R.; Carleo, G. Neural-network quantum state tomography. Nat. Phys. 2018, 14, 447– 450, DOI: 10.1038/s41567-018-0048-5There is no corresponding record for this reference.
- 61Koutny, D.; Motka, L.; Hradil, Z.; Rehacek, J.; Sanchez-Soto, L. L. Neural-network quantum state tomography. Phys. Rev. A 2022, 106. DOI: 10.1103/PhysRevA.106.012409There is no corresponding record for this reference.
- 62Gu, Y.; Zhuang, W.-F.; Chai, X.; Liu, D. E. Benchmarking universal quantum gates via channel spectrum. Nat. Commun. 2023, 14, 5880, DOI: 10.1038/s41467-023-41598-8There is no corresponding record for this reference.
- 63McKay, D. C.; Hincks, I.; Pritchett, E. J.; Carroll, M.; Govia, L. C. G.; Merkel, S. T. Benchmarking Quantum Processor Performance at Scale. 2023; https://arxiv.org/abs/2311.05933 (accessed: 2025-02-23).There is no corresponding record for this reference.
- 64Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, 2002.There is no corresponding record for this reference.
- 65Kraus, K. States, Effects and Operations; Fundamental Notions of Quantum Theory; Academic, 1983.There is no corresponding record for this reference.
- 66Nielsen, M. A.; Chuang, I. L. Quantum computation and quantum information; Cambridge University Press, 2010.There is no corresponding record for this reference.
- 67Jamiołkowski, A. Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics 1972, 3, 275– 278, DOI: 10.1016/0034-4877(72)90011-0There is no corresponding record for this reference.
- 68Choi, M.-D. Completely positive linear maps on complex matrices. Linear Algebra and its Applications 1975, 10, 285– 290, DOI: 10.1016/0024-3795(75)90075-0There is no corresponding record for this reference.
- 69Uhlmann, A. The “transition probability”in the state space of a ∗-algebra. Reports on Mathematical Physics 1976, 9, 273– 279, DOI: 10.1016/0034-4877(76)90060-4There is no corresponding record for this reference.
- 70Knill, E.; Laflamme, R. Theory of quantum error-correcting codes. Phys. Rev. A 1997, 55, 900– 911, DOI: 10.1103/PhysRevA.55.900There is no corresponding record for this reference.
- 71Tripathi, V.; Chen, H.; Levenson-Falk, E.; Lidar, D. A. Modeling Low- and High-Frequency Noise in Transmon Qubits with Resource-Efficient Measurement. PRX Quantum 2024, 5, 010320 DOI: 10.1103/PRXQuantum.5.010320There is no corresponding record for this reference.
- 72Byrd, M. S.; Lidar, D. A.; Wu, L.-A.; Zanardi, P. Universal leakage elimination. Phys. Rev. A 2005, 71, 052301 DOI: 10.1103/PhysRevA.71.052301There is no corresponding record for this reference.
- 73Koch, J.; Yu, T. M.; Gambetta, J.; Houck, A. A.; Schuster, D. I.; Majer, J.; Blais, A.; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 2007, 76, 042319 DOI: 10.1103/PhysRevA.76.042319There is no corresponding record for this reference.
- 74Wu, L.-A.; Walther, P.; Lidar, D. A. No-go theorem for passive single-rail linear optical quantum computing. Sci. Rep. 2013, 3, 1394, DOI: 10.1038/srep01394There is no corresponding record for this reference.
- 75Levine, H. Demonstrating a Long-Coherence Dual-Rail Erasure Qubit Using Tunable Transmons. Physical Review X 2024, 14, 011051– 011072, DOI: 10.1103/PhysRevX.14.011051There is no corresponding record for this reference.
- 76Grünzweig, T.; Hilliard, A.; McGovern, M.; Andersen, M. F. Near-deterministic preparation of a single atom in an optical microtrap. Nat. Phys. 2010, 6, 951– 954, DOI: 10.1038/nphys1778There is no corresponding record for this reference.
- 77Wu, Y.; Kolkowitz, S.; Puri, S.; Thompson, J. D. Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nat. Commun. 2022, 13, 4657, DOI: 10.1038/s41467-022-32094-6There is no corresponding record for this reference.
- 78Varbanov, B. M.; Battistel, F.; Tarasinski, B. M.; Ostroukh, V. P.; O’Brien, T. E.; DiCarlo, L.; Terhal, B. M. Leakage detection for a transmon-based surface code. npj Quantum Information 2020, 6, 102, DOI: 10.1038/s41534-020-00330-wThere is no corresponding record for this reference.
- 79McEwen, M. Removing leakage-induced correlated errors in superconducting quantum error correction. Nat. Commun. 2021, 12, 1761, DOI: 10.1038/s41467-021-21982-yThere is no corresponding record for this reference.
- 80Gourlay, I.; Snowdon, J. F. Concatenated Coding in the Presence of Dephasing. Phys. Rev. A 2000, 62, 022308 DOI: 10.1103/PhysRevA.62.022308There is no corresponding record for this reference.
- 81Evans, Z. W. E.; Stephens, A. M.; Cole, J. H.; Hollenberg, L. C. L. Error Correction Optimisation in the Presence of X/Z Asymmetry. 2007.There is no corresponding record for this reference.
- 82Stephens, A. M.; Evans, Z. W. E.; Devitt, S. J.; Hollenberg, L. C. L. Asymmetric Quantum Error Correction via Code Conversion. Phys. Rev. A 2008, 77, 062335 DOI: 10.1103/PhysRevA.77.062335There is no corresponding record for this reference.
- 83Aliferis, P.; Preskill, J. Fault-tolerant quantum computation against biased noise. Phys. Rev. A 2008, 78, 052331 DOI: 10.1103/PhysRevA.78.052331There is no corresponding record for this reference.
- 84Stephens, A. M.; Munro, W. J.; Nemoto, K. High-Threshold Topological Quantum Error Correction against Biased Noise. Phys. Rev. A 2013, 88, 060301 DOI: 10.1103/PhysRevA.88.060301There is no corresponding record for this reference.
- 85Brooks, P.; Preskill, J. Fault-Tolerant Quantum Computation with Asymmetric Bacon-Shor Codes. Phys. Rev. A 2013, 87, 032310 DOI: 10.1103/PhysRevA.87.032310There is no corresponding record for this reference.
- 86Bonilla Ataides, J. P.; Tuckett, D. K.; Bartlett, S. D.; Flammia, S. T.; Brown, B. J. The XZZX surface code. Nat. Commun. 2021, 12, 2172, DOI: 10.1038/s41467-021-22274-1There is no corresponding record for this reference.
- 87Chruscinski, D.; Kossakowski, A. Non-Markovian Quantum Dynamics: Local versus Nonlocal. Phys. Rev. Lett. 2010, 104, 070406 DOI: 10.1103/PhysRevLett.104.070406There is no corresponding record for this reference.
- 88Rivas, Á.; Huelga, S. F.; Plenio, M. B. Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 2014, 77, 094001 DOI: 10.1088/0034-4885/77/9/094001There is no corresponding record for this reference.
- 89Shabani, A.; Lidar, D. A. Completely positive post-Markovian master equation via a measurement approach. Phys. Rev. A 2005, 71, 020101 DOI: 10.1103/PhysRevA.71.020101There is no corresponding record for this reference.
- 90Zhang, H.; Pokharel, B.; Levenson-Falk, E.; Lidar, D. Predicting Non-Markovian Superconducting-Qubit Dynamics from Tomographic Reconstruction. Physical Review Applied 2022, 17, 054018 DOI: 10.1103/PhysRevApplied.17.054018There is no corresponding record for this reference.
- 91Zhang, J.; Vala, J.; Sastry, S.; Whaley, K. B. Geometric theory of nonlocal two-qubit operations. Phys. Rev. A 2003, 67, 042313 DOI: 10.1103/PhysRevA.67.042313There is no corresponding record for this reference.
- 92Sete, E. A.; Didier, N.; Chen, A. Q.; Kulshreshtha, S.; Manenti, R.; Poletto, S. Parametric-Resonance Entangling Gates with a Tunable Coupler. Phys. Rev. Appl. 2021, 16, 024050 DOI: 10.1103/PhysRevApplied.16.024050There is no corresponding record for this reference.
- 93Sete, E. A.; Tripathi, V.; Valery, J. A.; Lidar, D.; Mutus, J. Y. Error Budget of a Parametric Resonance Entangling Gate with a Tunable Coupler. Physical Review Applied 2024, 22, 014059 DOI: 10.1103/PhysRevApplied.22.014059There is no corresponding record for this reference.
- 94Tripathi, V.; Khezri, M.; Korotkov, A. N. Operation and intrinsic error budget of a two-qubit cross-resonance gate. Phys. Rev. A 2019, 100, 012301 DOI: 10.1103/PhysRevA.100.012301There is no corresponding record for this reference.
- 95Gaikwad, C.; Kowsari, D.; Brame, C.; Song, X.; Zhang, H.; Esposito, M.; Ranadive, A.; Cappelli, G.; Roch, N.; Levenson-Falk, E. M.; Murch, K. W. Entanglement Assisted Probe of the Non-Markovian to Markovian Transition in Open Quantum System Dynamics. Phys. Rev. Lett. 2024, 132, 200401, DOI: 10.1103/PhysRevLett.132.200401There is no corresponding record for this reference.
- 96Dubi, Y.; Di Ventra, M. Relaxation times in an open interacting two-qubit system. Phys. Rev. A 2009, 79, 012328 DOI: 10.1103/PhysRevA.79.012328There is no corresponding record for this reference.
- 97Greenbaum, D. Introduction to Quantum Gate Set Tomography. 2015, arXiv:1509.02921 [quant-ph] (accessed: 2025-02-23).There is no corresponding record for this reference.
- 98Brown, W. G.; Eastin, B. Randomized Benchmarking with Restricted Gate Sets. Phys. Rev. A 2018, 97, 062323 DOI: 10.1103/PhysRevA.97.062323There is no corresponding record for this reference.
- 99Seif, A.; Chen, S.; Majumder, S.; Liao, H.; Wang, D. S.; Malekakhlagh, M.; Javadi-Abhari, A.; Jiang, L.; Minev, Z. K. Entanglement-enhanced learning of quantum processes at scale. 2024; https://arxiv.org/abs/2408.03376 (accessed: 2025-02-23).There is no corresponding record for this reference.
- 100Khan, M. Q.; Dong, W.; Norris, L. M.; Viola, L. Multiaxis quantum noise spectroscopy robust to errors in state preparation and measurement. Physical Review Applied 2024, 22, 024074 DOI: 10.1103/PhysRevApplied.22.024074There is no corresponding record for this reference.
- 101Merkel, S. T.; Gambetta, J. M.; Smolin, J. A.; Poletto, S.; Córcoles, A. D.; Johnson, B. R.; Ryan, C. A.; Steffen, M. Self-consistent quantum process tomography. Phys. Rev. A 2013, 87, 062119 DOI: 10.1103/PhysRevA.87.062119There is no corresponding record for this reference.
- 102Magesan, E.; Gambetta, J. M.; Emerson, J. Characterizing quantum gates via randomized benchmarking. Phys. Rev. A 2012, 85, 042311 DOI: 10.1103/PhysRevA.85.042311There is no corresponding record for this reference.
- 103Aaronson, S.; Gottesman, D. Improved simulation of stabilizer circuits. Phys. Rev. A 2004, 70, 052328 DOI: 10.1103/PhysRevA.70.052328There is no corresponding record for this reference.
- 104Nielsen, M. A. A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A 2002, 303, 249– 252, DOI: 10.1016/S0375-9601(02)01272-0There is no corresponding record for this reference.
- 105Viola, L.; Knill, E. Random Decoupling Schemes for Quantum Dynamical Control and Error Suppression. Phys. Rev. Lett. 2005, 94, 060502 DOI: 10.1103/PhysRevLett.94.060502There is no corresponding record for this reference.
- 106Santos, L. F.; Viola, L. Dynamical control of qubit coherence: Random versus deterministic schemes. Phys. Rev. A 2005, 72, 062303 DOI: 10.1103/PhysRevA.72.062303There is no corresponding record for this reference.
- 107Santos, L. F.; Viola, L. Enhanced Convergence and Robust Performance of Randomized Dynamical Decoupling. Phys. Rev. Lett. 2006, 97, 150501, DOI: 10.1103/PhysRevLett.97.150501There is no corresponding record for this reference.
- 108Magesan, E.; Gambetta, J. M.; Johnson, B. R.; Ryan, C. A.; Chow, J. M.; Merkel, S. T.; da Silva, M. P.; Keefe, G. A.; Rothwell, M. B.; Ohki, T. A.; Ketchen, M. B.; Steffen, M. Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking. Phys. Rev. Lett. 2012, 109, 080505 DOI: 10.1103/PhysRevLett.109.080505There is no corresponding record for this reference.
- 109Gambetta, J. M.; Córcoles, A. D.; Merkel, S. T.; Johnson, B. R.; Smolin, J. A.; Chow, J. M.; Ryan, C. A.; Rigetti, C.; Poletto, S.; Ohki, T. A.; Ketchen, M. B.; Steffen, M. Characterization of Addressability by Simultaneous Randomized Benchmarking. Phys. Rev. Lett. 2012, 109, 240504, DOI: 10.1103/PhysRevLett.109.240504There is no corresponding record for this reference.
- 110Wallman, J. J.; Barnhill, M.; Emerson, J. Robust characterization of leakage errors. New J. Phys. 2016, 18, 043021 DOI: 10.1088/1367-2630/18/4/043021There is no corresponding record for this reference.
- 111Wood, C. J.; Gambetta, J. M. Quantification and characterization of leakage errors. Phys. Rev. A 2018, 97, 032306 DOI: 10.1103/PhysRevA.97.032306There is no corresponding record for this reference.
- 112Fogarty, M. A.; Veldhorst, M.; Harper, R.; Yang, C. H.; Bartlett, S. D.; Flammia, S. T.; Dzurak, A. S. Nonexponential fidelity decay in randomized benchmarking with low-frequency noise. Phys. Rev. A 2015, 92, 022326 DOI: 10.1103/PhysRevA.92.022326There is no corresponding record for this reference.
- 113Wallman, J. J. Randomized benchmarking with gate-dependent noise. Quantum 2018, 2, 47, DOI: 10.22331/q-2018-01-29-47There is no corresponding record for this reference.
- 114Proctor, T.; Seritan, S.; Rudinger, K.; Nielsen, E.; Blume-Kohout, R.; Young, K. Scalable Randomized Benchmarking of Quantum Computers Using Mirror Circuits. Phys. Rev. Lett. 2022, 129, 150502, DOI: 10.1103/PhysRevLett.129.150502There is no corresponding record for this reference.
- 115Helsen, J.; Xue, X.; Vandersypen, L. M. K.; Wehner, S. A new class of efficient randomized benchmarking protocols. npj Quantum Information 2019, 5, 71, DOI: 10.1038/s41534-019-0182-7There is no corresponding record for this reference.
- 116Helsen, J.; Roth, I.; Onorati, E.; Werner, A.; Eisert, J. General Framework for Randomized Benchmarking. PRX Quantum 2022, 3, 020357 DOI: 10.1103/PRXQuantum.3.020357There is no corresponding record for this reference.
- 117Arrighi, P.; Patricot, C. On quantum operations as quantum states. Annals of Physics 2004, 311, 26– 52, DOI: 10.1016/j.aop.2003.11.005There is no corresponding record for this reference.
- 118D’Ariano, G. M.; Lo Presti, P. Quantum Tomography for Measuring Experimentally the Matrix Elements of an Arbitrary Quantum Operation. Phys. Rev. Lett. 2001, 86, 4195– 4198, DOI: 10.1103/PhysRevLett.86.4195There is no corresponding record for this reference.
- 119Leung, D. W. Choi’s proof as a recipe for quantum process tomography. Journal of Mathematical Physics 2003, 44, 528, DOI: 10.1063/1.1518554There is no corresponding record for this reference.
- 120Altepeter, J. B.; Branning, D.; Jeffrey, E.; Wei, T. C.; Kwiat, P. G.; Thew, R. T.; O’Brien, J. L.; Nielsen, M. A.; White, A. G. Ancilla-Assisted Quantum Process Tomography. Phys. Rev. Lett. 2003, 90, 193601, DOI: 10.1103/PhysRevLett.90.193601There is no corresponding record for this reference.
- 121D’Ariano, G. M.; Lo Presti, P. Imprinting Complete Information about a Quantum Channel on its Output State. Phys. Rev. Lett. 2003, 91, 047902 DOI: 10.1103/PhysRevLett.91.047902There is no corresponding record for this reference.
- 122Mohseni, M.; Lidar, D. A. Direct Characterization of Quantum Dynamics. Phys. Rev. Lett. 2006, 97, 170501, DOI: 10.1103/PhysRevLett.97.170501There is no corresponding record for this reference.
- 123Mohseni, M.; Lidar, D. A. Direct characterization of quantum dynamics: General theory. Phys. Rev. A 2007, 75, 062331 DOI: 10.1103/PhysRevA.75.062331There is no corresponding record for this reference.
- 124Mohseni, M.; Rezakhani, A. T.; Aspuru-Guzik, A. Direct estimation of single- and two-qubit Hamiltonians and relaxation rates. Phys. Rev. A 2008, 77, 042320. DOI: 10.1103/PhysRevA.77.042320There is no corresponding record for this reference.
- 125Graham, T. M.; Barreiro, J. T.; Mohseni, M.; Kwiat, P. G. Hyperentanglement-Enabled Direct Characterization of Quantum Dynamics. Phys. Rev. Lett. 2013, 110, 060404 DOI: 10.1103/PhysRevLett.110.060404There is no corresponding record for this reference.
- 126Nigg, D.; Barreiro, J. T.; Schindler, P.; Mohseni, M.; Monz, T.; Chwalla, M.; Hennrich, M.; Blatt, R. Experimental Characterization of Quantum Dynamics Through Many-Body Interactions. Phys. Rev. Lett. 2013, 110, 060403 DOI: 10.1103/PhysRevLett.110.060403There is no corresponding record for this reference.
- 127Gottesman, D. Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 1996, 54, 1862, DOI: 10.1103/PhysRevA.54.1862There is no corresponding record for this reference.
- 128Blume-Kohout, R.; Gamble, J. K.; Nielsen, E.; Rudinger, K.; Mizrahi, J.; Fortier, K.; Maunz, P. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography. Nat. Commun. 2017, 8, 14485, DOI: 10.1038/ncomms14485There is no corresponding record for this reference.
- 129Rol, M. A.; Bultink, C. C.; O’Brien, T. E.; de Jong, S. R.; Theis, L. S.; Fu, X.; Luthi, F.; Vermeulen, R. F. L.; de Sterke, J. C.; Bruno, A.; Deurloo, D.; Schouten, R. N.; Wilhelm, F. K.; DiCarlo, L. Restless Tuneup of High-Fidelity Qubit Gates. Phys. Rev. Appl. 2017, 7, 041001 DOI: 10.1103/PhysRevApplied.7.041001There is no corresponding record for this reference.
- 130Mavadia, S.; Edmunds, C. L.; Hempel, C.; Ball, H.; Roy, F.; Stace, T. M.; Biercuk, M. J. Experimental quantum verification in the presence of temporally correlated noise. npj Quantum Information 2018, 4, 7, DOI: 10.1038/s41534-017-0052-0There is no corresponding record for this reference.
- 131Hempel, C.; Maier, C.; Romero, J.; McClean, J.; Monz, T.; Shen, H.; Jurcevic, P.; Lanyon, B. P.; Love, P.; Babbush, R.; Aspuru-Guzik, A.; Blatt, R.; Roos, C. F. Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator. Phys. Rev. X 2018, 8, 031022 DOI: 10.1103/PhysRevX.8.031022There is no corresponding record for this reference.
- 132Song, C.; Cui, J.; Wang, H.; Hao, J.; Feng, H.; Li, Y. Quantum computation with universal error mitigation on a superconducting quantum processor. Science Advances 2019, 5, eaaw5686 DOI: 10.1126/sciadv.aaw5686There is no corresponding record for this reference.
- 133Cincio, L.; Rudinger, K.; Sarovar, M.; Coles, P. J. Machine Learning of Noise-Resilient Quantum Circuits. PRX Quantum 2021, 2, 010324 DOI: 10.1103/PRXQuantum.2.010324There is no corresponding record for this reference.
- 134Hong, S. S.; Papageorge, A. T.; Sivarajah, P.; Crossman, G.; Didier, N.; Polloreno, A. M.; Sete, E. A.; Turkowski, S. W.; da Silva, M. P.; Johnson, B. R. Demonstration of a parametrically activated entangling gate protected from flux noise. Phys. Rev. A 2020, 101, 012302 DOI: 10.1103/PhysRevA.101.012302There is no corresponding record for this reference.
- 135Joshi, M. K.; Elben, A.; Vermersch, B.; Brydges, T.; Maier, C.; Zoller, P.; Blatt, R.; Roos, C. F. Quantum Information Scrambling in a Trapped-Ion Quantum Simulator with Tunable Range Interactions. Phys. Rev. Lett. 2020, 124, 240505, DOI: 10.1103/PhysRevLett.124.240505There is no corresponding record for this reference.
- 136Zhang, S.; Lu, Y.; Zhang, K.; Chen, W.; Li, Y.; Zhang, J.-N.; Kim, K. Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system. Nat. Commun. 2020, 11, 587, DOI: 10.1038/s41467-020-14376-zThere is no corresponding record for this reference.
- 137Ware, M.; Ribeill, G.; Ristè, D.; Ryan, C. A.; Johnson, B.; da Silva, M. P. Experimental Pauli-frame randomization on a superconducting qubit. Phys. Rev. A 2021, 103, 042604 DOI: 10.1103/PhysRevA.103.042604There is no corresponding record for this reference.
- 138Dehollain, J. P.; Muhonen, J. T.; Blume-Kohout, R.; Rudinger, K. M.; Gamble, J. K.; Nielsen, E.; Laucht, A.; Simmons, S.; Kalra, R.; Dzurak, A. S.; Morello, A. Optimization of a solid-state electron spin qubit using gate set tomography. New J. Phys. 2016, 18, 103018, DOI: 10.1088/1367-2630/18/10/103018There is no corresponding record for this reference.
- 139Kitaev, A.; Shen, A.; Vyalyi, M. Classical and Quantum Computation; Graduate studies in mathematics; American Mathematical Society, 2002.There is no corresponding record for this reference.
- 140Scott, A. J. Tight informationally complete quantum measurements. Journal of Physics A: Mathematical and General 2006, 39, 13507, DOI: 10.1088/0305-4470/39/43/009There is no corresponding record for this reference.
- 141Nielsen, E.; Gamble, J. K.; Rudinger, K.; Scholten, T.; Young, K.; Blume-Kohout, R. Gate Set Tomography. Quantum 2021, 5, 557, DOI: 10.22331/q-2021-10-05-557There is no corresponding record for this reference.
- 142Householder, A. The Theory of Matrices in Numerical Analysis; Dover Books on Mathematics; Dover Publications, 2013.There is no corresponding record for this reference.
- 143Nielsen, E.; Rudinger, K.; Proctor, T.; Russo, A.; Young, K.; Blume-Kohout, R. Probing quantum processor performance with pyGSTi. Quantum Science and Technology 2020, 5, 044002 DOI: 10.1088/2058-9565/ab8aa4There is no corresponding record for this reference.
- 144Proctor, T.; Revelle, M.; Nielsen, E.; Rudinger, K.; Lobser, D.; Maunz, P.; Blume-Kohout, R.; Young, K. Detecting and tracking drift in quantum information processors. Nat. Commun. 2020, 11, 5396, DOI: 10.1038/s41467-020-19074-4There is no corresponding record for this reference.
- 145Rudinger, K. M.; Ostrove, C. I.; Seritan, S. K.; Grace, M. D.; Nielsen, E.; Blume-Kohout, R. J.; Young, K. C. Two-Qubit Gate Set Tomography with Fewer Circuits. 2023; https://arxiv.org/abs/2307.15767 (accessed: 2025-02-23).There is no corresponding record for this reference.
- 146Horodecki, M.; Horodecki, P.; Horodecki, R. General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 1999, 60, 1888– 1898, DOI: 10.1103/PhysRevA.60.1888There is no corresponding record for this reference.
- 147Lu, D.; Li, H.; Trottier, D.-A.; Li, J.; Brodutch, A.; Krismanich, A. P.; Ghavami, A.; Dmitrienko, G. I.; Long, G.; Baugh, J.; Laflamme, R. Experimental Estimation of Average Fidelity of a Clifford Gate on a 7-qubit Quantum Processor. Phys. Rev. Lett. 2015, 114, 140505, DOI: 10.1103/PhysRevLett.114.140505There is no corresponding record for this reference.
- 148Fedorov, A.; Steffen, L.; Baur, M.; da Silva, M. P.; Wallraff, A. Implementation of a Toffoli Gate with Superconducting Circuits. Nature 2012, 481, 170– 172, DOI: 10.1038/nature10713There is no corresponding record for this reference.
- 149Wallman, J. J.; Flammia, S. T. Randomized benchmarking with confidence. New J. Phys. 2014, 16, 103032, DOI: 10.1088/1367-2630/16/10/103032There is no corresponding record for this reference.
- 150Roth, I.; Kueng, R.; Kimmel, S.; Liu, Y.-K.; Gross, D.; Eisert, J.; Kliesch, M. Recovering quantum gates from few average gate fidelities. Phys. Rev. Lett. 2018, 121, 170502, DOI: 10.1103/PhysRevLett.121.170502There is no corresponding record for this reference.
- 151Kalev, A.; Kyrillidis, A.; Linke, N. M. Validating and certifying stabilizer states. Phys. Rev. A 2019, 99, 042337 DOI: 10.1103/PhysRevA.99.042337There is no corresponding record for this reference.
- 152Seshadri, A.; Ringbauer, M.; Spainhour, J.; Monz, T.; Becker, S. Theory of versatile fidelity estimation with confidence. Phys. Rev. A 2024, 110, 012431 DOI: 10.1103/PhysRevA.110.012431There is no corresponding record for this reference.
- 153Seshadri, A.; Ringbauer, M.; Spainhour, J.; Blatt, R.; Monz, T.; Becker, S. Versatile Fidelity Estimation with Confidence. Phys. Rev. Lett. 2024, 133, 020402 DOI: 10.1103/PhysRevLett.133.020402There is no corresponding record for this reference.
- 154Kosut, R. L.; Rabitz, H.; Grace, M. D. Adaptive quantum control via direct fidelity estimation and indirect model-based parametric process tomography. 52nd IEEE Conference on Decision and Control. Firenze, 2013; pp 1247– 1252.There is no corresponding record for this reference.
- 155Lu, Y.; Sim, J. Y.; Suzuki, J.; Englert, B.-G.; Ng, H. K. Direct estimation of minimum gate fidelity. Phys. Rev. A 2020, 102, 022410 DOI: 10.1103/PhysRevA.102.022410There is no corresponding record for this reference.
- 156Liu, Y.; Otten, M.; Bassirianjahromi, R.; Jiang, L.; Fefferman, B. Benchmarking near-term quantum computers via random circuit sampling. 2022; http://arxiv.org/abs/2105.05232, arXiv: 2105.05232 [quant-ph] (accessed: 2025-02-23).There is no corresponding record for this reference.
- 157Elements of Information Theory; John Wiley & Sons, Ltd, 2005; Chapter 4, pp 71– 101.There is no corresponding record for this reference.
- 158Ledoux, M. The Concentration of Measure Phenomenon; American Mathematical Soc., 2001; Google-Books-ID: rRKChz4Om6gC.There is no corresponding record for this reference.
- 159Boixo, S.; Smelyanskiy, V. N.; Neven, H. Fourier analysis of sampling from noisy chaotic quantum circuits. 2017; http://arxiv.org/abs/1708.01875, arXiv: 1708.01875 [quant-ph] (accessed: 2025-02-23).There is no corresponding record for this reference.
- 160Choi, J.; Shaw, A. L.; Madjarov, I. S.; Xie, X.; Finkelstein, R.; Covey, J. P.; Cotler, J. S.; Mark, D. K.; Huang, H.-Y.; Kale, A.; Pichler, H.; Brandão, F. G. S. L.; Choi, S.; Endres, M. Preparing random states and benchmarking with many-body quantum chaos. Nature 2023, 613, 468– 473, DOI: 10.1038/s41586-022-05442-1There is no corresponding record for this reference.
- 161Rinott, Y.; Shoham, T.; Kalai, G. Statistical Aspects of the Quantum Supremacy Demonstration. Statistical Science 2022, 37, 322– 347There is no corresponding record for this reference.
- 162Dalzell, A. M.; Hunter-Jones, N.; Brandão, F. G. S. L. Random Quantum Circuits Anticoncentrate in Log Depth. PRX Quantum 2022, 3, 010333There is no corresponding record for this reference.
- 163Huang, C.; Zhang, F.; Newman, M.; Cai, J.; Gao, X.; Tian, Z.; Wu, J.; Xu, H.; Yu, H.; Yuan, B.; Szegedy, M.; Shi, Y.; Chen, J. Classical Simulation of Quantum Supremacy Circuits. arXiv 2020 (accessed 2025-02-23). DOI: 10.48550/arXiv.2005.06787There is no corresponding record for this reference.
- 164Zlokapa, A.; Villalonga, B.; Boixo, S.; Lidar, D. A. Boundaries of quantum supremacy via random circuit sampling. npj Quantum Information 2023, 9, 36, DOI: 10.1038/s41534-023-00703-xThere is no corresponding record for this reference.
- 165Kechedzhi, K.; Isakov, S. V.; Mandrà, S.; Villalonga, B.; Mi, X.; Boixo, S.; Smelyanskiy, V. Effective quantum volume, fidelity and computational cost of noisy quantum processing experiments. Future Generation Computer Systems 2024, 153, 431– 441, DOI: 10.1016/j.future.2023.12.002There is no corresponding record for this reference.
- 166Arute, F. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505– 510, DOI: 10.1038/s41586-019-1666-5There is no corresponding record for this reference.
- 167Harrow, A. W.; Mehraban, S. Approximate Unitary t-Designs by Short Random Quantum Circuits Using Nearest-Neighbor and Long-Range Gates. Communications in Mathematical Physics 2023, 401, 1531– 1626, DOI: 10.1007/s00220-023-04675-zThere is no corresponding record for this reference.
- 168Haferkamp, J.; Montealegre-Mora, F.; Heinrich, M.; Eisert, J.; Gross, D.; Roth, I. Efficient Unitary Designs with a System-Size Independent Number of Non-Clifford Gates. Communications in Mathematical Physics 2023, 397, 995– 1041, DOI: 10.1007/s00220-022-04507-6There is no corresponding record for this reference.
- 169Gao, X.; Kalinowski, M.; Chou, C.-N.; Lukin, M. D.; Barak, B.; Choi, S. Limitations of Linear Cross-Entropy as a Measure for Quantum Advantage. PRX Quantum 2024, 5, 010334 DOI: 10.1103/PRXQuantum.5.010334There is no corresponding record for this reference.
- 170Tripathi, V.; Kowsari, D.; Saurav, K.; Zhang, H.; M.Levenson-Falk, E.; Lidar, D. A. Benchmarking quantum gates and circuits. 2024; https://arxiv.org/abs/2407.09942 (accessed: 2025-02-23).There is no corresponding record for this reference.
- 171Burnett, J. J.; Bengtsson, A.; Scigliuzzo, M.; Niepce, D.; Kudra, M.; Delsing, P.; Bylander, J. Decoherence benchmarking of superconducting qubits. npj Quantum Information 2019, 5, 54, DOI: 10.1038/s41534-019-0168-5There is no corresponding record for this reference.
- 172Hahn, E. L. Spin Echoes. Phys. Rev. 1950, 80, 580– 594, DOI: 10.1103/PhysRev.80.580There is no corresponding record for this reference.
- 173Carr, H. Y.; Purcell, E. M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 1954, 94, 630– 638, DOI: 10.1103/PhysRev.94.630There is no corresponding record for this reference.
- 174Meiboom, S.; Gill, D. Modified Spin?Echo Method for Measuring Nuclear Relaxation Times. Rev. Sci. Instrum. 1958, 29, 688– 691, DOI: 10.1063/1.1716296There is no corresponding record for this reference.
- 175Viola, L.; Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 1998, 58, 2733– 2744, DOI: 10.1103/PhysRevA.58.2733There is no corresponding record for this reference.
- 176Uhrig, G. S. Keeping a Quantum Bit Alive by Optimized π-Pulse Sequences. Phys. Rev. Lett. 2007, 98, 100504, DOI: 10.1103/PhysRevLett.98.100504There is no corresponding record for this reference.
- 177Suter, D.; Álvarez, G. A. Colloquium: Protecting quantum information against environmental noise. Rev. Mod. Phys. 2016, 88, 041001 DOI: 10.1103/RevModPhys.88.041001There is no corresponding record for this reference.
- 178Jurcevic, P. Demonstration of Quantum Volume 64 on a Superconducting Quantum Computing System. Quantum Sci. Technol. 2021, 6, 025020 DOI: 10.1088/2058-9565/abe519There is no corresponding record for this reference.
- 179Pokharel, B.; Lidar, D. A. Demonstration of Algorithmic Quantum Speedup. Phys. Rev. Lett. 2023, 130, 210602, DOI: 10.1103/PhysRevLett.130.210602There is no corresponding record for this reference.
- 180Tripathi, V.; Chen, H.; Khezri, M.; Yip, K.-W.; Levenson-Falk, E.; Lidar, D. A. Suppression of Crosstalk in Superconducting Qubits Using Dynamical Decoupling. Phys. Rev. Appl. 2022, 18, 024068 DOI: 10.1103/PhysRevApplied.18.024068There is no corresponding record for this reference.
- 181Zhou, Z.; Sitler, R.; Oda, Y.; Schultz, K.; Quiroz, G. Quantum Crosstalk Robust Quantum Control. Phys. Rev. Lett. 2023, 131, 210802, DOI: 10.1103/PhysRevLett.131.210802There is no corresponding record for this reference.
- 182Bäumer, E.; Tripathi, V.; Wang, D. S.; Rall, P.; Chen, E. H.; Majumder, S.; Seif, A.; Minev, Z. K. Efficient Long-Range Entanglement using Dynamic Circuits. 2023.There is no corresponding record for this reference.
- 183Shirizly, L.; Misguich, G.; Landa, H. Dissipative Dynamics of Graph-State Stabilizers with Superconducting Qubits. Phys. Rev. Lett. 2024, 132, 010601 DOI: 10.1103/PhysRevLett.132.010601There is no corresponding record for this reference.
- 184Niu, S.; Todri-Sanial, A.; Bronn, N. T. Multi-qubit dynamical decoupling for enhanced crosstalk suppression. Quantum Science and Technology 2024, 9, 045003 DOI: 10.1088/2058-9565/ad5a37There is no corresponding record for this reference.
- 185Evert, B.; Izquierdo, Z. G.; Sud, J.; Hu, H.-Y.; Grabbe, S.; Rieffel, E. G.; Reagor, M. J.; Wang, Z. Syncopated Dynamical Decoupling for Suppressing Crosstalk in Quantum Circuits. 2024; https://arxiv.org/abs/2403.07836 (accessed: 2025-02-23).There is no corresponding record for this reference.
- 186Brown, A. F.; Lidar, D. A. Efficient Chromatic-Number-Based Multi-Qubit Decoherence and Crosstalk Suppression. 2024. https://arxiv.org/abs/2406.13901(accessed: 2025-02-23).There is no corresponding record for this reference.
- 187Martinis, J. M.; Geller, M. R. Fast adiabatic qubit gates using only σz control. Phys. Rev. A 2014, 90, 022307 DOI: 10.1103/PhysRevA.90.022307There is no corresponding record for this reference.
- 188Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T. P.; Gustavsson, S.; Oliver, W. D. A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews 2019, 6, 021318 DOI: 10.1063/1.5089550There is no corresponding record for this reference.
- 189Genov, G. T.; Schraft, D.; Vitanov, N. V.; Halfmann, T. Arbitrarily Accurate Pulse Sequences for Robust Dynamical Decoupling. Phys. Rev. Lett. 2017, 118, 133202, DOI: 10.1103/PhysRevLett.118.133202There is no corresponding record for this reference.
- 190Motzoi, F.; Gambetta, J. M.; Rebentrost, P.; Wilhelm, F. K. Simple Pulses for Elimination of Leakage in Weakly Nonlinear Qubits. Phys. Rev. Lett. 2009, 103, 110501, DOI: 10.1103/PhysRevLett.103.110501There is no corresponding record for this reference.
- 191Chow, J. M.; Gambetta, J. M.; Tornberg, L.; Koch, J.; Bishop, L. S.; Houck, A. A.; Johnson, B. R.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J. Randomized Benchmarking and Process Tomography for Gate Errors in a Solid-State Qubit. Phys. Rev. Lett. 2009, 102, 090502 DOI: 10.1103/PhysRevLett.102.090502There is no corresponding record for this reference.
- 192Albash, T.; Boixo, S.; Lidar, D. A.; Zanardi, P. Quantum adiabatic Markovian master equations. New J. of Phys. 2012, 14, 123016, DOI: 10.1088/1367-2630/14/12/123016There is no corresponding record for this reference.
- 193Dann, R.; Levy, A.; Kosloff, R. Time-dependent Markovian quantum master equation. Phys. Rev. A 2018, 98, 052129 DOI: 10.1103/PhysRevA.98.052129There is no corresponding record for this reference.
- 194Campos Venuti, L.; Lidar, D. A. Error reduction in quantum annealing using boundary cancellation: Only the end matters. Phys. Rev. A 2018, 98, 022315 DOI: 10.1103/PhysRevA.98.022315There is no corresponding record for this reference.
- 195Mozgunov, E.; Lidar, D. Completely positive master equation for arbitrary driving and small level spacing. Quantum 2020, 4, 227, DOI: 10.22331/q-2020-02-06-227There is no corresponding record for this reference.
- 196Nathan, F.; Rudner, M. S. Universal Lindblad equation for open quantum systems. Phys. Rev. B 2020, 102, 115109, DOI: 10.1103/PhysRevB.102.115109There is no corresponding record for this reference.
- 197Davidović, D. Completely Positive, Simple, and Possibly Highly Accurate Approximation of the Redfield Equation. Quantum 2020, 4, 326, DOI: 10.22331/q-2020-09-21-326There is no corresponding record for this reference.
- 198Davidović, D. Geometric-arithmetic master equation in large and fast open quantum systems. Journal of Physics A: Mathematical and Theoretical 2022, 55, 455301, DOI: 10.1088/1751-8121/ac9f30There is no corresponding record for this reference.
- 199Kasatkin, V.; Gu, L.; Lidar, D. A. Which differential equations correspond to the Lindblad equation?. Physical Review Research 2023, 5, 043163 DOI: 10.1103/PhysRevResearch.5.043163There is no corresponding record for this reference.
- 200Perko, L. Differential Equations and Dynamical Systems; Springer New York: New York, NY, 2001; pp 1– 63.There is no corresponding record for this reference.
- 201Geerlings, K.; Leghtas, Z.; Pop, I. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H. Demonstrating a Driven Reset Protocol for a Superconducting Qubit. Phys. Rev. Lett. 2013, 110, 120501, DOI: 10.1103/PhysRevLett.110.120501There is no corresponding record for this reference.
- 202Goss, N.; Morvan, A.; Marinelli, B.; Mitchell, B. K.; Nguyen, L. B.; Naik, R. K.; Chen, L.; Jünger, C.; Kreikebaum, J. M.; Santiago, D. I.; Wallman, J. J.; Siddiqi, I. High-fidelity qutrit entangling gates for superconducting circuits. Nat. Commun. 2022, 13, 7481, DOI: 10.1038/s41467-022-34851-zThere is no corresponding record for this reference.
- 203Tripathi, V.; Goss, N.; Vezvaee, A.; Nguyen, L. B.; Siddiqi, I.; Lidar, D. A. Qudit Dynamical Decoupling on a Superconducting Quantum Processor. Phys. Rev. Lett. 2025, 134, 050601 DOI: 10.1103/PhysRevLett.134.050601There is no corresponding record for this reference.
- 204Krishnan Vijayan, M.; Paler, A.; Gavriel, J.; Myers, C. R.; Rohde, P. P.; Devitt, S. J. Compilation of algorithm-specific graph states for quantum circuits. Quantum Science and Technology 2024, 9, 025005 DOI: 10.1088/2058-9565/ad1f39There is no corresponding record for this reference.
- 205Beverland, M. E.; Murali, P.; Troyer, M.; Svore, K. M.; Hoefler, T.; Kliuchnikov, V.; Low, G. H.; Soeken, M.; Sundaram, A.; Vaschillo, A. Assessing requirements to scale to practical quantum advantage. 2022. https://arxiv.org/abs/2211.07629 (accessed 2025-02-23).There is no corresponding record for this reference.
- 206Agrawal, A. A.; Job, J.; Wilson, T. L.; Saadatmand, S. N.; Hodson, M. J.; Mutus, J. Y.; Caesura, A.; Johnson, P. D.; Elenewski, J. E.; Morrell, K. J.; Kemper, A. F. Quantifying fault tolerant simulation of strongly correlated systems using the Fermi-Hubbard model. 2024; https://arxiv.org/abs/2406.06511(accessed: 2025-02-23).There is no corresponding record for this reference.
- 207Barends, R. Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits. Phys. Rev. Lett. 2013, 111, 080502 DOI: 10.1103/PhysRevLett.111.080502There is no corresponding record for this reference.
- 208Shanto, S.; Kuo, A.; Miyamoto, C.; Zhang, H.; Maurya, V.; Vlachos, E.; Hecht, M.; Shum, C. W.; Levenson-Falk, E. SQuADDS: A Validated Design Database and Simulation Workflow for Superconducting Qubit Design. Quantum 2024, 8, 1465, DOI: 10.22331/q-2024-09-09-1465There is no corresponding record for this reference.
- 209Shah, P. A. . qiskit-community/qiskit-metal: Qiskit Metal 0.1.5a1 (2023). 2023; DOI: 10.5281/zenodo.8061781 (accessed 2025-02-23).There is no corresponding record for this reference.
- 210Minev, Z. K.; Leghtas, Z.; Reinhold, P.; Mundhada, S. O.; Diringer, A.; Hillel, D. C.; Wang, D. Z.-R.; Facchini, M.; Shah, P. A.; Devoret, M. pyEPR: The energy-participation-ratio (EPR) open- source framework for quantum device design. 2021; DOI: 10.5281/zenodo.4744448 , https://github.com/zlatko-minev/pyEPR; https://pyepr-docs.readthedocs.io/en/latest/ (accessed 2025-02-23).There is no corresponding record for this reference.
- 211Chen, Z. Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit. Phys. Rev. Lett. 2016, 116, 020501 DOI: 10.1103/PhysRevLett.116.020501There is no corresponding record for this reference.