ACS Publications. Most Trusted. Most Cited. Most Read
Membrane Lipid Nanodomains
My Activity
    Review

    Membrane Lipid Nanodomains
    Click to copy article linkArticle link copied!

    Other Access Options

    Chemical Reviews

    Cite this: Chem. Rev. 2018, 118, 23, 11259–11297
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemrev.8b00322
    Published October 26, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Lipid membranes can spontaneously organize their components into domains of different sizes and properties. The organization of membrane lipids into nanodomains might potentially play a role in vital functions of cells and organisms. Model membranes represent attractive systems to study lipid nanodomains, which cannot be directly addressed in living cells with the currently available methods. This review summarizes the knowledge on lipid nanodomains in model membranes and exposes how their specific character contrasts with large-scale phase separation. The overview on lipid nanodomains in membranes composed of diverse lipids (e.g., zwitterionic and anionic glycerophospholipids, ceramides, glycosphingolipids) and cholesterol aims to evidence the impact of chemical, electrostatic, and geometric properties of lipids on nanodomain formation. Furthermore, the effects of curvature, asymmetry, and ions on membrane nanodomains are shown to be highly relevant aspects that may also modulate lipid nanodomains in cellular membranes. Potential mechanisms responsible for the formation and dynamics of nanodomains are discussed with support from available theories and computational studies. A brief description of current fluorescence techniques and analytical tools that enabled progress in lipid nanodomain studies is also included. Further directions are proposed to successfully extend this research to cells.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 154 publications.

    1. Deeksha Mehta, Elizabeth K. Crumley, Jinchao Lou, Boris Dzikovski, Michael D. Best, M. Neal Waxham, Frederick A. Heberle. Halogenated Cholesterol Alters the Phase Behavior of Ternary Lipid Membranes. The Journal of Physical Chemistry B 2025, 129 (2) , 671-683. https://doi.org/10.1021/acs.jpcb.4c06318
    2. Tho H. Ho, Khai G. Tran, Lam K. Huynh, Trang T. Nguyen. Fluoxetine Alters the Biophysics of DPPC and DPPG Bilayers through Phase-Dependent and Electrostatic Interactions. The Journal of Physical Chemistry B 2024, Article ASAP.
    3. Shinya Hanashima, Ayana Yamanaka, Yuki Ibata, Tomokazu Yasuda, Yuichi Umegawa, Michio Murata. Lipid Compositions of Liquid-Ordered and Liquid-Disordered Phases in Ternary Membranes of Sphingomyelin, Cholesterol, and Dioleoylphosphatidylcholine Determined by 2H NMR: Stearoyl-Sphingomyelin Compared with Its Palmitoyl Counterpart. Langmuir 2024, 40 (43) , 22973-22981. https://doi.org/10.1021/acs.langmuir.4c03104
    4. Elio A. Cino, D. Peter Tieleman. Curvature Footprints of Transmembrane Proteins in Simulations with the Martini Force Field. The Journal of Physical Chemistry B 2024, 128 (25) , 5987-5994. https://doi.org/10.1021/acs.jpcb.4c01385
    5. Braydon G. Segars, Michelle Makhoul-Mansour, Joyce Beyrouthy, Eric C. Freeman. Measuring the Transmembrane Registration of Lipid Domains in Droplet Interface Bilayers through Tensiometry. Langmuir 2024, 40 (21) , 11228-11238. https://doi.org/10.1021/acs.langmuir.4c00958
    6. Liubov S. Kalinichenko, Johannes Kornhuber, Steffen Sinning, Jana Haase, Christian P. Müller. Serotonin Signaling through Lipid Membranes. ACS Chemical Neuroscience 2024, 15 (7) , 1298-1320. https://doi.org/10.1021/acschemneuro.3c00823
    7. Genevieve Duché, John M Sanderson. The Chemical Reactivity of Membrane Lipids. Chemical Reviews 2024, 124 (6) , 3284-3330. https://doi.org/10.1021/acs.chemrev.3c00608
    8. Christopher Kang, Kazuumi Fujioka, Rui Sun. Atomistic Insight into the Lipid Nanodomains of Synaptic Vesicles. The Journal of Physical Chemistry B 2024, 128 (11) , 2707-2716. https://doi.org/10.1021/acs.jpcb.3c07982
    9. Binbin Tan, Juanmei Hu, Fengmin Wu. Cholesterols Induced Distinctive Entry of the Graphene Nanosheet into the Cell Membrane. ACS Omega 2024, 9 (8) , 9216-9225. https://doi.org/10.1021/acsomega.3c08236
    10. Anna M. Wagner, Nina Yu. Kostina, Qi Xiao, Michael L. Klein, Virgil Percec, Cesar Rodriguez-Emmenegger. Glycan-Driven Formation of Raft-Like Domains with Hierarchical Periodic Nanoarrays on Dendrimersome Synthetic Cells. Biomacromolecules 2024, 25 (1) , 366-378. https://doi.org/10.1021/acs.biomac.3c01027
    11. Garima C. N. Thakur, Arunima Uday, Piotr Jurkiewicz. FRET-GP – A Local Measure of the Impact of Transmembrane Peptide on Lipids. Langmuir 2023, 39 (50) , 18390-18402. https://doi.org/10.1021/acs.langmuir.3c02505
    12. Matti Javanainen, Peter Heftberger, Jesper J. Madsen, Markus S. Miettinen, Georg Pabst, O. H. Samuli Ollila. Quantitative Comparison against Experiments Reveals Imperfections in Force Fields’ Descriptions of POPC–Cholesterol Interactions. Journal of Chemical Theory and Computation 2023, 19 (18) , 6342-6352. https://doi.org/10.1021/acs.jctc.3c00648
    13. David Davidović, Mercedes Kukulka, Maria J. Sarmento, Ilya Mikhalyov, Natalia Gretskaya, Barbora Chmelová, Joana C. Ricardo, Martin Hof, Lukasz Cwiklik, Radek Šachl. Which Moiety Drives Gangliosides to Form Nanodomains?. The Journal of Physical Chemistry Letters 2023, 14 (25) , 5791-5797. https://doi.org/10.1021/acs.jpclett.3c00761
    14. Pei-Shan Ho, Te-Yu Kao, Chieh-Chin Li, Yu-Jing Lan, Yei-Chen Lai, Yun-Wei Chiang. Nanodisc Lipids Exhibit Singular Behaviors Implying Critical Phenomena. Langmuir 2022, 38 (49) , 15372-15383. https://doi.org/10.1021/acs.langmuir.2c02596
    15. Tomokazu Yasuda, Hirofumi Watanabe, Koichiro M. Hirosawa, Kenichi G. N. Suzuki, Keishi Suga, Shinya Hanashima. Fluorescence Spectroscopic Analysis of Lateral and Transbilayer Fluidity of Exosome Membranes. Langmuir 2022, 38 (48) , 14695-14703. https://doi.org/10.1021/acs.langmuir.2c02258
    16. Yiwei Shi, Xuemei Xu, Huaibin Yu, Zian Lin, Honghua Zuo, Yuzhou Wu. Defined positive charge patterns created on DNA nanostructures determine cellular uptake efficiency. Nano Letters 2022, 22 (13) , 5330-5338. https://doi.org/10.1021/acs.nanolett.2c01316
    17. Xiu Li, Shiying Zhou, Xubo Lin. Molecular View on the Impact of DHA Molecules on the Physical Properties of a Model Cell Membrane. Journal of Chemical Information and Modeling 2022, 62 (10) , 2421-2431. https://doi.org/10.1021/acs.jcim.2c00074
    18. Itay Schachter, Riku O. Paananen, Balázs Fábián, Piotr Jurkiewicz, Matti Javanainen. The Two Faces of the Liquid Ordered Phase. The Journal of Physical Chemistry Letters 2022, 13 (5) , 1307-1313. https://doi.org/10.1021/acs.jpclett.1c03712
    19. Klemen Bohinc, Mario Špadina, Jurij Reščič, Naofumi Shimokawa, Simone Spada. Influence of Charge Lipid Head Group Structures on Electric Double Layer Properties. Journal of Chemical Theory and Computation 2022, 18 (1) , 448-460. https://doi.org/10.1021/acs.jctc.1c00800
    20. Samuel W. Canner, Scott E. Feller, Stephen R. Wassall. Molecular Organization of a Raft-like Domain in a Polyunsaturated Phospholipid Bilayer: A Supervised Machine Learning Analysis of Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2021, 125 (48) , 13158-13167. https://doi.org/10.1021/acs.jpcb.1c06511
    21. Tianben Ding, Matthew D. Lew. Single-Molecule Localization Microscopy of 3D Orientation and Anisotropic Wobble Using a Polarized Vortex Point Spread Function. The Journal of Physical Chemistry B 2021, 125 (46) , 12718-12729. https://doi.org/10.1021/acs.jpcb.1c08073
    22. Yoo Kyung Go, Cecilia Leal. Polymer–Lipid Hybrid Materials. Chemical Reviews 2021, 121 (22) , 13996-14030. https://doi.org/10.1021/acs.chemrev.1c00755
    23. Gamaliel Junren Ma, Vladimir P. Zhdanov, Soohyun Park, Tun Naw Sut, Nam-Joon Cho. Mechanistic Aspects of the Evolution of 3D Cholesterol Crystallites in a Supported Lipid Membrane via a Quartz Crystal Microbalance with Dissipation Monitoring. Langmuir 2021, 37 (15) , 4562-4570. https://doi.org/10.1021/acs.langmuir.1c00174
    24. Anurag Chaudhury, Gopal Kishor Varshney, Koushik Debnath, Gangadhar Das, Nikhil R. Jana, Jaydeep Kumar Basu. Compressibility of Multicomponent, Charged Model Biomembranes Tunes Permeation of Cationic Nanoparticles. Langmuir 2021, 37 (12) , 3550-3562. https://doi.org/10.1021/acs.langmuir.0c03408
    25. Mason L. Valentine, Maya K. Waterland, Arman Fathizadeh, Ron Elber, Carlos R. Baiz. Interfacial Dynamics in Lipid Membranes: The Effects of Headgroup Structures. The Journal of Physical Chemistry B 2021, 125 (5) , 1343-1350. https://doi.org/10.1021/acs.jpcb.0c08755
    26. Teruhiko Matsubara, Kazutoshi IIjima, Takahiro Kojima, Miwa Hirai, Erika Miyamoto, Toshinori Sato. Heterogeneous Ganglioside-Enriched Nanoclusters with Different Densities in Membrane Rafts Detected by a Peptidyl Molecular Probe. Langmuir 2021, 37 (2) , 646-654. https://doi.org/10.1021/acs.langmuir.0c02387
    27. Abhilash Sahoo, Silvina Matysiak. Microscopic Picture of Calcium-Assisted Lipid Demixing and Membrane Remodeling Using Multiscale Simulations. The Journal of Physical Chemistry B 2020, 124 (34) , 7327-7335. https://doi.org/10.1021/acs.jpcb.0c03067
    28. Sneha Menon, Neelanjana Sengupta, Payel Das. Nanoscale Interplay of Membrane Composition and Amyloid Self-Assembly. The Journal of Physical Chemistry B 2020, 124 (28) , 5837-5846. https://doi.org/10.1021/acs.jpcb.0c03796
    29. Marta Salvador-Castell, Bruno Demé, Phil Oger, Judith Peters. Lipid Phase Separation Induced by the Apolar Polyisoprenoid Squalane Demonstrates Its Role in Membrane Domain Formation in Archaeal Membranes. Langmuir 2020, 36 (26) , 7375-7382. https://doi.org/10.1021/acs.langmuir.0c00901
    30. Bo Kyeong Yoon, Soohyun Park, Gamaliel J. Ma, Kavoos Kolahdouzan, Vladimir P. Zhdanov, Joshua A. Jackman, Nam-Joon Cho. Competing Interactions of Fatty Acids and Monoglycerides Trigger Synergistic Phospholipid Membrane Remodeling. The Journal of Physical Chemistry Letters 2020, 11 (13) , 4951-4957. https://doi.org/10.1021/acs.jpclett.0c01138
    31. Manabu Sakurai, Yasuhiro Kobori, Takashi Tachikawa. Structural Dynamics of Lipid Bilayer Membranes Explored by Magnetic Field Effect Based Fluorescence Microscopy. The Journal of Physical Chemistry B 2019, 123 (50) , 10896-10902. https://doi.org/10.1021/acs.jpcb.9b09782
    32. Mitradip Das, Udaya Dahal, Oluwaseun Mesele, Dongyue Liang, Qiang Cui. Molecular Dynamics Simulation of Interaction between Functionalized Nanoparticles with Lipid Membranes: Analysis of Coarse-Grained Models. The Journal of Physical Chemistry B 2019, 123 (49) , 10547-10561. https://doi.org/10.1021/acs.jpcb.9b08259
    33. Siya Zhang, Xubo Lin. Lipid Acyl Chain cis Double Bond Position Modulates Membrane Domain Registration/Anti-Registration. Journal of the American Chemical Society 2019, 141 (40) , 15884-15890. https://doi.org/10.1021/jacs.9b06977
    34. Jiaye Su, Jingyuan Chen, Zhenwei Yao. Dehydration-Driven Morphological Transformation of Flexible Vesicles on Liquid–Solid Interface. The Journal of Physical Chemistry C 2019, 123 (19) , 12268-12275. https://doi.org/10.1021/acs.jpcc.9b01553
    35. Siewert J. Marrink, Valentina Corradi, Paulo C.T. Souza, Helgi I. Ingólfsson, D. Peter Tieleman, Mark S.P. Sansom. Computational Modeling of Realistic Cell Membranes. Chemical Reviews 2019, 119 (9) , 6184-6226. https://doi.org/10.1021/acs.chemrev.8b00460
    36. Ivo S. Vinklárek, Lukáš Vel’as, Petra Riegerová, Kristián Skála, Ilya Mikhalyov, Natalia Gretskaya, Martin Hof, Radek Šachl. Experimental Evidence of the Existence of Interleaflet Coupled Nanodomains: An MC-FRET Study. The Journal of Physical Chemistry Letters 2019, 10 (9) , 2024-2030. https://doi.org/10.1021/acs.jpclett.9b00390
    37. Nikesh Dewangan, Indrani Das Jana, Sandeep Yadav, Avijit Sardar, Amirul I. Mallick, Arindam Mondal, Pradip K. Tarafdar. Design of Flavonoid‐Based Lipid Domains as Fusion Inhibitors to Efficiently Block Coronavirus and Other Enveloped Virus Infection. Small 2025, 28 https://doi.org/10.1002/smll.202410727
    38. Gerhard Wanner, Elizabeth Schroeder‐Reiter, Farhah F. Assaad. Cryo‐SEM and large volume FIB‐SEM of Arabidopsis cotyledons: Degradation of lipid bodies, biogenesis of glyoxysomes and reorganisation of organelles during germination. Journal of Microscopy 2025, 43 https://doi.org/10.1111/jmi.13381
    39. Jorge A. Montemayor-Aldrete, José Manuel Nieto-Villar, Carlos J. Villagómez, Rafael F. Márquez-Caballé. An irreversible thermodynamic model of prebiological dissipative molecular structures inside vacuoles at the surface of the Archean Ocean. BioSystems 2025, 247 , 105379. https://doi.org/10.1016/j.biosystems.2024.105379
    40. Agostina Crotta Asis, Antonino Asaro, Giovanni D’Angelo. Single cell lipid biology. Trends in Cell Biology 2025, 31 https://doi.org/10.1016/j.tcb.2024.12.002
    41. Pei‐Hong Tong, Tong‐Yuan Wu, Mingle Li, Hai‐Bin Wang, Feng Zheng, Lin Xu, Wei‐Tao Dou. Fluorescent probes for the visualization of membrane microdomain, deformation, and fusion. Smart Molecules 2024, 135 https://doi.org/10.1002/smo.20240059
    42. Subhadip Basu, Oded Farago. Mixing small proteins with lipids and cholesterol. The Journal of Chemical Physics 2024, 161 (22) https://doi.org/10.1063/5.0239257
    43. Jeremiah Traeger, Mengran Yang, Gary Stacey, Galya Orr, Dehong Hu. Lattice light-sheet microscopy allows for super-resolution imaging of receptors in leaf tissue. Biophysical Journal 2024, 51 https://doi.org/10.1016/j.bpj.2024.12.028
    44. A. A. Polyansky, R. G. Efremov. Lipid-mediated adaptation of proteins and peptides in cell membranes. Biologičeskie membrany 2024, 41 (5-6) , 473-491. https://doi.org/10.31857/S0233475524050093
    45. Irina I. Veretenenko, Yury A. Trofimov, Nikolay A. Krylov, Roman G. Efremov. Nanoscale lipid domains determine the dynamic molecular portraits of mixed DOPC/DOPS bilayers in a fluid phase: A computational insight. Biochimica et Biophysica Acta (BBA) - Biomembranes 2024, 1866 (7) , 184376. https://doi.org/10.1016/j.bbamem.2024.184376
    46. Petra Maleš, Jana Munivrana, Lea Pašalić, Barbara Pem, Danijela Bakarić. Reorientation of interfacial water molecules during melting of brain sphingomyelin is associated with the phase transition of its C24:1 sphingomyelin lipids. Chemistry and Physics of Lipids 2024, 264 , 105434. https://doi.org/10.1016/j.chemphyslip.2024.105434
    47. Titas Mandal, Nadine Brandt, Carmelo Tempra, Matti Javanainen, Balázs Fábián, Salvatore Chiantia. A comparison of lipid diffusive dynamics in monolayers and bilayers in the context of interleaflet coupling. Biochimica et Biophysica Acta (BBA) - Biomembranes 2024, 175 , 184388. https://doi.org/10.1016/j.bbamem.2024.184388
    48. A. A. Polyansky, R. G. Efremov. Lipid-Mediated Adaptation of Proteins and Peptides in Cell Membranes. Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology 2024, 18 (3) , 241-256. https://doi.org/10.1134/S1990747824700235
    49. Anatoly Zhukov, Mikhail Vereshchagin. Polar Glycerolipids and Membrane Lipid Rafts. International Journal of Molecular Sciences 2024, 25 (15) , 8325. https://doi.org/10.3390/ijms25158325
    50. Jan Kejžar, Polona Mrak, Ilja Gasan Osojnik Črnivec, Nataša Poklar Ulrih. Influence of archaeal lipids isolated from Aeropyrum pernix K1 on physicochemical properties of sphingomyelin-cholesterol liposomes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2024, 14 , 184374. https://doi.org/10.1016/j.bbamem.2024.184374
    51. Pablo G. Argudo. Lipids and proteins: Insights into the dynamics of assembly, recognition, condensate formation. What is still missing?. Biointerphases 2024, 19 (3) https://doi.org/10.1116/6.0003662
    52. Titas Mandal, Nadine Brandt, Carmelo Tempra, Matti Javanainen, Balázs Fábián, Salvatore Chiantia. A comparison of lipid diffusive dynamics in monolayers and bilayers in the context of interleaflet coupling. 2024https://doi.org/10.1101/2024.04.26.589162
    53. Lucrezia Caselli, Laura Conti, Ilaria De Santis, Debora Berti. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Advances in Colloid and Interface Science 2024, 73 , 103156. https://doi.org/10.1016/j.cis.2024.103156
    54. Frank Jülicher, Christoph A. Weber. Droplet Physics and Intracellular Phase Separation. Annual Review of Condensed Matter Physics 2024, 15 (1) , 237-261. https://doi.org/10.1146/annurev-conmatphys-031720-032917
    55. Julia B. Ejarque, Evandro L. Duarte, M. Teresa Lamy, Julio H.K. Rozenfeld. Evidence for Ca2+-induced structural change in diluted GD3 ganglioside dispersions. Biochimica et Biophysica Acta (BBA) - Biomembranes 2024, 1866 (3) , 184271. https://doi.org/10.1016/j.bbamem.2024.184271
    56. Natalia Santos, Luthary Segura, Amber Lewis, Thuong Pham, Kwan H. Cheng. Multiscale Modeling of Macromolecular Interactions between Tau-Amylin Oligomers and Asymmetric Lipid Nanodomains That Link Alzheimer’s and Diabetic Diseases. Molecules 2024, 29 (3) , 740. https://doi.org/10.3390/molecules29030740
    57. Patrycja Dynarowicz-Latka, Anita Wnętrzak, Anna Chachaj-Brekiesz. Advantages of the classical thermodynamic analysis of single—and multi-component Langmuir monolayers from molecules of biomedical importance—theory and applications. Journal of The Royal Society Interface 2024, 21 (210) https://doi.org/10.1098/rsif.2023.0559
    58. Julie Cornet, Nelly Coulonges, Weria Pezeshkian, Maël Penissat-Mahaut, Hermes Desgrez-Dautet, Siewert J. Marrink, Nicolas Destainville, Matthieu Chavent, Manoel Manghi. There and back again: bridging meso- and nano-scales to understand lipid vesicle patterning. Soft Matter 2024, 6 https://doi.org/10.1039/D4SM00089G
    59. Dominik Drabik, Mitja Drab, Samo Penič, Aleš Iglič, Aleksander Czogalla. Investigation of nano- and microdomains formed by ceramide 1 phosphate in lipid bilayers. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-45575-5
    60. Yohan Lee, Sujin Park, Feng Yuan, Carl C. Hayden, Liping Wang, Eileen M. Lafer, Siyoung Q. Choi, Jeanne C. Stachowiak. Transmembrane coupling of liquid-like protein condensates. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-43332-w
    61. Natalia Santos, Luthary Segura, Amber Lewis, Thuong Pham, Kwan H. Cheng. Molecular Mechanisms of Protein–Lipid Interactions and Protein Folding of Heterogeneous Amylin and Tau Oligomers on Lipid Nanodomains That Link to Alzheimer’s. Macromol 2023, 3 (4) , 805-827. https://doi.org/10.3390/macromol3040046
    62. Atsuko Honda, Motohiro Nozumi, Yasuyuki Ito, Rie Natsume, Asami Kawasaki, Fubito Nakatsu, Manabu Abe, Haruki Uchino, Natsuki Matsushita, Kazutaka Ikeda, Makoto Arita, Kenji Sakimura, Michihiro Igarashi. Very-long-chain fatty acids are crucial to neuronal polarity by providing sphingolipids to lipid rafts. Cell Reports 2023, 42 (10) , 113195. https://doi.org/10.1016/j.celrep.2023.113195
    63. Aaron Novikoff, Timo D. Müller. The molecular pharmacology of glucagon agonists in diabetes and obesity. Peptides 2023, 165 , 171003. https://doi.org/10.1016/j.peptides.2023.171003
    64. Anatoly Zhukov, Valery Popov. Eukaryotic Cell Membranes: Structure, Composition, Research Methods and Computational Modelling. International Journal of Molecular Sciences 2023, 24 (13) , 11226. https://doi.org/10.3390/ijms241311226
    65. Baomei Xu, Jianhui Li, Shuai Zhang, Johar Zeb, Shunli Chen, Qunhui Yuan, Wei Gan. The Transport of Charged Molecules across Three Lipid Membranes Investigated with Second Harmonic Generation. Molecules 2023, 28 (11) , 4330. https://doi.org/10.3390/molecules28114330
    66. Marcos Arribas Perez, Paul A. Beales. Dynamics of asymmetric membranes and interleaflet coupling as intermediates in membrane fusion. Biophysical Journal 2023, 122 (11) , 1985-1995. https://doi.org/10.1016/j.bpj.2022.10.006
    67. Barbora Chmelová, David Davidović, Radek Šachl. Interleaflet organization of membrane nanodomains: What can(not) be resolved by FRET?. Biophysical Journal 2023, 122 (11) , 2053-2067. https://doi.org/10.1016/j.bpj.2022.11.014
    68. Anthony Legrand, Daniel G.-Cava, Marie-Dominique Jolivet, Marion Decossas, Olivier Lambert, Vincent Bayle, Yvon Jaillais, Antoine Loquet, Véronique Germain, Marie Boudsocq, Birgit Habenstein, Marisela Vélez Tirado, Sébastien Mongrand. Structural determinants of REMORIN nanodomain formation in anionic membranes. Biophysical Journal 2023, 122 (11) , 2192-2202. https://doi.org/10.1016/j.bpj.2022.12.035
    69. Siewert Hugelier, P.L. Colosi, Melike Lakadamyali. Quantitative Single-Molecule Localization Microscopy. Annual Review of Biophysics 2023, 52 (1) , 139-160. https://doi.org/10.1146/annurev-biophys-111622-091212
    70. Amber Lewis, Thuong Pham, Ngoc Nguyen, Angela Graf, Kwan H. Cheng. Lipid domain boundary triggers membrane damage and protein folding of human islet amyloid polypeptide in the early pathogenesis of amyloid diseases. Biophysical Chemistry 2023, 296 , 106993. https://doi.org/10.1016/j.bpc.2023.106993
    71. Ngoc Nguyen, Amber Lewis, Thuong Pham, Donald Sikazwe, Kwan H. Cheng. Exploring the Role of Anionic Lipid Nanodomains in the Membrane Disruption and Protein Folding of Human Islet Amyloid Polypeptide Oligomers on Lipid Membrane Surfaces Using Multiscale Molecular Dynamics Simulations. Molecules 2023, 28 (10) , 4191. https://doi.org/10.3390/molecules28104191
    72. Lea Pašalić, Barbara Pem, Darija Domazet Jurašin, Mario Vazdar, Danijela Bakarić. Interaction of guanidinium and ammonium cations with phosphatidylcholine and phosphatidylserine lipid bilayers – Calorimetric, spectroscopic and molecular dynamics simulations study. Biochimica et Biophysica Acta (BBA) - Biomembranes 2023, 1865 (4) , 184122. https://doi.org/10.1016/j.bbamem.2023.184122
    73. Rebecca Cabral‐Dias, Costin N. Antonescu. Control of phosphatidylinositol‐3‐kinase signaling by nanoscale membrane compartmentalization. BioEssays 2023, 45 (3) https://doi.org/10.1002/bies.202200196
    74. Alexander P. Demchenko. Clinical Diagnostics Ex-Vivo Based on Fluorescence. 2023, 493-528. https://doi.org/10.1007/978-3-031-19089-6_14
    75. Mengjie Zhang, Abid Hussain, Haiyin Yang, Jinchao Zhang, Xing-Jie Liang, Yuanyu Huang. mRNA-based modalities for infectious disease management. Nano Research 2023, 16 (1) , 672-691. https://doi.org/10.1007/s12274-022-4627-5
    76. Yann Lanoiselée, Aleksander Stanislavsky, Davide Calebiro, Aleksander Weron. Temperature and friction fluctuations inside a harmonic potential. Physical Review E 2022, 106 (6) https://doi.org/10.1103/PhysRevE.106.064127
    77. Bin Jiao, Wei Zhou, Yikun Liu, Wenpeng Zhang, Zheng Ouyang. In-situ sampling of lipids in tissues using a porous membrane microprobe for direct mass spectrometry analysis. Materials Today Bio 2022, 16 , 100424. https://doi.org/10.1016/j.mtbio.2022.100424
    78. Qiang Yue, Otor Al-Khalili, Auriel Moseley, Masaaki Yoshigi, Brandi Michele Wynne, Heping Ma, Douglas C. Eaton. PIP2 Interacts Electrostatically with MARCKS-like Protein-1 and ENaC in Renal Epithelial Cells. Biology 2022, 11 (12) , 1694. https://doi.org/10.3390/biology11121694
    79. Jon Ander Nieto-Garai, June Olazar-Intxausti, Itxaso Anso, Maier Lorizate, Oihana Terrones, Francesc-Xabier Contreras. Super-Resolution Microscopy to Study Interorganelle Contact Sites. International Journal of Molecular Sciences 2022, 23 (23) , 15354. https://doi.org/10.3390/ijms232315354
    80. Thuong Pham, Kwan H. Cheng. Exploring the binding kinetics and behaviors of self-aggregated beta-amyloid oligomers to phase-separated lipid rafts with or without ganglioside-clusters. Biophysical Chemistry 2022, 290 , 106874. https://doi.org/10.1016/j.bpc.2022.106874
    81. Kwan H. Cheng, Angela Graf, Amber Lewis, Thuong Pham, Aakriti Acharya. Exploring Membrane Binding Targets of Disordered Human Tau Aggregates on Lipid Rafts Using Multiscale Molecular Dynamics Simulations. Membranes 2022, 12 (11) , 1098. https://doi.org/10.3390/membranes12111098
    82. Anant Kakar, Luis Enrique Sastré-Velásquez, Michael Hess, László Galgóczy, Csaba Papp, Jeanett Holzknecht, Alessandra Romanelli, Györgyi Váradi, Nermina Malanovic, Florentine Marx, . The Membrane Activity of the Amphibian Temporin B Peptide Analog TB_KKG6K Sheds Light on the Mechanism That Kills Candida albicans. mSphere 2022, 7 (5) https://doi.org/10.1128/msphere.00290-22
    83. Teruhiko Matsubara. Peptide mimotopes to emulate carbohydrates. Chemical Society Reviews 2022, 51 (19) , 8160-8173. https://doi.org/10.1039/D2CS00470D
    84. Petra Maleš, Barbara Pem, Dražen Petrov, Darija Domazet Jurašin, Danijela Bakarić. Deciphering the origin of the melting profile of unilamellar phosphatidylcholine liposomes by measuring the turbidity of its suspensions. Soft Matter 2022, 18 (35) , 6703-6715. https://doi.org/10.1039/D2SM00878E
    85. Witold K. Subczynski, Justyna Widomska, Marija Raguz, Marta Pasenkiewicz-Gierula. Molecular Oxygen as a Probe Molecule in EPR Spin Labeling Studies of Membrane Structure and Dynamics. Oxygen 2022, 2 (3) , 295-316. https://doi.org/10.3390/oxygen2030021
    86. Sergio Alan Cervantes-Pérez, Marc Libault. Cell-Type-Specific Profiling of the Arabidopsis thaliana Membrane Protein-Encoding Genes. Membranes 2022, 12 (9) , 874. https://doi.org/10.3390/membranes12090874
    87. Isabella R. Graf, Benjamin B. Machta. Thermodynamic stability and critical points in multicomponent mixtures with structured interactions. Physical Review Research 2022, 4 (3) https://doi.org/10.1103/PhysRevResearch.4.033144
    88. Yoshiaki Yano. Effects of Membrane Cholesterol on Stability of Transmembrane Helix Associations. Chemical and Pharmaceutical Bulletin 2022, 70 (8) , 514-518. https://doi.org/10.1248/cpb.c22-00144
    89. Masanao Kinoshita, Nobuaki Matsumori. Inimitable Impacts of Ceramides on Lipid Rafts Formed in Artificial and Natural Cell Membranes. Membranes 2022, 12 (8) , 727. https://doi.org/10.3390/membranes12080727
    90. Yukihiro Okamoto, Kaito Hamaguchi, Mayo Watanabe, Nozomi Watanabe, Hiroshi Umakoshi. Characterization of Phase Separated Planar Lipid Bilayer Membrane by Fluorescence Ratio Imaging and Scanning Probe Microscope. Membranes 2022, 12 (8) , 770. https://doi.org/10.3390/membranes12080770
    91. Michio Murata, Nobuaki Matsumori, Masanao Kinoshita, Erwin London. Molecular substructure of the liquid-ordered phase formed by sphingomyelin and cholesterol: sphingomyelin clusters forming nano-subdomains are a characteristic feature. Biophysical Reviews 2022, 14 (3) , 655-678. https://doi.org/10.1007/s12551-022-00967-1
    92. Pengyan Hao, Liqiong Niu, Yuanyuan Luo, Na Wu, Yongxi Zhao. Surface Engineering of Lipid Vesicles Based on DNA Nanotechnology. ChemPlusChem 2022, 87 (5) https://doi.org/10.1002/cplu.202200074
    93. Boyang Hu, Ruijie Liu, Qingyue Liu, Zi'an Lin, Yiwei Shi, Jun Li, Lijun Wang, Longjie Li, Xianjin Xiao, Yuzhou Wu. Engineering surface patterns on nanoparticles: new insights into nano-bio interactions. Journal of Materials Chemistry B 2022, 10 (14) , 2357-2383. https://doi.org/10.1039/D1TB02549J
    94. Ornella Morana, Jon Ander Nieto‐Garai, Patrik Björkholm, Jorge Bernardino de la Serna, Oihana Terrones, Aroa Arboleya, Dalila Ciceri, Iratxe Rojo‐Bartolomé, Cédric M. Blouin, Christophe Lamaze, Maier Lorizate, Francesc‐Xabier Contreras. Identification of a New Cholesterol‐Binding Site within the IFN‐ γ Receptor that is Required for Signal Transduction. Advanced Science 2022, 9 (11) https://doi.org/10.1002/advs.202105170
    95. Shinya Hanashima, Ryuji Ikeda, Yuki Matsubara, Tomokazu Yasuda, Hiroshi Tsuchikawa, J. Peter Slotte, Michio Murata. Effect of cholesterol on the lactosylceramide domains in phospholipid bilayers. Biophysical Journal 2022, 121 (7) , 1143-1155. https://doi.org/10.1016/j.bpj.2022.02.037
    96. Akshara Sharma, Aniruddha Seal, Sahithya S. Iyer, Anand Srivastava. Enthalpic and entropic contributions to interleaflet coupling drive domain registration and antiregistration in biological membrane. Physical Review E 2022, 105 (4) https://doi.org/10.1103/PhysRevE.105.044408
    97. Ali Saitov, Maksim A. Kalutsky, Timur R. Galimzyanov, Toma Glasnov, Andreas Horner, Sergey A. Akimov, Peter Pohl. Determinants of Lipid Domain Size. International Journal of Molecular Sciences 2022, 23 (7) , 3502. https://doi.org/10.3390/ijms23073502
    98. Anddre Osmar Valdivia, Sanjoy K. Bhattacharya. Lyso-Lipid-Induced Oligodendrocyte Maturation Underlies Restoration of Optic Nerve Function. eneuro 2022, 9 (1) , ENEURO.0429-21.2022. https://doi.org/10.1523/ENEURO.0429-21.2022
    99. Barbora Chmelová, Jana Humpolíčková, Kvido Stříšovský, Radek Šachl. The Analysis of In-Membrane Nanoscopic Aggregation of Lipids and Proteins by MC-FRET. 2022, 375-400. https://doi.org/10.1007/4243_2022_29
    100. Hao Li, Jing Gao, Lei Cao, Xuan Xie, Jiahui Fan, Hongda Wang, Hong‐Hui Wang, Zhou Nie. A DNA Molecular Robot that Autonomously Walks on the Cell Membrane to Drive Cell Motility. Angewandte Chemie 2021, 133 (50) , 26291-26299. https://doi.org/10.1002/ange.202108210
    Load all citations

    Chemical Reviews

    Cite this: Chem. Rev. 2018, 118, 23, 11259–11297
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemrev.8b00322
    Published October 26, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    6981

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.