ACS Publications. Most Trusted. Most Cited. Most Read
Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review
My Activity
    Review

    Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review
    Click to copy article linkArticle link copied!

    Other Access Options

    Chemical Reviews

    Cite this: Chem. Rev. 2020, 120, 14, 6467–6489
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemrev.9b00599
    Published February 13, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Aqueous organic redox flow batteries (RFBs) could enable widespread integration of renewable energy, but only if costs are sufficiently low. Because the levelized cost of storage for an RFB is a function of electrolyte lifetime, understanding and improving the chemical stability of active reactants in RFBs is a critical research challenge. We review known or hypothesized molecular decomposition mechanisms for all five classes of aqueous redox-active organics and organometallics for which cycling lifetime results have been reported: quinones, viologens, aza-aromatics, iron coordination complexes, and nitroxide radicals. We collect, analyze, and compare capacity fade rates from all aqueous organic electrolytes that have been utilized in the capacity-limiting side of flow or hybrid flow/nonflow cells, noting also their redox potentials and demonstrated concentrations of transferrable electrons. We categorize capacity fade rates as being “high” (>1%/day), “moderate” (0.1–1%/day), “low” (0.02–0.1%/day), and “extremely low” (≤0.02%/day) and discuss the degree to which the fade rates have been linked to decomposition mechanisms. Capacity fade is observed to be time-denominated rather than cycle-denominated, with a temporal rate that can depend on molecular concentrations and electrolyte state of charge through, e.g., bimolecular decomposition mechanisms. We then review measurement methods for capacity fade rate and find that simple galvanostatic charge–discharge cycling is inadequate for assessing capacity fade when fade rates are low or extremely low and recommend refining methods to include potential holds for accurately assessing molecular lifetimes under such circumstances. We consider separately symmetric cell cycling results, the interpretation of which is simplified by the absence of a different counter-electrolyte. We point out the chemistries with low or extremely low established fade rates that also exhibit open circuit potentials of 1.0 V or higher and transferrable electron concentrations of 1.0 M or higher, which are promising performance characteristics for RFB commercialization. We point out important directions for future research.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 416 publications.

    1. Alizée Debiais, Calvine Lai, Thomas Boulanger, Guillaume Reynard, Louis Hamlet, Simon Généreux, Mick Vaillancourt, Radu Iftimie, Hélène Lebel, Dominic Rochefort. Highly Soluble Viologen-PEG Conjugates for Aqueous Organic Redox Flow Batteries. ACS Applied Energy Materials 2025, 8 (1) , 181-193. https://doi.org/10.1021/acsaem.4c02259
    2. Vikram Singh, Hye Ryung Byon. Solubility and Stability of Redox-Active Organic Molecules in Redox Flow Batteries. ACS Applied Energy Materials 2024, 7 (18) , 7562-7575. https://doi.org/10.1021/acsaem.3c02171
    3. Yuyue Zhao, Sambasiva R. Bheemireddy, Diqing Yue, Zhou Yu, Mohammad Afsar Uddin, Haoyu Liu, Zhiguang Li, Xiaoting Fang, Xingyi Lyu, Garvit Agarwal, Zhangxing Shi, Lily A. Robertson, Lei Cheng, Tao Li, Rajeev S. Assary, Venkat Srinivasan, Susan J. Babinec, Zhengcheng Zhang, Jeffrey S. Moore, Ilya A. Shkrob, Xiaoliang Wei, Lu Zhang. Stable, Impermeable Hexacyanoferrate Anolyte for Nonaqueous Redox Flow Batteries. ACS Energy Letters 2024, 9 (9) , 4273-4279. https://doi.org/10.1021/acsenergylett.4c01351
    4. Eduardo Martínez-González, Pekka Peljo. Improving the Volumetric Capacity of Gallocyanine Flow Battery by Adding a Molecular Spectator. ACS Applied Energy Materials 2024, 7 (17) , 7169-7175. https://doi.org/10.1021/acsaem.4c00971
    5. José Eduardo dos Santos Clarindo, Rafael Neri Prystaj Colombo, Graziela Cristina Sedenho, Luana Cristina Italiano Faria, Thiago Bertaglia, Filipe Camargo Dalmatti Alves Lima, Roberto da Silva Gomes, Michael J. Aziz, Frank Nelson Crespilho. Molecular Mechanism and Electrostatic Effect Enabling Symmetric All-Quinone Aqueous Redox Flow Batteries. ACS Sustainable Chemistry & Engineering 2024, 12 (31) , 11488-11497. https://doi.org/10.1021/acssuschemeng.3c08218
    6. Sarah Elhajj, Samer Gozem. First and Second Reductions in an Aprotic Solvent: Comparing Computational and Experimental One-Electron Reduction Potentials for 345 Quinones. Journal of Chemical Theory and Computation 2024, 20 (14) , 6227-6240. https://doi.org/10.1021/acs.jctc.4c00602
    7. Andrii Varenikov, Mark Gandelman, Matthew S. Sigman. Development of Modular Nitrenium Bipolar Electrolytes for Possible Applications in Symmetric Redox Flow Batteries. Journal of the American Chemical Society 2024, 146 (28) , 19474-19488. https://doi.org/10.1021/jacs.4c05799
    8. Changkun Zhang, Zhizhang Yuan, Xianfeng Li. Designing Better Flow Batteries: An Overview on Fifty Years’ Research. ACS Energy Letters 2024, 9 (7) , 3456-3473. https://doi.org/10.1021/acsenergylett.4c00773
    9. Xiaoyi Huangyang, Hongrui Wang, Weibin Zhou, Qi Deng, Zhuo Liu, Xian-Xiang Zeng, Xiongwei Wu, Wei Ling. In Situ Growth of Amorphous MnO2 on Graphite Felt via Mild Etching Engineering as a Powerful Catalyst for Advanced Vanadium Redox Flow Batteries. ACS Applied Materials & Interfaces 2024, 16 (25) , 32189-32197. https://doi.org/10.1021/acsami.4c02971
    10. Yucheng Fu, Amanda Howard, Chao Zeng, Yunxiang Chen, Peiyuan Gao, Panos Stinis. Physics-Guided Continual Learning for Predicting Emerging Aqueous Organic Redox Flow Battery Material Performance. ACS Energy Letters 2024, 9 (6) , 2767-2774. https://doi.org/10.1021/acsenergylett.4c00493
    11. Alexis Burghoff, Nicolas E. Holubowitch. Critical Roles of pH and Activated Carbon on the Speciation and Performance of an Archetypal Organometallic Complex for Aqueous Redox Flow Batteries. Journal of the American Chemical Society 2024, 146 (14) , 9728-9740. https://doi.org/10.1021/jacs.3c13828
    12. Antonio J. Molina-Serrano, José M. Luque-Centeno, David Sebastián, Luis F. Arenas, Thomas Turek, Irene Vela, Francisco Carrasco-Marín, María J. Lázaro, Cinthia Alegre. Comparison of the Influence of Oxygen Groups Introduced by Graphene Oxide on the Activity of Carbon Felt in Vanadium and Anthraquinone Flow Batteries. ACS Applied Energy Materials 2024, 7 (7) , 2779-2790. https://doi.org/10.1021/acsaem.3c03223
    13. Sanat Vibhas Modak, Daniel Pert, Jessica L. Tami, Wanggang Shen, Ibrahim Abdullahi, Xun Huan, Anne J. McNeil, Bryan R. Goldsmith, David G. Kwabi. Substituent Impact on Quinoxaline Performance and Degradation in Redox Flow Batteries. Journal of the American Chemical Society 2024, 146 (8) , 5173-5185. https://doi.org/10.1021/jacs.3c10454
    14. Emma J. Latchem, Thomas Kress, Peter A. A. Klusener, R. Vasant Kumar, Alexander C. Forse. Charge-Dependent Crossover in Aqueous Organic Redox Flow Batteries Revealed Using Online NMR Spectroscopy. The Journal of Physical Chemistry Letters 2024, 15 (5) , 1515-1520. https://doi.org/10.1021/acs.jpclett.3c03482
    15. Rajesh B. Jethwa, Dominic Hey, Rachel N. Kerber, Andrew D. Bond, Dominic S. Wright, Clare P. Grey. Exploring the Landscape of Heterocyclic Quinones for Redox Flow Batteries. ACS Applied Energy Materials 2024, 7 (2) , 414-426. https://doi.org/10.1021/acsaem.3c02223
    16. Rajeev K. Gautam, Xiao Wang, Soumalya Sinha, Jianbing Jimmy Jiang. Triphasic Electrolytes for Membrane-Free High-Voltage Redox Flow Battery. ACS Energy Letters 2024, 9 (1) , 218-225. https://doi.org/10.1021/acsenergylett.3c02594
    17. Taoyi Kong, Junjie Li, Wei Wang, Xing Zhou, Yihua Xie, Jing Ma, Xianfeng Li, Yonggang Wang. Enabling Long-Life Aqueous Organic Redox Flow Batteries with a Highly Stable, Low Redox Potential Phenazine Anolyte. ACS Applied Materials & Interfaces 2024, 16 (1) , 752-760. https://doi.org/10.1021/acsami.3c15238
    18. Thomas Y. George, Isabelle C. Thomas, Naphtal O. Haya, John P. Deneen, Cliffton Wang, Michael J. Aziz. Membrane–Electrolyte System Approach to Understanding Ionic Conductivity and Crossover in Alkaline Flow Cells. ACS Applied Materials & Interfaces 2023, 15 (49) , 57252-57264. https://doi.org/10.1021/acsami.3c14173
    19. Bebin Ambrose, Raghupandiyan Naresh, Swapnil Deshmukh, Murugavel Kathiresan, Pitchai Ragupathy. Exploring Contemporary Advancements and Outlook in Viologen-Based Aqueous Organic Redox Flow Batteries: A Mini Review. Energy & Fuels 2023, 37 (23) , 18226-18242. https://doi.org/10.1021/acs.energyfuels.3c02299
    20. Nitesh Kumar, Wilma Rishko, Kevin R. Fiedler, Aaron Hollas, Jaehun Chun, Samantha I. Johnson. Correlations between Molecular Structure, Solvation Topology, and Transport Properties of Aqueous Organic Flow Battery Electrolyte Solutions. ACS Materials Letters 2023, 5 (11) , 3050-3057. https://doi.org/10.1021/acsmaterialslett.3c00838
    21. Mei Ding, Hu Fu, Xuechun Lou, Murong He, Biao Chen, Zhiyuan Han, Shengqi Chu, Bo Lu, Guangmin Zhou, Chuankun Jia. A Stable and Energy-Dense Polysulfide/Permanganate Flow Battery. ACS Nano 2023, 17 (16) , 16252-16263. https://doi.org/10.1021/acsnano.3c06273
    22. Md Al Raihan, C. Adam Dyker. Ester-Substituted Bispyridinylidenes: Double Concerted Two-Electron Bipolar Molecules for Symmetric Organic Redox Flow Batteries. ACS Energy Letters 2023, 8 (8) , 3314-3322. https://doi.org/10.1021/acsenergylett.3c00969
    23. Borja Caja-Munoz, Kévin Chighine, Jean-Pierre Dognon, Lionel Dubois, Patrick Berthault. Three-Dimensional-Printed Device for In Situ Monitoring of an Organic Redox-Flow Battery via NMR/MRI. Analytical Chemistry 2023, 95 (14) , 6020-6028. https://doi.org/10.1021/acs.analchem.3c00051
    24. Lu Li, Yihang Su, Yunlong Ji, Pan Wang. A Long-Lived Water-Soluble Phenazine Radical Cation. Journal of the American Chemical Society 2023, 145 (10) , 5778-5785. https://doi.org/10.1021/jacs.2c12683
    25. Rubén Rubio-Presa, Lara Lubián, Mario Borlaf, Edgar Ventosa, Roberto Sanz. Addressing Practical Use of Viologen-Derivatives in Redox Flow Batteries through Molecular Engineering. ACS Materials Letters 2023, 5 (3) , 798-802. https://doi.org/10.1021/acsmaterialslett.2c01105
    26. Arunavo Chakraborty, Richard Bock, Roger Green, Kyle Luker, Gabriel Ménard, Lior Sepunaru. Split Biphasic Electrochemical Cells: Toward Membrane-Less Redox Flow Batteries. ACS Applied Energy Materials 2023, 6 (2) , 605-610. https://doi.org/10.1021/acsaem.2c03435
    27. Emily F. Kerr, Zhijiang Tang, Thomas Y. George, Shijian Jin, Eric M. Fell, Kiana Amini, Yan Jing, Min Wu, Roy G. Gordon, Michael J. Aziz. High Energy Density Aqueous Flow Battery Utilizing Extremely Stable, Branching-Induced High-Solubility Anthraquinone near Neutral pH. ACS Energy Letters 2023, 8 (1) , 600-607. https://doi.org/10.1021/acsenergylett.2c01691
    28. Raziyeh Ghahremani, William Dean, Nicholas Sinclair, Xiaochen Shen, Nicholas Starvaggi, Ibrahim Alfurayj, Clemens Burda, Emily Pentzer, Jesse Wainright, Robert Savinell, Burcu Gurkan. Redox-Active Eutectic Electrolyte with Viologen and Ferrocene Derivatives for Flow Batteries. ACS Applied Materials & Interfaces 2023, 15 (1) , 1148-1156. https://doi.org/10.1021/acsami.2c18546
    29. Ivan A. Volodin, Christian Stolze, Oliver Nolte, Philip Rohland, Martin D. Hager, Ulrich S. Schubert. State and Prospects of Unbalanced, Compositionally Symmetric Flow Battery Cycling and Steady-State Amperometry Techniques for Electrolyte Stability Assessment: The Case of Methyl Viologen. ACS Applied Energy Materials 2023, 6 (1) , 302-316. https://doi.org/10.1021/acsaem.2c02959
    30. Aleksandr Koronatov, Assaf Mauda, Boris Tumansky, Alexander Kaushansky, Natalia Fridman, Dmitry Bravo-Zhivotovskii, Mark Gandelman. Multimodal Reactivity of N–H Bonds in Triazanes and Isolation of a Triazinyl Radical. Journal of the American Chemical Society 2022, 144 (51) , 23642-23648. https://doi.org/10.1021/jacs.2c11113
    31. Eduardo Martínez-González, Carlos Amador-Bedolla, Víctor M. Ugalde-Saldivar. Reversible Redox Chemistry in a Phenoxazine-Based Organic Compound: A Two-Electron Storage Negolyte for Alkaline Flow Batteries. ACS Applied Energy Materials 2022, 5 (12) , 14748-14759. https://doi.org/10.1021/acsaem.2c02114
    32. Rafael N. P. Colombo, Graziela C. Sedenho, Frank N. Crespilho. Challenges in Biomaterials Science for Electrochemical Biosensing and Bioenergy. Chemistry of Materials 2022, 34 (23) , 10211-10222. https://doi.org/10.1021/acs.chemmater.2c02080
    33. Yufeng Liu, Xianzhi Yuan, Mingbao Huang, Zhipeng Xiang, Shuzhi Hu, Zhiyong Fu, Xuhong Guo, Zhenxing Liang. Redox-Modulated Host–Guest Complex Realizing Stable Two-Electron Storage Viologen for Flow Battery. Industrial & Engineering Chemistry Research 2022, 61 (39) , 14508-14514. https://doi.org/10.1021/acs.iecr.2c02272
    34. Scott E. Waters, Casey M. Davis, Jonathan R. Thurston, Michael P. Marshak. Maximizing Vanadium Deployment in Redox Flow Batteries Through Chelation. Journal of the American Chemical Society 2022, 144 (39) , 17753-17757. https://doi.org/10.1021/jacs.2c07076
    35. Sarah Choi, Anseong Park, Dongho Seo, Won Bo Lee, Ki Min Nam, YongJoo Kim, Jinho Chang. Redox-Transition from Irreversible to Reversible Vitamin C by Pore Confinement in Microporous Carbon Network. ACS Applied Materials & Interfaces 2022, 14 (32) , 36557-36569. https://doi.org/10.1021/acsami.2c07719
    36. Xiu-Liang Lv, Patrick Sullivan, Hui-Chun Fu, XuanXin Hu, Honghao Liu, Song Jin, Wenjie Li, Dawei Feng. Dextrosil-Viologen: A Robust and Sustainable Anolyte for Aqueous Organic Redox Flow Batteries. ACS Energy Letters 2022, 7 (8) , 2428-2434. https://doi.org/10.1021/acsenergylett.2c01198
    37. Scott E. Waters, Brian H. Robb, Steven J. Scappaticci, James D. Saraidaridis, Michael P. Marshak. Isolation and Characterization of a Highly Reducing Aqueous Chromium(II) Complex. Inorganic Chemistry 2022, 61 (23) , 8752-8759. https://doi.org/10.1021/acs.inorgchem.2c00699
    38. Baosen Zhang, Briana R. Schrage, Ariana Frkonja-Kuczin, Sanjay Gaire, Ivan A. Popov, Christopher J. Ziegler, Aliaksei Boika. Zwitterionic Ferrocenes: An Approach for Redox Flow Battery (RFB) Catholytes. Inorganic Chemistry 2022, 61 (21) , 8117-8120. https://doi.org/10.1021/acs.inorgchem.2c00722
    39. Gonggen Tang, Yahua Liu, Yuanyuan Li, Kang Peng, Peipei Zuo, Zhengjin Yang, Tongwen Xu. Designing Robust Two-Electron Storage Extended Bipyridinium Anolytes for pH-Neutral Aqueous Organic Redox Flow Batteries. JACS Au 2022, 2 (5) , 1214-1222. https://doi.org/10.1021/jacsau.2c00184
    40. Jelte S. Steen, Jules L. Nuismer, Vytautas Eiva, Albert E. T. Wiglema, Nicolas Daub, Johan Hjelm, Edwin Otten. Blatter Radicals as Bipolar Materials for Symmetrical Redox-Flow Batteries. Journal of the American Chemical Society 2022, 144 (11) , 5051-5058. https://doi.org/10.1021/jacs.1c13543
    41. Ben He, Sikun Zhang, Yueyan Zhang, Guoping Li, Bingjie Zhang, Wenqiang Ma, Bin Rao, Ruitong Song, Lei Zhang, Yanfeng Zhang, Gang He. ortho-Terphenylene Viologens with Through-Space Conjugation for Enhanced Photocatalytic Oxidative Coupling and Hydrogen Evolution. Journal of the American Chemical Society 2022, 144 (10) , 4422-4430. https://doi.org/10.1021/jacs.1c11577
    42. Xiao Wang, Jingchao Chai, Shu Zhang, Bingbing Chen, Ashwin Chaturvedi, Guanglei Cui, Jianbing Jimmy Jiang. Insights into Indigo K+ Association in a Half-Slurry Flow Battery. ACS Energy Letters 2022, 7 (3) , 1178-1186. https://doi.org/10.1021/acsenergylett.2c00165
    43. Mike L. Perry, Kara E. Rodby, Fikile R. Brushett. Untapped Potential: The Need and Opportunity for High-Voltage Aqueous Redox Flow Batteries. ACS Energy Letters 2022, 7 (2) , 659-667. https://doi.org/10.1021/acsenergylett.1c02225
    44. Erik Schröter, Christian Stolze, Adrian Saal, Kristin Schreyer, Martin D. Hager, Ulrich S. Schubert. All-Organic Redox Targeting with a Single Redox Moiety: Combining Organic Radical Batteries and Organic Redox Flow Batteries. ACS Applied Materials & Interfaces 2022, 14 (5) , 6638-6648. https://doi.org/10.1021/acsami.1c21122
    45. Nicholas E. S. Tay, Dan Lehnherr, Tomislav Rovis. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chemical Reviews 2022, 122 (2) , 2487-2649. https://doi.org/10.1021/acs.chemrev.1c00384
    46. Yan Jing, Eric M. Fell, Min Wu, Shijian Jin, Yunlong Ji, Daniel A. Pollack, Zhijiang Tang, Dian Ding, Meisam Bahari, Marc-Antoni Goulet, Tatsuhiro Tsukamoto, Roy G. Gordon, Michael J. Aziz. Anthraquinone Flow Battery Reactants with Nonhydrolyzable Water-Solubilizing Chains Introduced via a Generic Cross-Coupling Method. ACS Energy Letters 2022, 7 (1) , 226-235. https://doi.org/10.1021/acsenergylett.1c02504
    47. Bertrand J. Neyhouse, Kevin M. Tenny, Yet-Ming Chiang, Fikile R. Brushett. Microelectrode-Based Sensor for Measuring Operando Active Species Concentrations in Redox Flow Cells. ACS Applied Energy Materials 2021, 4 (12) , 13830-13840. https://doi.org/10.1021/acsaem.1c02580
    48. Aleksandr Korshunov, Anna Gibalova, Mariano Gruenebaum, Bart Jan Ravoo, Martin Winter, Isidora Cekic-Laskovic. Supramolecular Viologen–Cyclodextrin Electrolytes for Aqueous Organic Redox Flow Batteries. ACS Applied Energy Materials 2021, 4 (11) , 12353-12364. https://doi.org/10.1021/acsaem.1c02156
    49. Min Li, Susan A. Odom, Adam R. Pancoast, Lily A. Robertson, Thomas P. Vaid, Garvit Agarwal, Hieu A. Doan, Yilin Wang, T. Malsha Suduwella, Sambasiva R. Bheemireddy, Randy H. Ewoldt, Rajeev S. Assary, Lu Zhang, Matthew S. Sigman, Shelley D. Minteer. Experimental Protocols for Studying Organic Non-aqueous Redox Flow Batteries. ACS Energy Letters 2021, 6 (11) , 3932-3943. https://doi.org/10.1021/acsenergylett.1c01675
    50. Dipobrato Sarbapalli, Abhiroop Mishra, Joaquín Rodríguez-López. Pt/Polypyrrole Quasi-References Revisited: Robustness and Application in Electrochemical Energy Storage Research. Analytical Chemistry 2021, 93 (42) , 14048-14052. https://doi.org/10.1021/acs.analchem.1c03552
    51. Mingguang Pan, Yan Lu, Shuyu Lu, Bo Yu, Jie Wei, Yuzhu Liu, Zhong Jin. The Dual Role of Bridging Phenylene in an Extended Bipyridine System for High-Voltage and Stable Two-Electron Storage in Redox Flow Batteries. ACS Applied Materials & Interfaces 2021, 13 (37) , 44174-44183. https://doi.org/10.1021/acsami.1c09019
    52. Lihong Zhao, Alae Eddine Lakraychi, Zhaoyang Chen, Yanliang Liang, Yan Yao. Roadmap of Solid-State Lithium-Organic Batteries toward 500 Wh kg–1. ACS Energy Letters 2021, 6 (9) , 3287-3306. https://doi.org/10.1021/acsenergylett.1c01368
    53. Seongmo Ahn, Jin Hyeok Jang, Jungtaek Kang, Moony Na, Jia Seo, Vikram Singh, Jung Min Joo, Hye Ryung Byon. Systematic Designs of Dicationic Heteroarylpyridiniums as Negolytes for Nonaqueous Redox Flow Batteries. ACS Energy Letters 2021, 6 (9) , 3390-3397. https://doi.org/10.1021/acsenergylett.1c01623
    54. Xuefeng Zhang, Wenwu Li, Hongning Chen. High-Capacity CuSi2P3-Based Semisolid Anolyte for Redox Flow Batteries. ACS Applied Materials & Interfaces 2021, 13 (34) , 40552-40561. https://doi.org/10.1021/acsami.1c09590
    55. Eduardo Martínez-González, Martha M. Flores-Leonar, Carlos Amador-Bedolla, Víctor M. Ugalde-Saldívar. Concentration Effects on the First Reduction Process of Methyl Viologens and Diquat Redox Flow Battery Electrolytes. ACS Applied Energy Materials 2021, 4 (7) , 6624-6634. https://doi.org/10.1021/acsaem.1c00685
    56. N. Harsha Attanayake, T. Malsha Suduwella, Yichao Yan, Aman Preet Kaur, Zhiming Liang, Melanie S. Sanford, Susan A. Odom. Comparative Study of Organic Radical Cation Stability and Coulombic Efficiency for Nonaqueous Redox Flow Battery Applications. The Journal of Physical Chemistry C 2021, 125 (26) , 14170-14179. https://doi.org/10.1021/acs.jpcc.1c00686
    57. Bin Liu, Chun Wai Tang, Haoran Jiang, Guochen Jia, Tianshou Zhao. Carboxyl-Functionalized TEMPO Catholyte Enabling High-Cycling-Stability and High-Energy-Density Aqueous Organic Redox Flow Batteries. ACS Sustainable Chemistry & Engineering 2021, 9 (18) , 6258-6265. https://doi.org/10.1021/acssuschemeng.0c08946
    58. Fei Wang, Hongyuan Sheng, Wenjie Li, James B. Gerken, Song Jin, Shannon S. Stahl. Stable Tetrasubstituted Quinone Redox Reservoir for Enhancing Decoupled Hydrogen and Oxygen Evolution. ACS Energy Letters 2021, 6 (4) , 1533-1539. https://doi.org/10.1021/acsenergylett.1c00236
    59. Md. Abdul Aziz, Sangaraju Shanmugam. High-Performance Cobalt–Tungsten All-Heteropolyacid Redox Flow Battery with a TiZrO4-Decorated Advanced Nafion Composite Membrane. ACS Applied Energy Materials 2021, 4 (3) , 2115-2129. https://doi.org/10.1021/acsaem.0c02538
    60. Manu Gautam, Zahid M. Bhat, Abdul Raafik, Steven Le Vot, Mruthunjayachari C. Devendrachari, Alagar Raja Kottaichamy, Neethu Christudas Dargily, Ravikumar Thimmappa, Olivier Fontaine, Musthafa Ottakam Thotiyl. Coulombic Force Gated Molecular Transport in Redox Flow Batteries. The Journal of Physical Chemistry Letters 2021, 12 (5) , 1374-1383. https://doi.org/10.1021/acs.jpclett.0c03584
    61. Won Joon Jang, Jin Seong Cha, Hansung Kim, Jung Hoon Yang. Effect of an Iodine Film on Charge-Transfer Resistance during the Electro-Oxidation of Iodide in Redox Flow Batteries. ACS Applied Materials & Interfaces 2021, 13 (5) , 6385-6393. https://doi.org/10.1021/acsami.0c22895
    62. Evan Wenbo Zhao, Erlendur Jónsson, Rajesh B. Jethwa, Dominic Hey, Dongxun Lyu, Adam Brookfield, Peter A. A. Klusener, David Collison, Clare P. Grey. Coupled In Situ NMR and EPR Studies Reveal the Electron Transfer Rate and Electrolyte Decomposition in Redox Flow Batteries. Journal of the American Chemical Society 2021, 143 (4) , 1885-1895. https://doi.org/10.1021/jacs.0c10650
    63. Jules Moutet, José M. Veleta, Thomas L. Gianetti. Symmetric, Robust, and High-Voltage Organic Redox Flow Battery Model Based on a Helical Carbenium Ion Electrolyte. ACS Applied Energy Materials 2021, 4 (1) , 9-14. https://doi.org/10.1021/acsaem.0c02350
    64. Jeremy D. Griffin, Adam R. Pancoast, Matthew S. Sigman. Interrogation of 2,2′-Bipyrimidines as Low-Potential Two-Electron Electrolytes. Journal of the American Chemical Society 2021, 143 (2) , 992-1004. https://doi.org/10.1021/jacs.0c11267
    65. Wenjie Li, Song Jin. Design Principles and Developments of Integrated Solar Flow Batteries. Accounts of Chemical Research 2020, 53 (11) , 2611-2621. https://doi.org/10.1021/acs.accounts.0c00373
    66. Amela Arnold, Ryan J. Dougherty, Cody R. Carr, Lauren C. Reynolds, James C. Fettinger, Anthony Augustin, Louise A. Berben. A Stable Organo-Aluminum Analyte Enables Multielectron Storage for a Nonaqueous Redox Flow Battery. The Journal of Physical Chemistry Letters 2020, 11 (19) , 8202-8207. https://doi.org/10.1021/acs.jpclett.0c01761
    67. Eduardo Martínez-González, Humberto G. Laguna, Mariano Sánchez-Castellanos, Sergio S. Rozenel, Víctor M. Ugalde-Saldivar, Carlos Amador-Bedolla. Kinetic Properties of Aqueous Organic Redox Flow Battery Anolytes Using the Marcus–Hush Theory. ACS Applied Energy Materials 2020, 3 (9) , 8833-8841. https://doi.org/10.1021/acsaem.0c01336
    68. Scott E. Waters, Brian H. Robb, Michael P. Marshak. Effect of Chelation on Iron–Chromium Redox Flow Batteries. ACS Energy Letters 2020, 5 (6) , 1758-1762. https://doi.org/10.1021/acsenergylett.0c00761
    69. Fikile R. Brushett, Michael J. Aziz, Kara E. Rodby. On Lifetime and Cost of Redox-Active Organics for Aqueous Flow Batteries. ACS Energy Letters 2020, 5 (3) , 879-884. https://doi.org/10.1021/acsenergylett.0c00140
    70. Jingchao Chai Amir Lashgari Jianbing “Jimmy” Jiang . Electroactive Materials for Next-Generation Redox Flow Batteries: From Inorganic to Organic. 2020, 1-47. https://doi.org/10.1021/bk-2020-1364.ch001
    71. Gonggen Tang, Wenyi Wu, Yahua Liu, Kang Peng, Peipei Zuo, Zhengjin Yang, Tongwen Xu. Adjusting Hirshfeld charge of TEMPO catholytes for stable all-organic aqueous redox flow batteries. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-024-55244-4
    72. Haiguang Gao, Mengcheng Song, Chen Gu, Yanjun Shi, Xiaofei Yu, Yucheng Huang, Juan Xu, Jianyu Cao. Advanced aqueous phenazine redox flow battery enhanced by selective interfacial water behavior on Co/NC modified electrode. Journal of Colloid and Interface Science 2025, 683 , 1055-1063. https://doi.org/10.1016/j.jcis.2024.12.142
    73. Tiansheng Wang, Didier Astruc. Electron-reservoir applications of ferrocenes and other late transition-metal sandwich complexes: Flow batteries, sensing, catalysis, and biomedicine. Coordination Chemistry Reviews 2025, 524 , 216300. https://doi.org/10.1016/j.ccr.2024.216300
    74. Xingya Li, Peipei Zuo, Xiaolin Ge, Zhengjin Yang, Tongwen Xu. Constructing new-generation ion exchange membranes under confinement regime. National Science Review 2025, 12 (2) https://doi.org/10.1093/nsr/nwae439
    75. Kaiqiang Zhang, Chao Wu, Luoya Wang, Changlong Ma, Shiye Yan, Jilei Ye, Yuping Wu. Transition from liquid-electrode batteries to colloidal electrode batteries for long-lasting performance. Journal of Power Sources 2025, 626 , 235754. https://doi.org/10.1016/j.jpowsour.2024.235754
    76. Young Je Park, Won Young Choi, Hyunguk Choi, Seo Won Choi, Jae-ll Park, Jieun Nam, Jong Min Lee, Kwang Shik Myung, Young Gi Yoon, Chi-Young Jung. Deciphering the microstructural complexities of compacted carbon fiber paper through AI-enabled digital twin technology. Applied Energy 2025, 377 , 124689. https://doi.org/10.1016/j.apenergy.2024.124689
    77. Jacobus C. Duburg, Jonathan Avaro, Leonard Krupnik, Bruno F.B. Silva, Antonia Neels, Thomas J. Schmidt, Lorenz Gubler. Design Principles for High‐Performance Meta ‐Polybenzimidazole Membranes for Vanadium Redox Flow Batteries. ENERGY & ENVIRONMENTAL MATERIALS 2025, 8 (1) https://doi.org/10.1002/eem2.12793
    78. Shuangbin Zhang, Shengyong Gao, Yiming Zhang, Yuxi Song, Ian R. Gentle, Lianzhou Wang, Bin Luo. All-Soluble All-Iron Aqueous Redox Flow Batteries: Towards Sustainable Energy Storage. Energy Storage Materials 2025, 111 , 104004. https://doi.org/10.1016/j.ensm.2025.104004
    79. Ruiyong Chen, Muhammad Mara Ikhsan, Dirk Henkensmeier, Peng Zhang, Zhifeng Huang, Sangwon Kim, Rolf Hempelmann. Batteries – Battery Types – Redox-Flow Batteries | Organic Reactant Systems. 2025, 37-49. https://doi.org/10.1016/B978-0-323-96022-9.00057-8
    80. Saeed Mardi, Ujwala Ail, Mikhail Vagin, Jaywant Phopase, Reverant Crispin. On the Reversibility of Sustainable Symmetric Aqueous Organic Redox Flow Batteries. Advanced Energy and Sustainability Research 2024, 83 https://doi.org/10.1002/aesr.202400324
    81. Zhipeng Xiang, Tianlu Ren, Mingbao Huang, Wenjin Li, Liwen Wang, Kai Wan, Zhiyong Fu, Zhenxing Liang. Manipulating Aggregate Electrochemistry for High‐Performance Organic Redox Flow Batteries. Angewandte Chemie 2024, https://doi.org/10.1002/ange.202416184
    82. Thomas Y. George, Eric M. Fell, Kyumin Lee, Michael S. Emanuel, Michael J. Aziz. Influence of crossover on capacity fade of symmetric redox flow cells. Energy Advances 2024, 3 (12) , 2910-2921. https://doi.org/10.1039/D4YA00407H
    83. Mani Ulaganathan. Zinc–iron (Zn–Fe) redox flow battery single to stack cells: a futuristic solution for high energy storage off-grid applications. Energy Advances 2024, 3 (12) , 2861-2876. https://doi.org/10.1039/D4YA00358F
    84. Ruozhu Feng, Andrey V. Liyu, Soowhan Kim, Chao Zeng, Carter C. Bracken, Yangang Liang, Wei Wang. Miniaturize the Redox Flow Battery for Accelerated Materials Discovery and Development. Journal of The Electrochemical Society 2024, 171 (12) , 120532. https://doi.org/10.1149/1945-7111/ad9bef
    85. Bin Liu, Yiju Li, Guocheng Jia, Tianshou Zhao. Recent Advances in Redox Flow Batteries Employing Metal Coordination Complexes as Redox-Active Species. Electrochemical Energy Reviews 2024, 7 (1) https://doi.org/10.1007/s41918-023-00205-6
    86. Xinjie Guan, Maria Skyllas-Kazacos, Chris Menictas. An electrochemical stack model for aqueous organic flow battery: The MV/TEMPTMA system. Applied Energy 2024, 375 , 124024. https://doi.org/10.1016/j.apenergy.2024.124024
    87. Fengjia Xie, Xuming Zhang, Zhefei Pan. Electrochemical systems for renewable energy conversion and storage: Focus on flow batteries and regenerative fuel cells. Current Opinion in Electrochemistry 2024, 48 , 101596. https://doi.org/10.1016/j.coelec.2024.101596
    88. Guangxu Ge, Fan Li, Min Yang, Ziming Zhao, Guangjin Hou, Changkun Zhang, Xianfeng Li. In Situ Molecular Reconfiguration of Pyrene Redox‐Active Molecules for High‐Performance Aqueous Organic Flow Batteries. Advanced Materials 2024, 36 (49) https://doi.org/10.1002/adma.202412197
    89. Ming Chen, Ri Chen, Igor Zhitomirsky, Guanjie He, Kaiyuan Shi. Redox-active molecules for aqueous electrolytes of energy storage devices: A review on fundamental aspects, current progress, and prospects. Materials Science and Engineering: R: Reports 2024, 161 , 100865. https://doi.org/10.1016/j.mser.2024.100865
    90. Jiayi Gao, Lixing Xia, Miaoning Ou, Zhan'ao Tan. Metal Coordination Compounds for Organic Redox Flow Batteries. Batteries & Supercaps 2024, 7 (12) https://doi.org/10.1002/batt.202400434
    91. Toby Wong, Yijie Yang, Rui Tan, Anqi Wang, Zhou Zhou, Zhizhang Yuan, Jiaxi Li, Dezhi Liu, Alberto Alvarez-Fernandez, Chunchun Ye, Mark Sankey, David Ainsworth, Stefan Guldin, Fabrizia Foglia, Neil B. McKeown, Kim E. Jelfs, Xianfeng Li, Qilei Song. Sulfonated poly(ether-ether-ketone) membranes with intrinsic microporosity enable efficient redox flow batteries for energy storage. Joule 2024, 5 , 101795. https://doi.org/10.1016/j.joule.2024.11.012
    92. Kiana Amini, Thomas Cochard, Yan Jing, Jordan D. Sosa, Dawei Xi, Maia Alberts, Michael S. Emanuel, Emily F. Kerr, Roy G. Gordon, Michael J. Aziz. In situ techniques for aqueous quinone-mediated electrochemical carbon capture and release. Nature Chemical Engineering 2024, 1 (12) , 774-786. https://doi.org/10.1038/s44286-024-00153-y
    93. Si Huang, Jun Lu, Jian Wang, Xinghui Fu, Yaping Fu, Yinping Li, Xilin Shi, Zhikai Dong, Kai Zhao, Peng Li, Mingnan Xu, Xiangsheng Chen. Experimental study on creep characteristics of electrolyte-bearing salt rock under long-term triaxial cyclic loading. Frontiers in Earth Science 2024, 12 https://doi.org/10.3389/feart.2024.1503158
    94. Anqi Wang, Charlotte Breakwell, Fabrizia Foglia, Rui Tan, Louie Lovell, Xiaochu Wei, Toby Wong, Naiqi Meng, Haodong Li, Andrew Seel, Mona Sarter, Keenan Smith, Alberto Alvarez‐Fernandez, Mate Furedi, Stefan Guldin, Melanie M. Britton, Neil B. McKeown, Kim E. Jelfs, Qilei Song. Selective ion transport through hydrated micropores in polymer membranes. Nature 2024, 635 (8038) , 353-358. https://doi.org/10.1038/s41586-024-08140-2
    95. Gabriel Gonzalez, Pekka Peljo. Experimental Set‐Up for Measurement of Half‐Cell‐ and Over‐Potentials of Flow Batteries During Operation. Batteries & Supercaps 2024, https://doi.org/10.1002/batt.202400394
    96. Kaiqiang Zhang, Chao Wu, Luoya Wang, Changlong Ma, Jilei Ye, Yuping Wu. Soft Colloidal Electrode Enabled by Water Distribution Control for Ultra‐Stable Aqueous Zn–I Batteries. Small Methods 2024, 15 https://doi.org/10.1002/smtd.202401187
    97. Hiroyuki Nishide. Redox Polymers: Opportunities and Challenges in their Unique Functionalities. Macromolecular Chemistry and Physics 2024, 15 https://doi.org/10.1002/macp.202400387
    98. Mikhail M. Petrov, Dmitry V. Chikin, Kirill A. Karpenko, Lilia Z. Antipova, Pavel A. Loktionov, Roman D. Pichugov, Alena R. Karastsialiova, Anatoly N. Vereshchagin, Anatoly E. Antipov. Tuning the composition of mixed anthraquinone derivatives towards an affordable flow battery negolyte. Journal of Electroanalytical Chemistry 2024, 973 , 118693. https://doi.org/10.1016/j.jelechem.2024.118693
    99. Janine Maier, Reyhan Yagmur, Dominik Wickenhauser, Ana Torvisco, Anne-Marie Kelterer, Stefan Spirk. Electrochemical Investigation of Symmetric Aminoquinones. Journal of The Electrochemical Society 2024, 171 (11) , 116504. https://doi.org/10.1149/1945-7111/ad8f00
    100. Lavrans F. Söffker, Thomas Turek, Ulrich Kunz, Luis F. Arenas. Screening of Cation Exchange Membranes for an Anthraquinone‐Ferrocyanide Flow Battery. ChemElectroChem 2024, 12 https://doi.org/10.1002/celc.202400516
    Load more citations

    Chemical Reviews

    Cite this: Chem. Rev. 2020, 120, 14, 6467–6489
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemrev.9b00599
    Published February 13, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    16k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.