ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Ras Conformational Ensembles, Allostery, and Signaling

View Author Information
Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
§ §Department of Chemical and Biological Engineering and Department of Computer Engineering, Koç University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
*R.N.: phone, 1-301-846-5579; e-mail, [email protected]
*J.Z.: e-mail, [email protected]
Cite this: Chem. Rev. 2016, 116, 11, 6607–6665
Publication Date (Web):January 27, 2016
https://doi.org/10.1021/acs.chemrev.5b00542
Copyright © 2016 American Chemical Society

    Article Views

    7763

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (45 MB)

    Abstract

    Abstract Image

    Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies.

    Cited By

    This article is cited by 252 publications.

    1. Sacha T. Larda, Yann Ayotte, Maria M. Denk, Paul Coote, Gregory Heffron, David Bendahan, Fatma Shahout, Nicolas Girard, Mustapha Iddir, Patricia Bouchard, Francois Bilodeau, Simon Woo, Luc J. Farmer, Steven R. LaPlante. Robust Strategy for Hit-to-Lead Discovery: NMR for SAR. Journal of Medicinal Chemistry 2023, 66 (19) , 13416-13427. https://doi.org/10.1021/acs.jmedchem.3c00656
    2. Ke-Wei Chen, Tian-Yu Sun, Yun-Dong Wu. New Insights into the Cooperativity and Dynamics of Dimeric Enzymes. Chemical Reviews 2023, 123 (16) , 9940-9981. https://doi.org/10.1021/acs.chemrev.3c00042
    3. Mikimasa Tanada, Minoru Tamiya, Atsushi Matsuo, Aya Chiyoda, Koji Takano, Toshiya Ito, Machiko Irie, Tomoya Kotake, Ryuuichi Takeyama, Hatsuo Kawada, Ryuji Hayashi, Shiho Ishikawa, Kenichi Nomura, Noriyuki Furuichi, Yuya Morita, Mirai Kage, Satoshi Hashimoto, Keiji Nii, Hitoshi Sase, Kazuhiro Ohara, Atsushi Ohta, Shino Kuramoto, Yoshikazu Nishimura, Hitoshi Iikura, Takuya Shiraishi. Development of Orally Bioavailable Peptides Targeting an Intracellular Protein: From a Hit to a Clinical KRAS Inhibitor. Journal of the American Chemical Society 2023, 145 (30) , 16610-16620. https://doi.org/10.1021/jacs.3c03886
    4. Cynthia V. Pagba, Amit K. Gupta, Ali K. Naji, Dharini van der Hoeven, Kelly Churion, Xiaowen Liang, Jacob Jakubec, Magnus Hook, Yan Zuo, Marisela Martinez de Kraatz, Jeffrey A. Frost, Alemayehu A. Gorfe. KRAS Inhibitor that Simultaneously Inhibits Nucleotide Exchange Activity and Effector Engagement. ACS Bio & Med Chem Au 2022, 2 (6) , 617-626. https://doi.org/10.1021/acsbiomedchemau.2c00045
    5. D. Matthew Peacock, Mark J. S. Kelly, Kevan M. Shokat. Probing the KRas Switch II Groove by Fluorine NMR Spectroscopy. ACS Chemical Biology 2022, 17 (10) , 2710-2715. https://doi.org/10.1021/acschembio.2c00566
    6. Ryan Weeks, Xin Zhou, Tina L. Yuan, Jin Zhang. Fluorescent Biosensor for Measuring Ras Activity in Living Cells. Journal of the American Chemical Society 2022, 144 (38) , 17432-17440. https://doi.org/10.1021/jacs.2c05203
    7. Hao Zhang, Duan Ni, Jigang Fan, Minyu Li, Jian Zhang, Chen Hua, Ruth Nussinov, Shaoyong Lu. Markov State Models and Molecular Dynamics Simulations Reveal the Conformational Transition of the Intrinsically Disordered Hypervariable Region of K-Ras4B to the Ordered Conformation. Journal of Chemical Information and Modeling 2022, 62 (17) , 4222-4231. https://doi.org/10.1021/acs.jcim.2c00591
    8. Chunyue Ma, Daniel J. Chung, Dylan Abramson, David R. Langley, Kelly M. Thayer. Mutagenic Activation of Glutathione Peroxidase-4: Approaches toward Rational Design of Allosteric Drugs. ACS Omega 2022, 7 (34) , 29587-29597. https://doi.org/10.1021/acsomega.2c01289
    9. Fa-An Chao, Srisathiyanarayanan Dharmaiah, Troy Taylor, Simon Messing, William Gillette, Dominic Esposito, Dwight V. Nissley, Frank McCormick, R. Andrew Byrd, Dhirendra K. Simanshu, Gabriel Cornilescu. Insights into the Cross Talk between Effector and Allosteric Lobes of KRAS from Methyl Conformational Dynamics. Journal of the American Chemical Society 2022, 144 (9) , 4196-4205. https://doi.org/10.1021/jacs.2c00007
    10. Jigang Fan, Yaqin Liu, Ren Kong, Duan Ni, Zhengtian Yu, Shaoyong Lu, Jian Zhang. Harnessing Reversed Allosteric Communication: A Novel Strategy for Allosteric Drug Discovery. Journal of Medicinal Chemistry 2021, 64 (24) , 17728-17743. https://doi.org/10.1021/acs.jmedchem.1c01695
    11. Juan Zeng, Jingwei Weng, Yuwei Zhang, Fei Xia, Qiang Cui, Xin Xu. Conformational Features of Ras: Key Hydrogen-Bonding Interactions of Gln61 in the Intermediate State during GTP Hydrolysis. The Journal of Physical Chemistry B 2021, 125 (31) , 8805-8813. https://doi.org/10.1021/acs.jpcb.1c04679
    12. Meryem Eren, Nurcan Tuncbag, Hyunbum Jang, Ruth Nussinov, Attila Gursoy, Ozlem Keskin. Normal Mode Analysis of KRas4B Reveals Partner Specific Dynamics. The Journal of Physical Chemistry B 2021, 125 (20) , 5210-5221. https://doi.org/10.1021/acs.jpcb.1c00891
    13. Mingyu Wu, Yu Sun, Meiru Zhu, Laiyu Zhu, Junhong Lü, Feng Geng. Molecular Dynamics-Based Allosteric Prediction Method to Design Key Residues in Threonine Dehydrogenase for Amino-Acid Production. ACS Omega 2021, 6 (16) , 10975-10983. https://doi.org/10.1021/acsomega.1c00798
    14. Jianzhong Chen, Shaolong Zhang, Wei Wang, Laixue Pang, Qinggang Zhang, Xinguo Liu. Mutation-Induced Impacts on the Switch Transformations of the GDP- and GTP-Bound K-Ras: Insights from Multiple Replica Gaussian Accelerated Molecular Dynamics and Free Energy Analysis. Journal of Chemical Information and Modeling 2021, 61 (4) , 1954-1969. https://doi.org/10.1021/acs.jcim.0c01470
    15. Hao Chen, Jeff B. Smaill, Tongzheng Liu, Ke Ding, Xiaoyun Lu. Small-Molecule Inhibitors Directly Targeting KRAS as Anticancer Therapeutics. Journal of Medicinal Chemistry 2020, 63 (23) , 14404-14424. https://doi.org/10.1021/acs.jmedchem.0c01312
    16. Huixia Lu, Jordi Martí. Long-lasting Salt Bridges Provide the Anchoring Mechanism of Oncogenic Kirsten Rat Sarcoma Proteins at Cell Membranes. The Journal of Physical Chemistry Letters 2020, 11 (22) , 9938-9945. https://doi.org/10.1021/acs.jpclett.0c02809
    17. Junfei Cheng, Yu Li, Xu Wang, Guoqiang Dong, Chunquan Sheng. Discovery of Novel PDEδ Degraders for the Treatment of KRAS Mutant Colorectal Cancer. Journal of Medicinal Chemistry 2020, 63 (14) , 7892-7905. https://doi.org/10.1021/acs.jmedchem.0c00929
    18. Yue Chen, Junhao Li, Zengrui Wu, Guixia Liu, Honglin Li, Yun Tang, Weihua Li. Computational Insight into the Allosteric Activation Mechanism of Farnesoid X Receptor. Journal of Chemical Information and Modeling 2020, 60 (3) , 1540-1550. https://doi.org/10.1021/acs.jcim.9b00914
    19. Tsung-Jen Liao, Hyunbum Jang, Ruth Nussinov, David Fushman. High-Affinity Interactions of the nSH3/cSH3 Domains of Grb2 with the C-Terminal Proline-Rich Domain of SOS1. Journal of the American Chemical Society 2020, 142 (7) , 3401-3411. https://doi.org/10.1021/jacs.9b10710
    20. Zahra Moghadamchargari, Jamison Huddleston, Mehdi Shirzadeh, Xueyun Zheng, David E. Clemmer, Frank M. Raushel, David H. Russell, Arthur Laganowsky. Intrinsic GTPase Activity of K-RAS Monitored by Native Mass Spectrometry. Biochemistry 2019, 58 (31) , 3396-3405. https://doi.org/10.1021/acs.biochem.9b00532
    21. Shaoyong Lu, Duan Ni, Chengxiang Wang, Xinheng He, Houwen Lin, Zheng Wang, Jian Zhang. Deactivation Pathway of Ras GTPase Underlies Conformational Substates as Targets for Drug Design. ACS Catalysis 2019, 9 (8) , 7188-7196. https://doi.org/10.1021/acscatal.9b02556
    22. Shaoyong Lu, Xinheng He, Duan Ni, Jian Zhang. Allosteric Modulator Discovery: From Serendipity to Structure-Based Design. Journal of Medicinal Chemistry 2019, 62 (14) , 6405-6421. https://doi.org/10.1021/acs.jmedchem.8b01749
    23. Ruth H. Tichauer, Gilles Favre, Stéphanie Cabantous, Marie Brut. Hybrid QM/MM vs Pure MM Molecular Dynamics for Evaluating Water Distribution within p21N-ras and the Resulting GTP Electronic Density. The Journal of Physical Chemistry B 2019, 123 (18) , 3935-3944. https://doi.org/10.1021/acs.jpcb.9b02660
    24. Shaoyong Lu, Qiancheng Shen, Jian Zhang. Allosteric Methods and Their Applications: Facilitating the Discovery of Allosteric Drugs and the Investigation of Allosteric Mechanisms. Accounts of Chemical Research 2019, 52 (2) , 492-500. https://doi.org/10.1021/acs.accounts.8b00570
    25. Xiaoli An, Shaoyong Lu, Kun Song, Qiancheng Shen, Meilan Huang, Xiaojun Yao, Huanxiang Liu, Jian Zhang. Are the Apo Proteins Suitable for the Rational Discovery of Allosteric Drugs?. Journal of Chemical Information and Modeling 2019, 59 (1) , 597-604. https://doi.org/10.1021/acs.jcim.8b00735
    26. Shaoyong Lu, Jian Zhang. Small Molecule Allosteric Modulators of G-Protein-Coupled Receptors: Drug–Target Interactions. Journal of Medicinal Chemistry 2019, 62 (1) , 24-45. https://doi.org/10.1021/acs.jmedchem.7b01844
    27. Mingzhen Zhang, Zhigang Li, Guanqiao Wang, Hyunbum Jang, David B. Sacks, Jian Zhang, Vadim Gaponenko, Ruth Nussinov. Calmodulin (CaM) Activates PI3Kα by Targeting the “Soft” CaM-Binding Motifs in Both the nSH2 and cSH2 Domains of p85α. The Journal of Physical Chemistry B 2018, 122 (49) , 11137-11146. https://doi.org/10.1021/acs.jpcb.8b05982
    28. Yang Li, Yuwei Zhang, Frederik Großerüschkamp, Sara Stephan, Qiang Cui, Carsten Kötting, Fei Xia, Klaus Gerwert. Specific Substates of Ras To Interact with GAPs and Effectors: Revealed by Theoretical Simulations and FTIR Experiments. The Journal of Physical Chemistry Letters 2018, 9 (6) , 1312-1317. https://doi.org/10.1021/acs.jpclett.8b00342
    29. Xiaoyu Zhang, Ji Cao, Seth P. Miller, Hui Jing, and Hening Lin . Comparative Nucleotide-Dependent Interactome Analysis Reveals Shared and Differential Properties of KRas4a and KRas4b. ACS Central Science 2018, 4 (1) , 71-80. https://doi.org/10.1021/acscentsci.7b00440
    30. Yoav Atsmon-Raz and D. Peter Tieleman . Parameterization of Palmitoylated Cysteine, Farnesylated Cysteine, Geranylgeranylated Cysteine, and Myristoylated Glycine for the Martini Force Field. The Journal of Physical Chemistry B 2017, 121 (49) , 11132-11143. https://doi.org/10.1021/acs.jpcb.7b10175
    31. Serena Muratcioglu, Hyunbum Jang, Attila Gursoy, Ozlem Keskin, and Ruth Nussinov . PDEδ Binding to Ras Isoforms Provides a Route to Proper Membrane Localization. The Journal of Physical Chemistry B 2017, 121 (24) , 5917-5927. https://doi.org/10.1021/acs.jpcb.7b03035
    32. Adam M. Levinson, John H. McGee, Andrew G. Roberts, Gardner S. Creech, Ting Wang, Michael T. Peterson, Ronald C. Hendrickson, Gregory L. Verdine, and Samuel J. Danishefsky . Total Chemical Synthesis and Folding of All-l and All-d Variants of Oncogenic KRas(G12V). Journal of the American Chemical Society 2017, 139 (22) , 7632-7639. https://doi.org/10.1021/jacs.7b02988
    33. Michael B. Cammarata, Christopher L. Schardon, M. Rachel Mehaffey, Jake Rosenberg, Jonathan Singleton, Walter Fast, and Jennifer S. Brodbelt . Impact of G12 Mutations on the Structure of K-Ras Probed by Ultraviolet Photodissociation Mass Spectrometry. Journal of the American Chemical Society 2016, 138 (40) , 13187-13196. https://doi.org/10.1021/jacs.6b04474
    34. Mayukh Chakrabarti, Hyunbum Jang, and Ruth Nussinov . Comparison of the Conformations of KRAS Isoforms, K-Ras4A and K-Ras4B, Points to Similarities and Significant Differences. The Journal of Physical Chemistry B 2016, 120 (4) , 667-679. https://doi.org/10.1021/acs.jpcb.5b11110
    35. Ran Friedman. The Emerging Role of Molecular Dynamics Simulations in Cancer Research. 2024, 910-920. https://doi.org/10.1016/B978-0-12-821978-2.00088-X
    36. Huayin Bao, Wei Wang, Haibo Sun, Jianzhong Chen. Probing mutation-induced conformational transformation of the GTP/M-RAS complex through Gaussian accelerated molecular dynamics simulations. Journal of Enzyme Inhibition and Medicinal Chemistry 2023, 38 (1) https://doi.org/10.1080/14756366.2023.2195995
    37. Guowei Yin, Jing Huang, Johnny Petela, Hongmei Jiang, Yuetong Zhang, Siqi Gong, Jiaxin Wu, Bei Liu, Jianyou Shi, Yijun Gao. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduction and Targeted Therapy 2023, 8 (1) https://doi.org/10.1038/s41392-023-01441-4
    38. Xin Xie, Tingting Yu, Xiang Li, Nan Zhang, Leonard J. Foster, Cheng Peng, Wei Huang, Gu He. Recent advances in targeting the “undruggable” proteins: from drug discovery to clinical trials. Signal Transduction and Targeted Therapy 2023, 8 (1) https://doi.org/10.1038/s41392-023-01589-z
    39. Qingci Zhao, Ryoka Haga, Satoko Tamura, Ichio Shimada, Noritaka Nishida. Real-time monitoring of the reaction of KRAS G12C mutant specific covalent inhibitor by in vitro and in-cell NMR spectroscopy. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-46623-w
    40. Fa-An Chao, Albert H. Chan, Srisathiyanarayanan Dharmaiah, Charles D. Schwieters, Timothy H. Tran, Troy Taylor, Nitya Ramakrishnan, Dominic Esposito, Dwight V. Nissley, Frank McCormick, Dhirendra K. Simanshu, Gabriel Cornilescu. Reduced dynamic complexity allows structure elucidation of an excited state of KRASG13D. Communications Biology 2023, 6 (1) https://doi.org/10.1038/s42003-023-04960-6
    41. Ruth Nussinov, Yonglan Liu, Wengang Zhang, Hyunbum Jang. Protein conformational ensembles in function: roles and mechanisms. RSC Chemical Biology 2023, 4 (11) , 850-864. https://doi.org/10.1039/D3CB00114H
    42. Krishnendu Sinha, Amit Kumawat, Hyunbum Jang, Ruth Nussinov, Suman Chakrabarty. Molecular mechanism of regulation of RhoA GTPase by phosphorylation of RhoGDI. Biophysical Journal 2023, 348 https://doi.org/10.1016/j.bpj.2023.11.018
    43. Christian W. Johnson, Susan K. Fetics, Kathleen P. Davis, Jose A. Rodrigues, Carla Mattos. Allosteric site variants affect GTP hydrolysis on Ras. Protein Science 2023, 32 (10) https://doi.org/10.1002/pro.4767
    44. Alexandar L. Hansen, Xinyao Xiang, Chunhua Yuan, Lei Bruschweiler-Li, Rafael Brüschweiler. Excited-state observation of active K-Ras reveals differential structural dynamics of wild-type versus oncogenic G12D and G12C mutants. Nature Structural & Molecular Biology 2023, 30 (10) , 1446-1455. https://doi.org/10.1038/s41594-023-01070-z
    45. Thomas Tran, Aruni P. K. K. Karunanayake Mudiyanselage, Stephen J. Eyles, Lynmarie K. Thompson. Bacterial chemoreceptor signaling complexes control kinase activity by stabilizing the catalytic domain of CheA. Proceedings of the National Academy of Sciences 2023, 120 (32) https://doi.org/10.1073/pnas.2218467120
    46. Mohammad Ahmad, Liviu Movileanu. Multiplexed imaging for probing RAS-RAF interactions in living cells. Biochimica et Biophysica Acta (BBA) - Biomembranes 2023, 1865 (6) , 184173. https://doi.org/10.1016/j.bbamem.2023.184173
    47. Shimaa Salamh, Abdallah Sayyed-Ahmad. Investigating the effects of cysteine-118 oxidation on G12D KRas structure and dynamics: insights from MD simulations. Journal of Biomolecular Structure and Dynamics 2023, 31 , 1-14. https://doi.org/10.1080/07391102.2023.2238080
    48. Yuqiang Hu, Changjiang Li, Minghao Hu, Zhen Zhang, Ruolan Fu, Xinjing Tang, Tongbo Wu. Allosteric Nucleic Acid Enzyme: A Versatile Stimuli‐Responsive Tool for Molecular Computing and Biosensing Nanodevices. Small 2023, 19 (27) https://doi.org/10.1002/smll.202300207
    49. Philipp Junk, Christina Kiel. Structure-based prediction of Ras-effector binding affinities and design of “branchegetic” interface mutations. Structure 2023, 31 (7) , 870-883.e5. https://doi.org/10.1016/j.str.2023.04.007
    50. Lan-song Xu, Su-xin Zheng, Liang-he Mei, Ke-xin Yang, Ya-fang Wang, Qiang Zhou, Xiang-tai Kong, Ming-yue Zheng, Hua-liang Jiang, Cheng-ying Xie. 143D, a novel selective KRASG12C inhibitor exhibits potent antitumor activity in preclinical models. Acta Pharmacologica Sinica 2023, 44 (7) , 1475-1486. https://doi.org/10.1038/s41401-023-01053-2
    51. Cen Liu, Danyang Ye, Hongliu Yang, Xu Chen, Zhijun Su, Xia Li, Mei Ding, Yonggang Liu. RAS‐targeted cancer therapy: Advances in drugging specific mutations. MedComm 2023, 4 (3) https://doi.org/10.1002/mco2.285
    52. Igor Polyakov, Alexander Nemukhin. Computational Modeling of the Neurofibromin-Stimulated Guanosine Triphosphate Hydrolysis by the KRas Protein. Biophysica 2023, 3 (2) , 373-384. https://doi.org/10.3390/biophysica3020025
    53. Huayin Bao, Wei Wang, Haibo Sun, Jianzhong Chen. The switch states of the GDP-bound HRAS affected by point mutations: a study from Gaussian accelerated molecular dynamics simulations and free energy landscapes. Journal of Biomolecular Structure and Dynamics 2023, 6 , 1-19. https://doi.org/10.1080/07391102.2023.2213355
    54. Ki‐Young Lee, Mitsuhiko Ikura, Christopher B. Marshall. The Self‐Association of the KRAS4b Protein is Altered by Lipid‐Bilayer Composition and Electrostatics. Angewandte Chemie 2023, 135 (18) https://doi.org/10.1002/ange.202218698
    55. Ki‐Young Lee, Mitsuhiko Ikura, Christopher B. Marshall. The Self‐Association of the KRAS4b Protein is Altered by Lipid‐Bilayer Composition and Electrostatics. Angewandte Chemie International Edition 2023, 62 (18) https://doi.org/10.1002/anie.202218698
    56. Shuhua Shi, Linqi Zheng, Yonglian Ren, Ziyu Wang. Impacts of Mutations in the P-Loop on Conformational Alterations of KRAS Investigated with Gaussian Accelerated Molecular Dynamics Simulations. Molecules 2023, 28 (7) , 2886. https://doi.org/10.3390/molecules28072886
    57. Xile Zhou, Yang Ji, Jinming Zhou. Multiple Strategies to Develop Small Molecular KRAS Directly Bound Inhibitors. Molecules 2023, 28 (8) , 3615. https://doi.org/10.3390/molecules28083615
    58. Brajesh Narayan, Christina Kiel, Nicolae-Viorel Buchete. Classification of GTP-dependent K-Ras4B active and inactive conformational states. The Journal of Chemical Physics 2023, 158 (9) https://doi.org/10.1063/5.0139181
    59. Fanglin Liang, Zhengzhong Kang, Xianqiang Sun, Jiao Chen, Xuemin Duan, Hu He, Jianxin Cheng. Inhibition mechanism of MRTX1133 on KRASG12D: a molecular dynamics simulation and Markov state model study. Journal of Computer-Aided Molecular Design 2023, 37 (3) , 157-166. https://doi.org/10.1007/s10822-023-00498-1
    60. Joris van de Haar, Xuhui Ma, Salo N. Ooft, Pim W. van der Helm, Louisa R. Hoes, Sara Mainardi, David J. Pinato, Kristi Sun, Lisa Salvatore, Giampaolo Tortora, Ina Valeria Zurlo, Silvana Leo, Riccardo Giampieri, Rossana Berardi, Fabio Gelsomino, Valeria Merz, Federica Mazzuca, Lorenzo Antonuzzo, Gerardo Rosati, Chara Stavraka, Paul Ross, Maria Grazia Rodriquenz, Michele Pavarana, Carlo Messina, Timothy Iveson, Federica Zoratto, Anne Thomas, Elisabetta Fenocchio, Margherita Ratti, Ilaria Depetris, Massimiliano Cergnul, Cristina Morelli, Michela Libertini, Alessandro Parisi, Michele De Tursi, Nicoletta Zanaletti, Ornella Garrone, Janet Graham, Raffaella Longarini, Stefania Maria Gobba, Angelica Petrillo, Emiliano Tamburini, Nicla La Verde, Fausto Petrelli, Vincenzo Ricci, Lodewyk F. A. Wessels, Michele Ghidini, Alessio Cortellini, Emile E. Voest, Nicola Valeri. Codon-specific KRAS mutations predict survival benefit of trifluridine/tipiracil in metastatic colorectal cancer. Nature Medicine 2023, 29 (3) , 605-614. https://doi.org/10.1038/s41591-023-02240-8
    61. Huan Xiao, Guan Wang, Min Zhao, Wen Shuai, Liang Ouyang, Qiu Sun. Ras superfamily GTPase activating proteins in cancer: Potential therapeutic targets?. European Journal of Medicinal Chemistry 2023, 248 , 115104. https://doi.org/10.1016/j.ejmech.2023.115104
    62. H.Y. Bao, W. Wang, H.B. Sun, J.Z. Chen. Binding modes of GDP, GTP and GNP to NRAS deciphered by using Gaussian accelerated molecular dynamics simulations. SAR and QSAR in Environmental Research 2023, 34 (1) , 65-89. https://doi.org/10.1080/1062936X.2023.2165542
    63. Yuan Lin, Yi Zheng. Rho Family GTPases and their Modulators. 2023, 287-310. https://doi.org/10.1007/978-3-031-23752-2_18
    64. Gagandeep Singh, Neelam Thakur, Umesh Kumar. RAS: Circuitry and therapeutic targeting. Cellular Signalling 2023, 101 , 110505. https://doi.org/10.1016/j.cellsig.2022.110505
    65. Jinyin Zha, Jixiao He, Chengwei Wu, Mingyang Zhang, Xinyi Liu, Jian Zhang. Designing drugs and chemical probes with the dualsteric approach. Chemical Society Reviews 2023, 28 https://doi.org/10.1039/D3CS00650F
    66. Metehan Ilter, Ramazan Kasmer, Farzaneh Jalalypour, Canan Atilgan, Ozan Topcu, Nihal Karakas, Ozge Sensoy. Inhibition of mutant RAS-RAF interaction by mimicking structural and dynamic properties of phosphorylated RAS. eLife 2022, 11 https://doi.org/10.7554/eLife.79747
    67. Ge Jin, Zhen Zhang, Jingjing Wan, Xinyi Wu, Xia Liu, Weidong Zhang. G3BP2: Structure and function. Pharmacological Research 2022, 186 , 106548. https://doi.org/10.1016/j.phrs.2022.106548
    68. Shiyao Chen, Zirui Zhang, Yijing Zhang, Taeyoung Choi, Yaxue Zhao. Activation Mechanism of RhoA Caused by Constitutively Activating Mutations G14V and Q63L. International Journal of Molecular Sciences 2022, 23 (24) , 15458. https://doi.org/10.3390/ijms232415458
    69. Stephan Jeuken, Oleksandr Shkura, Marc Röger, Victoria Brickau, Axel Choidas, Carsten Degenhart, Daniel Gülden, Bert Klebl, Uwe Koch, Raphael Stoll, Jürgen Scherkenbeck. Synthesis, Biological Evaluation, and Binding Mode of a New Class of Oncogenic K‐Ras4b Inhibitors. ChemMedChem 2022, 17 (22) https://doi.org/10.1002/cmdc.202200392
    70. Ruth Nussinov, Chung-Jung Tsai, Hyunbum Jang. A New View of Activating Mutations in Cancer. Cancer Research 2022, 82 (22) , 4114-4123. https://doi.org/10.1158/0008-5472.CAN-22-2125
    71. Gyula Pálfy, Dóra K. Menyhárd, Hanna Ákontz‐Kiss, István Vida, Gyula Batta, Orsolya Tőke, András Perczel. The Importance of Mg 2+ ‐Free State in Nucleotide Exchange of Oncogenic K‐Ras Mutants. Chemistry – A European Journal 2022, 28 (59) https://doi.org/10.1002/chem.202201449
    72. Kien Nguyen, Cesar A. López, Chris Neale, Que N. Van, Timothy S. Carpenter, Francesco Di Natale, Timothy Travers, Timothy H. Tran, Albert H. Chan, Harsh Bhatia, Peter H. Frank, Marco Tonelli, Xiaohua Zhang, Gulcin Gulten, Tyler Reddy, Violetta Burns, Tomas Oppelstrup, Nick Hengartner, Dhirendra K. Simanshu, Peer-Timo Bremer, De Chen, James N. Glosli, Rebika Shrestha, Thomas Turbyville, Frederick H. Streitz, Dwight V. Nissley, Helgi I. Ingólfsson, Andrew G. Stephen, Felice C. Lightstone, Sandrasegaram Gnanakaran. Exploring CRD mobility during RAS/RAF engagement at the membrane. Biophysical Journal 2022, 121 (19) , 3630-3650. https://doi.org/10.1016/j.bpj.2022.06.035
    73. Cheng-xiang Wang, Ting-ting Wang, Kun-dong Zhang, Ming-yu Li, Qian-cheng Shen, Shao-yong Lu, Jian Zhang. Pan-KRAS inhibitors suppress proliferation through feedback regulation in pancreatic ductal adenocarcinoma. Acta Pharmacologica Sinica 2022, 43 (10) , 2696-2708. https://doi.org/10.1038/s41401-022-00897-4
    74. Jinyin Zha, Mingyu Li, Ren Kong, Shaoyong Lu, Jian Zhang. Explaining and Predicting Allostery with Allosteric Database and Modern Analytical Techniques. Journal of Molecular Biology 2022, 434 (17) , 167481. https://doi.org/10.1016/j.jmb.2022.167481
    75. Ruth Nussinov, Mingzhen Zhang, Ryan Maloney, Yonglan Liu, Chung-Jung Tsai, Hyunbum Jang. Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs. Journal of Molecular Biology 2022, 434 (17) , 167569. https://doi.org/10.1016/j.jmb.2022.167569
    76. Patrick Grudzien, Hyunbum Jang, Nicholas Leschinsky, Ruth Nussinov, Vadim Gaponenko. Conformational Dynamics Allows Sampling of an “Active-like” State by Oncogenic K-Ras-GDP. Journal of Molecular Biology 2022, 434 (17) , 167695. https://doi.org/10.1016/j.jmb.2022.167695
    77. Minyu Li, Yuanhao Wang, Jigang Fan, Haiming Zhuang, Yaqin Liu, Dong Ji, Shaoyong Lu. Mechanistic Insights into the Long-range Allosteric Regulation of KRAS Via Neurofibromatosis Type 1 (NF1) Scaffold Upon SPRED1 Loading. Journal of Molecular Biology 2022, 434 (17) , 167730. https://doi.org/10.1016/j.jmb.2022.167730
    78. Zhiping Yu, Hongyi Su, Jianzhong Chen, Guodong Hu. Deciphering Conformational Changes of the GDP-Bound NRAS Induced by Mutations G13D, Q61R, and C118S through Gaussian Accelerated Molecular Dynamic Simulations. Molecules 2022, 27 (17) , 5596. https://doi.org/10.3390/molecules27175596
    79. Ge Wang, Yuhao Bai, Jiarui Cui, Zirui Zong, Yuan Gao, Zhen Zheng. Computer-Aided Drug Design Boosts RAS Inhibitor Discovery. Molecules 2022, 27 (17) , 5710. https://doi.org/10.3390/molecules27175710
    80. Ruth Nussinov, Hyunbum Jang, Guy Nir, Chung-Jung Tsai, Feixiong Cheng. Open Structural Data in Precision Medicine. Annual Review of Biomedical Data Science 2022, 5 (1) , 95-117. https://doi.org/10.1146/annurev-biodatasci-122220-012951
    81. Haiming Zhuang, Jigang Fan, Mingyu Li, Hao Zhang, Xiuyan Yang, Ligen Lin, Shaoyong Lu, Qing Wang, Yaqin Liu. Mechanistic insights into the clinical Y96D mutation with acquired resistance to AMG510 in the KRASG12C. Frontiers in Oncology 2022, 12 https://doi.org/10.3389/fonc.2022.915512
    82. Duan Ni, Yaqin Liu, Ren Kong, Zhengtian Yu, Shaoyong Lu, Jian Zhang. Computational elucidation of allosteric communication in proteins for allosteric drug design. Drug Discovery Today 2022, 27 (8) , 2226-2234. https://doi.org/10.1016/j.drudis.2022.03.012
    83. Nikolai A. Ognerubov, Elena N. Ezhova. Somatic mutations in colorectal cancer: regional experience. Consilium Medicum 2022, 24 (5) , 291-296. https://doi.org/10.26442/20751753.2022.5.201796
    84. Turkan Haliloglu, Aysima Hacisuleyman, Burak Erman, . Prediction of allosteric communication pathways in proteins. Bioinformatics 2022, 38 (14) , 3590-3599. https://doi.org/10.1093/bioinformatics/btac380
    85. Yuxin Shi, Shu Cao, Duan Ni, Jigang Fan, Shaoyong Lu, Mintao Xue. The Role of Conformational Dynamics and Allostery in the Control of Distinct Efficacies of Agonists to the Glucocorticoid Receptor. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.933676
    86. Mitchell I. Parker, Joshua E. Meyer, Erica A. Golemis, Roland L. Dunbrack,. Delineating the RAS Conformational Landscape. Cancer Research 2022, 82 (13) , 2485-2498. https://doi.org/10.1158/0008-5472.CAN-22-0804
    87. Shiyao Chen, Liang Shu, Rong Zhao, Yaxue Zhao. Molecular dynamics simulations reveal the activation mechanism of mutations G12V and Q61L of Cdc42. Proteins: Structure, Function, and Bioinformatics 2022, 90 (7) , 1376-1389. https://doi.org/10.1002/prot.26320
    88. Duan Ni, Zongtao Chai, Ying Wang, Mingyu Li, Zhengtian Yu, Yaqin Liu, Shaoyong Lu, Jian Zhang. Along the allostery stream: Recent advances in computational methods for allosteric drug discovery. WIREs Computational Molecular Science 2022, 12 (4) https://doi.org/10.1002/wcms.1585
    89. Anabela Ferreira, Flávia Pereira, Celso Reis, Maria José Oliveira, Maria João Sousa, Ana Preto. Crucial Role of Oncogenic KRAS Mutations in Apoptosis and Autophagy Regulation: Therapeutic Implications. Cells 2022, 11 (14) , 2183. https://doi.org/10.3390/cells11142183
    90. Ruth Nussinov, Chung-Jung Tsai, Hyunbum Jang. Neurodevelopmental disorders, immunity, and cancer are connected. iScience 2022, 25 (6) , 104492. https://doi.org/10.1016/j.isci.2022.104492
    91. Yuqing Xiong, Juan Zeng, Fei Xia, Qiang Cui, Xianming Deng, Xin Xu. Conformations and binding pockets of HRas and its guanine nucleotide exchange factors complexes in the guanosine triphosphate exchange process. Journal of Computational Chemistry 2022, 43 (13) , 906-916. https://doi.org/10.1002/jcc.26846
    92. Jianzhong Chen, Shaolong Zhang, Qingkai Zeng, Wei Wang, Qinggang Zhang, Xinguo Liu. Free Energy Profiles Relating With Conformational Transition of the Switch Domains Induced by G12 Mutations in GTP-Bound KRAS. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.912518
    93. Xuan He, Kui Du, Yuanhao Wang, Jigang Fan, Mingyu Li, Duan Ni, Shaoyong Lu, Xiaolan Bian, Yaqin Liu. Autopromotion of K-Ras4B Feedback Activation Through an SOS-Mediated Long-Range Allosteric Effect. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.860962
    94. Christian Johnson, Deborah L. Burkhart, Kevin M. Haigis. Classification of KRAS -Activating Mutations and the Implications for Therapeutic Intervention. Cancer Discovery 2022, 12 (4) , 913-923. https://doi.org/10.1158/2159-8290.CD-22-0035
    95. Juan Zeng, Jian Chen, Fei Xia, Qiang Cui, Xianming Deng, Xin Xu. Identification of functional substates of KRas during GTP hydrolysis with enhanced sampling simulations. Physical Chemistry Chemical Physics 2022, 24 (13) , 7653-7665. https://doi.org/10.1039/D2CP00274D
    96. Rodrigo E. Cáceres-Gutiérrez, Yair Alfaro-Mora, Marco A. Andonegui, José Díaz-Chávez, Luis A. Herrera. The Influence of Oncogenic RAS on Chemotherapy and Radiotherapy Resistance Through DNA Repair Pathways. Frontiers in Cell and Developmental Biology 2022, 10 https://doi.org/10.3389/fcell.2022.751367
    97. Ruth Nussinov, Mingzhen Zhang, Ryan Maloney, Chung‐Jung Tsai, Bengi Ruken Yavuz, Nurcan Tuncbag, Hyunbum Jang. Mechanism of activation and the rewired network: New drug design concepts. Medicinal Research Reviews 2022, 42 (2) , 770-799. https://doi.org/10.1002/med.21863
    98. Zheyao Hu, Jordi Marti. In Silico Drug Design of Benzothiadiazine Derivatives Interacting with Phospholipid Cell Membranes. Membranes 2022, 12 (3) , 331. https://doi.org/10.3390/membranes12030331
    99. Huixia Lu, Jordi Martí. Predicting the conformational variability of oncogenic GTP-bound G12D mutated KRas-4B proteins at zwitterionic model cell membranes. Nanoscale 2022, 14 (8) , 3148-3158. https://doi.org/10.1039/D1NR07622A
    100. Eric Girard, Pedro Lopes, Michael Spoerner, Anne-Claire Dhaussy, Thierry Prangé, Hans Robert Kalbitzer, Nathalie Colloc'h. Equilibria between conformational states of the Ras oncogene protein revealed by high pressure crystallography. Chemical Science 2022, 13 (7) , 2001-2010. https://doi.org/10.1039/D1SC05488K
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect