ACS Publications. Most Trusted. Most Cited. Most Read
Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles
My Activity
    Review

    Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles
    Click to copy article linkArticle link copied!

    View Author Information
    DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
    Other Access OptionsSupporting Information (1)

    Chemical Reviews

    Cite this: Chem. Rev. 2017, 117, 12, 8208–8271
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemrev.6b00769
    Published June 6, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Atomically precise pieces of matter of nanometer dimensions composed of noble metals are new categories of materials with many unusual properties. Over 100 molecules of this kind with formulas such as Au25(SR)18, Au38(SR)24, and Au102(SR)44 as well as Ag25(SR)18, Ag29(S2R)12, and Ag44(SR)30 (often with a few counterions to compensate charges) are known now. They can be made reproducibly with robust synthetic protocols, resulting in colored solutions, yielding powders or diffractable crystals. They are distinctly different from nanoparticles in their spectroscopic properties such as optical absorption and emission, showing well-defined features, just like molecules. They show isotopically resolved molecular ion peaks in mass spectra and provide diverse information when examined through multiple instrumental methods. Most important of these properties is luminescence, often in the visible–near-infrared window, useful in biological applications. Luminescence in the visible region, especially by clusters protected with proteins, with a large Stokes shift, has been used for various sensing applications, down to a few tens of molecules/ions, in air and water. Catalytic properties of clusters, especially oxidation of organic substrates, have been examined. Materials science of these systems presents numerous possibilities and is fast evolving. Computational insights have given reasons for their stability and unusual properties. The molecular nature of these materials is unequivocally manifested in a few recent studies such as intercluster reactions forming precise clusters. These systems manifest properties of the core, of the ligand shell, as well as that of the integrated system. They are better described as protected molecules or aspicules, where aspis means shield and cules refers to molecules, implying that they are “shielded molecules”. In order to understand their diverse properties, a nomenclature has been introduced with which it is possible to draw their structures with positional labels on paper, with some training. Research in this area is captured here, based on the publications available up to December 2016.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemrev.6b00769.

    • Table presenting summary of monolayer protected Au and Ag clusters, synthesized so far (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 2015 publications.

    1. Wenqiang Duan, Chen Zhu, Xi Kang, Manzhou Zhu. Surface Structural Symmetry Breaking of Highly Symmetrical Ag29 Nanoclusters. The Journal of Physical Chemistry Letters 2025, Article ASAP.
    2. Priyanka Chandrashekar, Dayona Aleyamma Varghese, Teena Thomas, Arun K. Pal, Arunima Muraleedharan, Abdul Salam, Meghna Ghosh, Pradip Kumar Mondal, Sona Velaparambil Suresh, Chayan Kanti Nandi, Ayan Datta, Sukhendu Mandal. Two- and Three-Dimensional Silver Cluster Assemblies: Effect of Argentophilic Interactions in Photoluminescence. The Journal of Physical Chemistry Letters 2025, Article ASAP.
    3. Seungwoo Yoo, Dayeon Kim, Guocheng Deng, Yuping Chen, Kangjae Lee, Suhwan Yoo, Xiaolin Liu, Qing Tang, Yun Jeong Hwang, Taeghwan Hyeon, Megalamane S. Bootharaju. Impact of Heterocore Atoms on CO2 Electroreduction in Atomically Precise Silver Nanoclusters. Journal of the American Chemical Society 2025, 147 (15) , 12546-12554. https://doi.org/10.1021/jacs.4c17770
    4. Pei-Pei Cui, Rakesh Kumar Gupta, Mohammad Azam, Ping Cui, Di Sun. Dimensional Control and Optical Properties of Tunable Silver Coordination Polymers via Nanocluster Assembly. Inorganic Chemistry 2025, Article ASAP.
    5. Atsunori Sakurai, Shota Takahashi, Tatsuto Mochizuki, Toshiki Sugimoto. Tip-Enhanced Sum Frequency Generation for Molecular Vibrational Nanospectroscopy. Nano Letters 2025, Article ASAP.
    6. Vikas Tiwari, Tarak Karmakar. Atomistic Details of Nanocluster Formation from Machine-Learned-Potential-Based Simulations. Nano Letters 2025, 25 (14) , 5940-5946. https://doi.org/10.1021/acs.nanolett.5c01340
    7. Chuanjun Zhou, Wei Huang, Kaiyang Kuang, Zhuoyuan Li, Shuang Chen, Yan Kuai, Manzhou Zhu. Low Optical Loss and Bent Waveguides: Crystals of a One-Dimensional Pt1Ag14 Nanocluster. ACS Nano 2025, 19 (13) , 13230-13239. https://doi.org/10.1021/acsnano.5c00359
    8. Tongtong Zhai, Luyao Zhang, Sipeng Tian, Zhangpeng Xu, Xiushuang Fan, Jing Li, Erkang Wang. Surface-Defect-Involved Chemiluminescence Boosted by Gold–Silver Bimetallic Nanoclusters for Bioanalysis. Analytical Chemistry 2025, Article ASAP.
    9. Hanny Tika Draviana, Istikhori Fitriannisa, Achmad Jazidie, Dyah Ika Krisnawati, Muhamad Khafid, Tsung-Rong Kuo. Antibacterial Mechanisms of Negatively and Positively Charged Ligands on Gold Nanoclusters. ACS Applied Nano Materials 2025, 8 (13) , 6380-6390. https://doi.org/10.1021/acsanm.4c07269
    10. Satya Ranjan Sahoo, Tarun Kumar Dinda, Sumit Saha, Prasenjit Mal, Nirmal Goswami. Maneuvering the Electronic State and Active Site of Assembled-Gold Nanoclusters through Polyoxometalate Implantation for Heterogeneous Green-Light Photocatalysis. ACS Applied Materials & Interfaces 2025, 17 (13) , 19669-19681. https://doi.org/10.1021/acsami.4c23033
    11. Swetashree Acharya, Jayoti Roy, Diptendu Roy, Biswarup Pathak, Thalappil Pradeep. Stable Dimer Intermediates during Intercluster Reactions of Atomically Precise Nanoclusters. The Journal of Physical Chemistry C 2025, 129 (12) , 5840-5850. https://doi.org/10.1021/acs.jpcc.4c07077
    12. Yan Zhao, Huanhuan Li, Ming Yao, Cheng-Bo Tao, Qiji Wan, Yang Tao, Xiaoli Wang, Qiquan Luo, Man-Bo Li. Pincer-Ligand-Stabilized Group 10 Metal Nanoclusters: Chirality and Boat–Chair Structural Transformation. The Journal of Physical Chemistry Letters 2025, 16 (12) , 2942-2949. https://doi.org/10.1021/acs.jpclett.5c00290
    13. Xian-Kai Wan, Ting-Ting Liu, Nian-Ling Li, Qi Dai, Jianyu Wei, Quan-Ming Wang. Tailoring Atomically Precise Gold Nanoclusters for Boosting Selective Hydrogenation of Nitrostyrene with H2. ACS Nano 2025, 19 (11) , 11371-11380. https://doi.org/10.1021/acsnano.5c00596
    14. Sengui Liang, Jianwu Wei, Ke Xu, Dongfeng Xue, Peican Chen, Liya Zhou, Qi Pang, Jin Zhong Zhang. Synthesis and Chiroptical Properties of Chiral Lead Halide Molecular Clusters. The Journal of Physical Chemistry Letters 2025, 16 (11) , 2771-2777. https://doi.org/10.1021/acs.jpclett.4c03164
    15. Bingzheng Yan, Jing Sun, Jiahe Liu, Lei Li, Hongwen Deng, Qinghua Xu, Song Wang, Hui Shen. Flat-Shaped Copper Nanoclusters with Near-Infrared Absorption for Enhanced Photothermal Conversion. JACS Au 2025, Article ASAP.
    16. Aarti Devi, Harshita Seksaria, Rashi, Abir De Sarkar, Amitava Patra. Ligand-to-Metal Charge Transfer Controls the Photophysical Properties and HER Activity of Ag13 Nanoclusters Depends on the Hydrogen Adsorption Energy. The Journal of Physical Chemistry Letters 2025, 16 (10) , 2561-2569. https://doi.org/10.1021/acs.jpclett.5c00101
    17. Yu Tian, Bo Zhu, Tetsuro Murahashi, Shigeyoshi Sakaki. Highly Symmetrical Palladium Cluster Complexes with Either Anticuboctahedral or Cuboctahedral Pd13 Core: Theoretical Insight into Factors Determining Symmetrical Structure. The Journal of Physical Chemistry A 2025, 129 (10) , 2510-2520. https://doi.org/10.1021/acs.jpca.4c07401
    18. Zhongyu Liu, Yitong Wang, Weijie Ji, Xiaowei Ma, Christopher G. Gianopoulos, Sebastian Calderon, Timothy Ma, Lianshun Luo, Abhrojyoti Mazumder, Kristin Kirschbaum, Elizabeth C. Dickey, Linda A. Peteanu, Dominic Alfonso, Rongchao Jin. Generalizable Organic-to-Aqueous Phase Transfer of a Au18 Nanocluster with Luminescence Enhancement and Robust Photocatalysis in Water. ACS Nano 2025, 19 (9) , 9121-9131. https://doi.org/10.1021/acsnano.4c18197
    19. Chaoqing Li, Wei Zhang, Xiaofang Xu, Liyi Zhou. Applications and Challenges of Fluorescent Probes for the Detection of Pesticide Residues in Food. Journal of Agricultural and Food Chemistry 2025, 73 (9) , 4982-4997. https://doi.org/10.1021/acs.jafc.5c00114
    20. HartlandGregory V.Notre Dame Collegiate ProfessorProfessor Emilie Ringe, University of Cambridge. Plasmonics. 2025https://doi.org/10.1021/acsinfocus.7e9001
    21. Bihan Zhang, María Francisca Matus, Qiaofeng Yao, Xiaorong Song, Zhennan Wu, Wenping Hu, Hannu Häkkinen, Jianping Xie. Unraveling the Stoichiometric Interactions and Synergism between Ligand-Protected Gold Nanoparticles and Proteins. Journal of the American Chemical Society 2025, 147 (8) , 6404-6414. https://doi.org/10.1021/jacs.4c09879
    22. Pooja Negi, Manoj Munde. Illuminating Nonluminescent DNA Copper Nanoclusters via Protein Encapsulation: The Role of Protein Characteristics. Langmuir 2025, 41 (7) , 4512-4523. https://doi.org/10.1021/acs.langmuir.4c04178
    23. Wen-Hui Jiang, Xiang-Ming Zeng, Minjian Wu, Lin Qin, Liao-Yuan Yao, Guo-Yu Yang. Thermally Activated Delayed Fluorescence-Based Near-Infrared-II Luminescence and Controlled Size Growth of Silver Nanoclusters. ACS Nano 2025, 19 (7) , 7129-7139. https://doi.org/10.1021/acsnano.4c16160
    24. Rintaro Suzuki, Yuxiang Chen, Yuri Ogawa, Masaki Enokido, Yuichi Kitagawa, Yasuchika Hasegawa, Katsuaki Konishi, Yukatsu Shichibu. Theory-Directed Ligand-Shell Engineering of Ultrasmall Gold Clusters: Remarkable Effects of Ligand Arrangement on Optical Properties. The Journal of Physical Chemistry Letters 2025, 16 (6) , 1432-1439. https://doi.org/10.1021/acs.jpclett.4c03486
    25. Amoghavarsha Ramachandra Kini, Sanghamitra Debta, Arijit Jana, C. Aparna, Vivek Yadav, Nataliia Kusiak, Tomas Base, Umesh V. Waghmare, Pijush Ghosh, Thalappil Pradeep. Nanomechanical Investigations of Crystals of Copper Nanocluster Isomorphs: Enhanced Hardness of the Low-Density Analogue. Chemistry of Materials 2025, 37 (3) , 1284-1296. https://doi.org/10.1021/acs.chemmater.4c03265
    26. Shuxian Li, Wei Ge, Xiaoyu Huang, Hong Du, Fu Wang. Synergistic Intramolecular Charge Transfer Promotes Au Nanoclusters with Enhanced NIR-II Photoluminescence. The Journal of Physical Chemistry Letters 2025, 16 (5) , 1221-1228. https://doi.org/10.1021/acs.jpclett.4c03410
    27. Bihan Zhang, Zhenghan Liu, Ruixuan Zhang, Qiaofeng Yao, Jianping Xie. Precision Metal Nanoclusters Meet Proteins: Crafting Next-Gen Hybrid Materials. ACS Nano 2025, 19 (4) , 3997-4010. https://doi.org/10.1021/acsnano.4c15366
    28. Abhijit Nag, Abdul Mannan Butt, Moon Young Yang, Praveen B. Managutti, Bilal Masood Pirzada, M. Infas H. Mohideen, Ahmed L. Abdelhady, Mohamed Abu Haija, Sharmarke Mohamed, Boris V. Merinov, William A. Goddard, III, Ahsanulhaq Qurashi. Polymorphism of [Cu15(PhCH2CH2S)13(PPh3)6][BF4]2 and Double-Helical Assembly of [Cu18H(PhCH2CH2S)14(PPh3)6Cl3]: Origin of Two Chiral Nanoclusters with Triple-Helical Core from Intermediates. ACS Materials Letters 2025, 7 (2) , 442-449. https://doi.org/10.1021/acsmaterialslett.4c02148
    29. Tatsuya Higaki, Kanata Tanaka, Hitoshi Izu, Shunya Oishi, Koki Kawamoto, Mizuki Tada, W. M. C. Sameera, Ryo Takahata, Toshiharu Teranishi, Soichi Kikkawa, Seiji Yamazoe, Takuya Shiga, Masayuki Nihei, Tatsuhisa Kato, Roger E. Cramer, Zihan Zhang, Karsten Meyer, Yasuhiro Ohki. An Icosahedral 55-Atom Iron Hydride Cluster Protected by Tri-tert-butylphosphines. Journal of the American Chemical Society 2025, 147 (4) , 3215-3222. https://doi.org/10.1021/jacs.4c12759
    30. Sridatri Nandy, K.V. Jovan Jose. Directed Electrostatics Strategy Integrated as a Graph Neural Network Approach for Accelerated Cluster Structure Prediction. Journal of Chemical Theory and Computation 2025, 21 (2) , 978-990. https://doi.org/10.1021/acs.jctc.4c01257
    31. Songrui Li, Huifeng Zhang, Zhenzhen Huang, Jiutong Ma, Qiong Jia. Encapsulating Gold Nanoclusters into Melamine–Formaldehyde Polymer Nanoparticles for Confinement Induced Enhanced Emission toward Ratiometric Sensing and Light-Emitting Diode Fabrication. ACS Materials Letters 2025, 7 (1) , 368-375. https://doi.org/10.1021/acsmaterialslett.4c01975
    32. Yousuf Alishan, Alvin Joseph, Anitha B. Pillai, Ravari Kandy Aparna, Ranjini Sarkar, Sudip Chakraborty, Sukhendu Mandal, Manoj A. G. Namboothiry. Metal Nanoclusters for Interface Engineering and Improved Photovoltaic Performance in Organic Solar Cells. ACS Nano 2024, 18 (52) , 35383-35392. https://doi.org/10.1021/acsnano.4c12256
    33. Pakawat Toomjeen, Unnop Srikulwong, Adulvit Chuaephon, Witthawat Phanchai, Cherdpong Choodet, Theerapong Puangmali. Computational Study of Cyclic Peptide-Modified Gold Nanoclusters for Enhanced Tumor-Targeted Bioimaging. ACS Applied Nano Materials 2024, 7 (24) , 28358-28370. https://doi.org/10.1021/acsanm.4c05443
    34. Patryk Obstarczyk, Rania Kazan, Thomas Bürgi, Marek Samoć, Joanna Olesiak-Bańska. Two-Photon and Three-Photon Circular Dichroism of Au38 Gold Nanoclusters Enantiomers. Journal of the American Chemical Society 2024, 146 (51) , 35011-35015. https://doi.org/10.1021/jacs.4c12321
    35. Masaaki Mitsui. Recent Advances in Understanding Triplet States in Metal Nanoclusters: Their Formation, Energy Transfer, and Applications in Photon Upconversion. The Journal of Physical Chemistry Letters 2024, 15 (50) , 12257-12268. https://doi.org/10.1021/acs.jpclett.4c03003
    36. Yuhao Jin, Zhenyi Zhang, Huijuan Zheng, Xianghan Cheng, Longlong Geng, Zheng Zhou, Haixiang Han. Unveiling the Formation Mechanism for Binary Semiconductor Nanoclusters: a Two-Step Pathway to a Double-Shell Structured Copper Sulfide Nanocluster. ACS Nano 2024, 18 (49) , 33681-33695. https://doi.org/10.1021/acsnano.4c13264
    37. Suvo Banik, Partha Sarathi Dutta, Sukriti Manna, Subramanian KRS Sankaranarayanan. Development of a Machine Learning Potential to Study the Structure and Thermodynamics of Nickel Nanoclusters. The Journal of Physical Chemistry A 2024, 128 (47) , 10259-10271. https://doi.org/10.1021/acs.jpca.4c04048
    38. Takumi Ichikawa, Kazuya Terasaka, Ayaka Sasaki, Atsushi Nakajima. Tailoring Superatomic Stability with Transition Metals in Silicon Cages: Shrinking to M@Si15 (M = Re, Os, Ir). The Journal of Physical Chemistry Letters 2024, 15 (46) , 11678-11686. https://doi.org/10.1021/acs.jpclett.4c02797
    39. Nida Nahan Eyyakkandy, Afreen Afreen, Gayathri Vilangappurath, Saniya Gratious, K. V. Adarsh, Sukhendu Mandal. Modulating the Ligand Bulkiness on a Series of Au36(SR)24 Nanoclusters for Photoluminescence Enhancement. The Journal of Physical Chemistry C 2024, 128 (44) , 18828-18835. https://doi.org/10.1021/acs.jpcc.4c04927
    40. Shun Ito, Koto Hirano, Kiichirou Koyasu, Xian-Kai Wan, Quan-Ming Wang, Tatsuya Tsukuda. Resistance of a PdAu12(8e) Core to Growth in Collision-Induced Sequential Reductive Elimination of (C≡CR)2 from [PdAu24(C≡CR)18]2–. The Journal of Physical Chemistry Letters 2024, 15 (44) , 11060-11066. https://doi.org/10.1021/acs.jpclett.4c02798
    41. Hao Li, Xi Kang, Manzhou Zhu. Superlattice Assembly for Empowering Metal Nanoclusters. Accounts of Chemical Research 2024, 57 (21) , 3194-3205. https://doi.org/10.1021/acs.accounts.4c00521
    42. Tingyao Zhou, Chao Hu, Kui He, Zheng Li. Expanding the Toolbox of Oxidants: Controllable Etching of Ultrasmall Au Nanoparticles toward Tailorable NIR-II Luminescence and Ligand-Mediated Biodistribution and Clearance. Analytical Chemistry 2024, 96 (44) , 17840-17849. https://doi.org/10.1021/acs.analchem.4c04326
    43. Miyu Sera, Sakiat Hossain, Sara Yoshikawa, Kana Takemae, Ayaka Ikeda, Tomoya Tanaka, Taiga Kosaka, Yoshiki Niihori, Tokuhisa Kawawaki, Yuichi Negishi. Atomically Precise Au24Pt(thiolate)12(dithiolate)3 Nanoclusters with Excellent Electrocatalytic Hydrogen Evolution Reactivity. Journal of the American Chemical Society 2024, 146 (43) , 29684-29693. https://doi.org/10.1021/jacs.4c10868
    44. Jing Qian, Zhucheng Yang, Jingkuan Lyu, Qiaofeng Yao, Jianping Xie. Molecular Interactions in Atomically Precise Metal Nanoclusters. Precision Chemistry 2024, 2 (10) , 495-517. https://doi.org/10.1021/prechem.4c00044
    45. Saniya Gratious, Eyyakkandy Nida Nahan, Rongchao Jin, Sukhendu Mandal. [Au23(SR)16]−: A Stepping Stone towards the Rational Design of Atomically Precise Metal Nanoclusters. Accounts of Materials Research 2024, 5 (10) , 1291-1302. https://doi.org/10.1021/accountsmr.4c00205
    46. Wen-Lei Mu, Lanyan Li, Xu-Zi Cong, Xinyu Chen, Pengkun Xia, Qingyi Liu, Likai Wang, Jun Yan, Chao Liu. Hierarchical Assembly of High-Nuclearity Copper(I) Alkynide Nanoclusters: Highly Effective CO2 Electroreduction Catalyst toward Hydrocarbons. Journal of the American Chemical Society 2024, 146 (41) , 28131-28140. https://doi.org/10.1021/jacs.4c07518
    47. Yu-Qi Wang, Jiaju Fu, Yue Feng, Kaiyue Zhao, Lu Wang, Ji-Yuan Cai, Xiang Wang, Ting Chen, Fan Yang, Jin-Song Hu, Bingjun Xu, Dong Wang, Li-Jun Wan. Alkali Metal Cations Induce Structural Evolution on Au(111) During Cathodic Polarization. Journal of the American Chemical Society 2024, 146 (40) , 27713-27724. https://doi.org/10.1021/jacs.4c09404
    48. Simin Li, Qingyuan Wu, Xuexin You, Xiaofei Ren, Peilin Du, Fengyu Li, Nanfeng Zheng, Hui Shen. Anchoring Frustrated Lewis Pair Active Sites on Copper Nanoclusters for Regioselective Hydrogenation. Journal of the American Chemical Society 2024, 146 (40) , 27852-27860. https://doi.org/10.1021/jacs.4c10251
    49. Zhucheng Yang, Anye Shi, Ruixuan Zhang, Zuowei Ji, Jiali Li, Jingkuan Lyu, Jing Qian, Tiankai Chen, Xiaonan Wang, Fengqi You, Jianping Xie. When Metal Nanoclusters Meet Smart Synthesis. ACS Nano 2024, 18 (40) , 27138-27166. https://doi.org/10.1021/acsnano.4c09597
    50. Subrata Duary, Arijit Jana, Amitabha Das, Swetashree Acharya, Amoghavarsha Ramachandra Kini, Jayoti Roy, Ajay Kumar Poonia, Deepak Kumar Patel, Vivek Yadav, P. K. Sudhadevi Antharjanam, Biswarup Pathak, Adarsh Kumaran Nair Valsala Devi, Thalappil Pradeep. Milling-Induced “Turn-off” Luminescence in Copper Nanoclusters. Inorganic Chemistry 2024, 63 (40) , 18727-18737. https://doi.org/10.1021/acs.inorgchem.4c02617
    51. Guocheng Deng, Sami Malola, Taeyoung Ki, Xiaolin Liu, Seungwoo Yoo, Kangjae Lee, Megalamane S. Bootharaju, Hannu Häkkinen, Taeghwan Hyeon. Structural Isomerism in Bimetallic Ag20Cu12 Nanoclusters. Journal of the American Chemical Society 2024, 146 (39) , 26751-26758. https://doi.org/10.1021/jacs.4c06832
    52. Daisuke Hirayama, Tokuhisa Kawawaki, Sota Oguchi, Mai Ogano, Naochika Kon, Tomohiro Yasuda, Akihiro Higami, Yuichi Negishi. Ultrafine Rhodium–Chromium Mixed-Oxide Cocatalyst with Facet-Selective Loading for Excellent Photocatalytic Water Splitting. Journal of the American Chemical Society 2024, 146 (39) , 26808-26818. https://doi.org/10.1021/jacs.4c07351
    53. Mohammad Bodiuzzaman, Kathiravan Murugesan, Peng Yuan, Bholanath Maity, Arunachalam Sagadevan, Naveen Malenahalli H, Song Wang, Partha Maity, Mohammed F. Alotaibi, De-en Jiang, Mutalifu Abulikemu, Omar F. Mohammed, Luigi Cavallo, Magnus Rueping, Osman M. Bakr. Modulating Decarboxylative Oxidation Photocatalysis by Ligand Engineering of Atomically Precise Copper Nanoclusters. Journal of the American Chemical Society 2024, 146 (39) , 26994-27005. https://doi.org/10.1021/jacs.4c08688
    54. Wen Wu Xu, Endong Wang, Xiao Cheng Zeng. Unveiling Complex Structural Features of Thiolate-Protected Gold Nanoclusters: From Internal Core to External “Staple” Motifs and Overall Charge States. Accounts of Materials Research 2024, 5 (9) , 1134-1145. https://doi.org/10.1021/accountsmr.4c00166
    55. Riya Gupta, Sameeksha Agrawal, Saurabh Rai, Jayasri Sarkar, Sweta Kumari, Debanggana Shil, Saptarshi Mukherjee. Photoinduced Formation and Intercluster Conversion of a Thiol-Templated Copper Nanocluster. ACS Applied Optical Materials 2024, 2 (9) , 1880-1890. https://doi.org/10.1021/acsaom.4c00291
    56. Yumeng Guo, Zhenyi Zhang, Haixiang Han, Zheng Zhou. Chiral Separation of Copper Sulfide [S–Cu36] Nanocluster Using a Chiral Adaptive Counterion. Nano Letters 2024, 24 (38) , 11985-11991. https://doi.org/10.1021/acs.nanolett.4c03538
    57. Jing Sun, Qingyuan Wu, Xiaodan Yan, Lei Li, Xiongkai Tang, Xuekun Gong, Bingzheng Yan, Qinghua Xu, Qingxiang Guo, Jinlu He, Hui Shen. Structure Distortion Endows Copper Nanoclusters with Surface-Active Uncoordinated Sites for Boosting Catalysis. JACS Au 2024, 4 (9) , 3427-3435. https://doi.org/10.1021/jacsau.4c00574
    58. Xiaoling Sun, Zhizhuo Gu, YiFan Gao, Maosheng Liang, Lian Xia, Fengli Qu. Regulating Arrhenius Activation Energy and Fluorescence Quantum Yields of AuNCs-MOF to Achieve High Temperature Sensitivity in a Wide Response Window. ACS Applied Materials & Interfaces 2024, 16 (37) , 49612-49619. https://doi.org/10.1021/acsami.4c07733
    59. Xiaofei Huang, Yutong Xiao, Yulin Li, Qingwen Han, Wanggang Fang, Liqing He, Fan Tian, Rong Chen. Understanding the Roles of Thiophenol-Ligated Ag-Based Nanoclusters on TiO2 during the Catalytic Hydrogenation of Nitroarenes. Inorganic Chemistry 2024, 63 (37) , 17176-17187. https://doi.org/10.1021/acs.inorgchem.4c02878
    60. Nathanael L. Smith, Kenneth L. Knappenberger, Jr.. Influence of Aliphatic versus Aromatic Ligand Passivation on Intersystem Crossing in Au25(SR)18–. The Journal of Physical Chemistry A 2024, 128 (36) , 7620-7627. https://doi.org/10.1021/acs.jpca.4c04387
    61. Li Fu, Qiuying Du, Linwei Sai, Jijun Zhao. Accelerating Global Search of Large-Sized Silver Clusters Using Cluster Graph Attention Network. The Journal of Physical Chemistry Letters 2024, 15 (36) , 9160-9166. https://doi.org/10.1021/acs.jpclett.4c01953
    62. Lu-Ming Zheng, Wan-Qi Shi, Feng Hu, Zong-Jie Guan, Quan-Ming Wang. All-Calixarene-Protected Silver Nanocluster with All Silver Atoms in a Face-Centered Cubic Arrangement. Journal of the American Chemical Society 2024, 146 (36) , 25101-25107. https://doi.org/10.1021/jacs.4c08094
    63. Yan Feng, Ying Lv, Xiao Wei, Haizhu Yu, Xi Kang, Manzhou Zhu. Relationship between Structural Defects and Free Electrons in Icosahedral Nanoclusters. The Journal of Physical Chemistry Letters 2024, 15 (34) , 8910-8916. https://doi.org/10.1021/acs.jpclett.4c02179
    64. Joseph F. DeJesus, Samuel I. Jacob, Quan Manh Phung, Koichi Mimura, Yoshitaka Aramaki, Takashi Ooi, Masakazu Nambo, Cathleen M. Crudden. If the Crown Fits: Sterically Demanding N-Heterocyclic Carbene Promotes the Formation of Au8Pt Nanoclusters. Journal of the American Chemical Society 2024, 146 (34) , 23806-23813. https://doi.org/10.1021/jacs.4c04873
    65. Arun Mukhopadhyay, Sukhendu Mahata, Nirmal Goswami. Molecular Packing-Driven Manipulation of Aggregation Induced Emission in Gold Nanoclusters. The Journal of Physical Chemistry Letters 2024, 15 (33) , 8510-8519. https://doi.org/10.1021/acs.jpclett.4c02056
    66. Chen Zhu, Ze-Le Chen, Hao Li, Luyao Lu, Xi Kang, Jun Xuan, Manzhou Zhu. Rational Design of Highly Phosphorescent Nanoclusters for Efficient Photocatalytic Oxidation. Journal of the American Chemical Society 2024, 146 (33) , 23212-23220. https://doi.org/10.1021/jacs.4c05530
    67. Qiang Li, Wenxing Gao, Zijian Wang, Wenfeng Liu, Yu Fu, Xin Wang, Li-Li Tan, Li Shang, Ying-Wei Yang. Guest-Induced Helical Superstructure from a Gold Nanocluster-Based Supramolecular Organic Framework Enables Efficient Catalysis. ACS Nano 2024, 18 (33) , 22548-22559. https://doi.org/10.1021/acsnano.4c08337
    68. Xiao Cai, Hao Wang, Yiqi Tian, Weiping Ding, Yan Zhu. Catalytic Application of Atomically Precise Metal Clusters in Selective Hydrogenation Processes. ACS Catalysis 2024, 14 (16) , 11918-11930. https://doi.org/10.1021/acscatal.4c02965
    69. Paulami Bose, Jayoti Roy, Vikash Khokhar, Biswajit Mondal, Ganapati Natarajan, Sujan Manna, Vivek Yadav, Anupriya Nyayban, Sharma S. R. K. C. Yamijala, Nonappa, Thalappil Pradeep. Interparticle Antigalvanic Reactions of Atomically Precise Silver Nanoclusters with Plasmonic Gold Nanoparticles: Interfacial Control of Atomic Exchange. Chemistry of Materials 2024, 36 (15) , 7581-7594. https://doi.org/10.1021/acs.chemmater.4c00620
    70. Jenifer Shantha Kumar, Arijit Jana, Jayathraa Raman, Hema Madhuri Veera, Amoghavarsha Ramachandra Kini, Jayoti Roy, Saurav Kanti Jana, Tiju Thomas, Thalappil Pradeep. Cysteine-Protected Antibacterial Spheroids of Atomically Precise Copper Clusters for Direct and Affordable Arsenic Detection from Drinking Water. Environmental Science & Technology Letters 2024, 11 (8) , 831-837. https://doi.org/10.1021/acs.estlett.4c00264
    71. Sourav Biswas, Amit Pal, Milan Kumar Jena, Sakiat Hossain, Jin Sakai, Saikat Das, Basudev Sahoo, Biswarup Pathak, Yuichi Negishi. Luminescent Hydride-Free [Cu7(SC5H9)7(PPh3)3] Nanocluster: Facilitating Highly Selective C–C Bond Formation. Journal of the American Chemical Society 2024, 146 (30) , 20937-20944. https://doi.org/10.1021/jacs.4c05678
    72. B. S. Sooraj, Jayoti Roy, Manish Mukherjee, Anagha Jose, Thalappil Pradeep. Extensive Polymerization of Atomically Precise Alloy Metal Clusters During Solid-State Reactions. Langmuir 2024, 40 (29) , 15244-15251. https://doi.org/10.1021/acs.langmuir.4c01737
    73. Caitlin A. McCandler, Antti Pihlajamäki, Sami Malola, Hannu Häkkinen, Kristin A. Persson. Gold–Thiolate Nanocluster Dynamics and Intercluster Reactions Enabled by a Machine Learned Interatomic Potential. ACS Nano 2024, 18 (29) , 19014-19023. https://doi.org/10.1021/acsnano.4c03094
    74. Pankaj Kumar, Samreet Khirid, Dilip Kumar Jangid, Chandra Shekhar Nishad, Poonam Chauhan, Priti Kumari, Sangeeta Meena, Shubhankar Kumar Bose, Ashok Kumar, Biplab Banerjee, Rajendra S. Dhayal. Dithiophosphonate-Protected Eight-Electron Superatomic Ag21 Nanocluster: Synthesis, Isomerism, Luminescence, and Catalytic Activity. Inorganic Chemistry 2024, 63 (29) , 13724-13737. https://doi.org/10.1021/acs.inorgchem.4c02062
    75. Qi Shen, Kai Sheng, Zhi-Yong Gao, Alexey Bilyachenko, Xian-Qiang Huang, Mohammad Azam, Chen-Ho Tung, Di Sun. Vanadium-Silsesquioxane Nanocages as Heterogeneous Catalysts for Synthesis of Quinazolinones. Inorganic Chemistry 2024, 63 (28) , 13022-13030. https://doi.org/10.1021/acs.inorgchem.4c01748
    76. Hunter H. Ripberger, Soren F. Sandeno, Forrest W. Eagle, Hao A. Nguyen, Brandi M. Cossairt. Structure and Reactivity of II–VI and III–V Magic-Sized Clusters: Understanding and Expanding the Scope of Accessible Form and Function. Accounts of Materials Research 2024, 5 (6) , 726-738. https://doi.org/10.1021/accountsmr.4c00064
    77. Haoran Zheng, Yan Zhou, Bingjie Yan, Gaoang Zhou, Xinyi Cheng, Sicheng Lin, Mulin Duan, Jiang Li, Lihua Wang, Chunhai Fan, Jing Chen, Jianlei Shen. DNA Framework-Guided Self-Limiting Aggregation for Highly Luminescent Metal Cluster Nanoaggregates. Journal of the American Chemical Society 2024, 146 (25) , 17094-17102. https://doi.org/10.1021/jacs.4c02401
    78. James O. Larkin, Zhihua Cheng, Yafet Arefeayne, Laura Segatori, Matthew R. Jones, Zachary T. Ball. Templated Synthesis of Copper Nanoclusters with a Hybrid Lysozyme-Polymer Material for Enhanced Fluorescence. Bioconjugate Chemistry 2024, 35 (6) , 732-736. https://doi.org/10.1021/acs.bioconjchem.4c00058
    79. Daichi Arima, Shion Hidaka, So Yokomori, Yoshiki Niihori, Yuichi Negishi, Ryuichi Oyaizu, Takumi Yoshinami, Kenji Kobayashi, Masaaki Mitsui. Triplet-Mediator Ligand-Protected Metal Nanocluster Sensitizers for Photon Upconversion. Journal of the American Chemical Society 2024, 146 (24) , 16630-16638. https://doi.org/10.1021/jacs.4c03635
    80. Jia-Hong Huang, Ya-Jie Liu, Yubing Si, Yao Cui, Xi-Yan Dong, Shuang-Quan Zang. Carborane-Cluster-Wrapped Copper Cluster with Cyclodextrin-like Cavities for Chiral Recognition. Journal of the American Chemical Society 2024, 146 (24) , 16729-16736. https://doi.org/10.1021/jacs.4c04294
    81. Tomas Klinavičius, Nadzeya Khinevich, Asta Tamulevičienė, Loïc Vidal, Sigitas Tamulevičius, Tomas Tamulevičius. Deep Learning Methods for Colloidal Silver Nanoparticle Concentration and Size Distribution Determination from UV–Vis Extinction Spectra. The Journal of Physical Chemistry C 2024, 128 (23) , 9662-9675. https://doi.org/10.1021/acs.jpcc.4c02459
    82. Si Li, Na-Na Li, Xi-Yan Dong, Shuang-Quan Zang, Thomas C. W. Mak. Chemical Flexibility of Atomically Precise Metal Clusters. Chemical Reviews 2024, 124 (11) , 7262-7378. https://doi.org/10.1021/acs.chemrev.3c00896
    83. Yuan Zhong, Xue Wang, Tingting Li, Qiaofeng Yao, Weinan Dong, Min Lu, Xue Bai, Zhennan Wu, Jianping Xie, Yu Zhang. White-Emitting Gold Nanocluster Assembly with Dynamic Color Tuning. Nano Letters 2024, 24 (23) , 6997-7003. https://doi.org/10.1021/acs.nanolett.4c01377
    84. Suhaib Alam, Mohsin Ali, Jin Ho Bang. Dual Functionality of Surface States in Dictating Photocurrent Generation of Au Nanocluster-Sensitized TiO2 Electrodes. ACS Applied Materials & Interfaces 2024, 16 (23) , 30068-30076. https://doi.org/10.1021/acsami.4c03841
    85. Badriah Alamer, Arunachalam Sagadevan, Mohammad Bodiuzzaman, Kathiravan Murugesan, Salman Alsharif, Ren-Wu Huang, Atanu Ghosh, Malenahalli H. Naveen, Chunwei Dong, Saidkhodzha Nematulloev, Jun Yin, Aleksander Shkurenko, Mutalifu Abulikemu, Xinglong Dong, Yu Han, Mohamed Eddaoudi, Magnus Rueping, Osman M. Bakr. Planar Core and Macrocyclic Shell Stabilized Atomically Precise Copper Nanocluster Catalyst for Efficient Hydroboration of C–C Multiple Bond. Journal of the American Chemical Society 2024, 146 (23) , 16295-16305. https://doi.org/10.1021/jacs.4c05077
    86. Justin T. Lomax, Eden Goodwin, Mark D. Aloisio, Alex J. Veinot, Ishwar Singh, Wai-Tung Shiu, Maram Bakiro, Jordan Bentley, Joseph F. DeJesus, Peter G. Gordon, Lijia Liu, Seán T. Barry, Cathleen M. Crudden, Paul J. Ragogna. Deposition of N-Heterocyclic Carbenes on Reactive Metal Substrates─Applications in Area-Selective Atomic Layer Deposition. Chemistry of Materials 2024, 36 (11) , 5500-5507. https://doi.org/10.1021/acs.chemmater.4c00412
    87. Ji Soo Kim, Namjun Park, Seung Jae Kwak, Yonggoon Jeon, Gyuhan Lee, Younhwa Kim, Won Bo Lee, Jungwon Park. Structure Effects of Ligands in Gold–Ligand Complexes for Controlled Formation of Gold Nanoclusters. ACS Nano 2024, 18 (22) , 14244-14254. https://doi.org/10.1021/acsnano.3c12695
    88. Yitong Wang, Christopher G. Gianopoulos, Zhongyu Liu, Kristin Kirschbaum, Dominic Alfonso, Douglas R. Kauffman, Rongchao Jin. Au36(SR)22 Nanocluster and a Periodic Pattern from Six to Fourteen Free Electrons in Core Size Evolution. JACS Au 2024, 4 (5) , 1928-1934. https://doi.org/10.1021/jacsau.4c00152
    89. Shana Havenridge, Cong Liu. A Theoretical Benchmark of the Geometric and Optical Properties for 3d Transition Metal Nanoclusters via Density Functional Theory. The Journal of Physical Chemistry A 2024, 128 (20) , 3947-3956. https://doi.org/10.1021/acs.jpca.4c00408
    90. Rahul Ramachandran Manikkoth, Priyadarshini Baidya, Sreehari Surendran Rajasree, Priyanka Chandrashekar, Manju P. Maman, Pravas Deria, Sukhendu Mandal. The Ag10 Cluster-Based One-Dimensional Silver-Thiolate Assembly: Structural Architecture and Photophysical Properties. Crystal Growth & Design 2024, 24 (10) , 4213-4219. https://doi.org/10.1021/acs.cgd.4c00322
    91. Wenjie Zhang, Yaxuan Shi, Junle Zhang, Ge Shi, Xiaoguang Qiao, Yanjie He, Jacky Wing Yip Lam, Zheng Zhao, Jianping Xie, Xinchang Pang, Ben Zhong Tang. Precision Synthesis of Ultrastable Hydrophilic Metal Nanocluster Assemblies. Macromolecules 2024, 57 (9) , 4556-4566. https://doi.org/10.1021/acs.macromol.3c02189
    92. Xiangyu Ma, Qiong Zhang, Jiale Li, Lidi Zhang, Guang Li, Zhongjie Zhang, Haizhu Yu, Manzhou Zhu. Bimetallic Ag125Cu8 Nanocluster, Structure Determination, and Nonlinear Optical Properties. Inorganic Chemistry 2024, 63 (19) , 8775-8781. https://doi.org/10.1021/acs.inorgchem.4c00465
    93. Sameeksha Agrawal, Saurabh Rai, Paritosh Mahato, Asif Ali, Saptarshi Mukherjee. Assemble–Disassemble–Reassemble Dynamics in Copper Nanocluster-Based Superstructures. The Journal of Physical Chemistry Letters 2024, 15 (18) , 4880-4889. https://doi.org/10.1021/acs.jpclett.4c00755
    94. Mengge Bai, Lin Qin, Xiang-Ming Zeng, Minjian Wu, Liao-Yuan Yao, Guo-Yu Yang. Dithiocarbonate-Protected Au25 Nanorods of a Chiral D5 Configuration and NIR-II Phosphorescence. Journal of the American Chemical Society 2024, 146 (18) , 12734-12742. https://doi.org/10.1021/jacs.4c02411
    95. Zhihe Liu, Junmei Chen, Bo Li, De-en Jiang, Lei Wang, Qiaofeng Yao, Jianping Xie. Enzyme-Inspired Ligand Engineering of Gold Nanoclusters for Electrocatalytic Microenvironment Manipulation. Journal of the American Chemical Society 2024, 146 (17) , 11773-11781. https://doi.org/10.1021/jacs.4c00019
    96. Le Yang, Fahime Bigdeli, Xiaojiao Yang, Lin-Lin Hou, Yue Ma, Wen-Ya Jiang, Xian-Hao Li, Ling-Xiao Wang, Tang Yang, Kangzhou Wang, Jianyu Wei, Ali Morsali, Kuan-Guan Liu. Molybdate-Templated Luminescent Silver Alkynyl Nanoclusters: Total Structure Determination and Optical Property Analysis. Inorganic Chemistry 2024, 63 (17) , 7631-7639. https://doi.org/10.1021/acs.inorgchem.3c04195
    97. Zhibin Wen, Shumeng Zhang, Hao Yuan, Zhixue Zhang, Junlin She, Zhun Qiao, Zhaojun Liu, Kai Liu, Zhun Hu, Chuanbo Gao. Precision Synthesis of Sub-3 nm Bimetallic Alloy Nanoparticles for Efficient and Selective Catalytic Hydrogenolysis of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran. ACS Catalysis 2024, 14 (8) , 6305-6318. https://doi.org/10.1021/acscatal.4c00143
    98. Qiyu Hu, Hongshan Zhou, Yong Ding, Thomas Wågberg, Xinbao Han. Advances in Bridging Homogeneous and Heterogeneous Water Oxidation Catalysis by Insolubilized Polyoxometalate Clusters. ACS Catalysis 2024, 14 (8) , 5898-5910. https://doi.org/10.1021/acscatal.4c00201
    99. Kazuya Terasaka, Toshiaki Kamoshida, Takumi Ichikawa, Takaho Yokoyama, Masahiro Shibuta, Miho Hatanaka, Atsushi Nakajima. Alkaline Earth Metal Superatom of W@Si16: Characterization of Group 6 Metal Encapsulating Si16 Cage on Organic Substrates. Journal of the American Chemical Society 2024, 146 (14) , 9605-9613. https://doi.org/10.1021/jacs.3c12619
    100. Ying Zhang, Wei Zhang, Tai-Song Zhang, Chao Ge, Yang Tao, Wenwen Fei, Weigang Fan, Meng Zhou, Man-Bo Li. Site-Recognition-Induced Structural and Photoluminescent Evolution of the Gold–Pincer Nanocluster. Journal of the American Chemical Society 2024, 146 (14) , 9631-9639. https://doi.org/10.1021/jacs.3c12982
    Load more citations

    Chemical Reviews

    Cite this: Chem. Rev. 2017, 117, 12, 8208–8271
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemrev.6b00769
    Published June 6, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    35k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.