ACS Publications. Most Trusted. Most Cited. Most Read
Single-Virus Tracking: From Imaging Methodologies to Virological Applications
My Activity
  • Open Access
Review

Single-Virus Tracking: From Imaging Methodologies to Virological Applications
Click to copy article linkArticle link copied!

  • Shu-Lin Liu
    Shu-Lin Liu
    State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
    Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
    More by Shu-Lin Liu
  • Zhi-Gang Wang
    Zhi-Gang Wang
    State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
  • Hai-Yan Xie
    Hai-Yan Xie
    School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
    More by Hai-Yan Xie
  • An-An Liu
    An-An Liu
    State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
    More by An-An Liu
  • Don C. Lamb
    Don C. Lamb
    Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München, 81377, Germany
    More by Don C. Lamb
  • Dai-Wen Pang*
    Dai-Wen Pang
    State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
    College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. China
    *Email:[email protected]
    More by Dai-Wen Pang
Open PDF

Chemical Reviews

Cite this: Chem. Rev. 2020, 120, 3, 1936–1979
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.chemrev.9b00692
Published January 17, 2020
Copyright © 2020 American Chemical Society

Abstract

Click to copy section linkSection link copied!

Uncovering the mechanisms of virus infection and assembly is crucial for preventing the spread of viruses and treating viral disease. The technique of single-virus tracking (SVT), also known as single-virus tracing, allows one to follow individual viruses at different parts of their life cycle and thereby provides dynamic insights into fundamental processes of viruses occurring in live cells. SVT is typically based on fluorescence imaging and reveals insights into previously unreported infection mechanisms. In this review article, we provide the readers a broad overview of the SVT technique. We first summarize recent advances in SVT, from the choice of fluorescent labels and labeling strategies to imaging implementation and analytical methodologies. We then describe representative applications in detail to elucidate how SVT serves as a valuable tool in virological research. Finally, we present our perspectives regarding the future possibilities and challenges of SVT.

Copyright © 2020 American Chemical Society

Note

This article is made available via the ACS COVID-19 subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

1. Introduction

Click to copy section linkSection link copied!

Viruses are intracellular parasites that rely on host cells for completion of their life cycles. Most viruses are composed mainly of nucleic acids (RNA or DNA), structural proteins (e.g., capsid), and a lipid membrane (for enveloped viruses). The primary function of any virus is to reproduce in host cells. For this purpose, viruses should accomplish two major tasks: (i) to break through the barriers that block virus entry and transport into cell cytosol and (ii) to release their genome at the preferred sites within the cells for viral transcription and replication. (1−4) The newly synthesized viral proteins and genomes are assembled in the infected cells to generate progeny viruses, which are then released to the extracellular space by exocytosis or by lysing the host cells. Additionally, viruses may take different pathways to infect host cells, and the complicated infection processes usually include multiple steps and intricate interactions between viral components and cellular structures. (5−7) Thus, it is important to understand the complicated infection mechanisms of viruses in time and space for fighting against virus infection and preventing viral diseases.
Early researchers mainly utilized transmission electron microscopy (TEM) and biochemical experiments to investigate viral infection mechanisms in cells. TEM has played an essential role in studying the infection pathway of viruses, but it can only acquire static images from the scenario of virus infection in live cells. In vitro biochemical experiments commonly use the samples isolated from organisms to conduct ensemble measurements and deduce the effects. Conventional methods lack the ability to acquire dynamic information on individual viruses during the infection process, since the cellular events occur in a stochastic manner across spatial and temporal scales. The biggest challenge is how to realize the visualization of infection processes directly and dynamically in live cells and thereby uncover the mechanisms of infection and proliferation.
Fluorescence microscopy has had a great impact on cell biology ranging from the molecular to the organism scale. Initially, fluorescence was mainly used to visualize the intracellular distribution of proteins in fixed cells via antibodies. (8,9) With improvements in microscopy, it has become possible to measure individual biomolecules as they perform their function in their native environment using single-particle tracking (SPT). (10−17) SPT has successfully solved many basic biological questions and greatly enhances our repertoire of research approaches for investigating, for example, membrane organization, (18−20) protein folding, (21−23) molecular motor dynamics, (24−26) and cell signal transduction. (27−29) Thereinto, single-virus tracking (SVT) allows researchers to follow individual viruses, visualize their transport behaviors, dissect their dynamic interactions with the host cells, and reveal the underlying mechanisms of viral processes. (30−33) In SVT studies, viruses are addressed independently, avoiding ensemble averaging and making it possible to investigate the dynamic behaviors of single viruses in their native, complex surroundings. Thus, time-dependent unsynchronized infection events can be monitored in real time. Hence, the SVT technique is a powerful approach for studying the real-time and in situ dynamics of viral processes in live cells, and it is attracting the attention of researchers. Until now, this method has revealed a variety of complicated infection mechanisms of various viruses including the mechanisms of viral entry, trafficking, and egress. SVT has also been used to follow the uptake and cellular distribution of artificial viruses and drug delivery carriers due to their similar nature.
In this review, we will first describe the historical retrospect of the SVT technique, and then discuss the fluorescent labels used for SVT, discuss the advantages and limitations of each kind of fluorescent labels, and describe how to use the fluorophores for virus labeling. Subsequently, we will elaborate on the various approaches for SVT, the imaging instruments, and data analysis methods for accurately extracting the dynamic information on virus infection from live-cell measurements. We then highlight a couple applications of SVT and finally propose the future possibilities and challenges of the SVT technique.

2. Historical Retrospect of Single-Virus Tracking

Click to copy section linkSection link copied!

Single-virus tracking is a new and growing technique. It originates from single-particle techniques, which have each become a remarkable tool in biological fields. These techniques add new insights beyond conventional ensemble methods by providing dynamic information regarding the biological processes. There are a number of methods used to monitor the mobility of particles including fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and single-particle tracking (SPT). FRAP was established in the 1970s to measure the mobility of molecules via the recovery speed of fluorescence intensity after photobleaching a given region. (34,35) In the same decade, FCS was developed to detect and analyze the fluctuations of fluorescence intensity caused by fluorescent molecules entering and leaving the observation volume. (36) The dynamic parameters, such as diffusion coefficient and average residence time, could be extracted from the autocorrelation analysis. (37,38) Strictly speaking, FRAP and FCS measure the average behaviors of hundreds or even thousands of molecules, and the geometry of the photobleached volume or the point-spread-function (PSF) of the FCS excitation beam, respectively, needs to be known in detail. These techniques only provide limited dynamic information and do not truly reflect the kinetics of biological processes in time and space on the single particle level. SPT, however, is capable of monitoring the movements of individual molecules directly by optical microscopy, and it can detect subpopulations and event detection changes in diffusional behavior of a single particle. Hence, the technique is appealing for investigating dynamic events in live cells.
SPT dates back hundreds if not thousands of years. Galileo Galilei tracked the moons of Jupiter and contributed data that resulted in overturning the view of the universe at that time. SPT on the microscale began in the early 1970s, when Howard Berg built a microscope for tracking single bacteria. (39,40) The first subcellular tracking experiments were performed at the beginning of the 1980s, when Barak et al. tracked individual low-density lipoprotein (LDL)-receptor complexes in live cells. (41) These measurements opened up a new avenue for studying the dynamic mechanisms of individual biomolecules (Figure 1). Notably, advances in imaging instruments and algorithms greatly improved the imaging speed and accuracy of the SPT technique, which enabled the investigation of more complex processes with a better spatial-temporal resolution. (42−48) Since then, the applications of SPT had a dramatic increase in the biological field. A major breakthrough in three-dimensional (3D) SPT occurred in 1994. Using a modified epifluorescence microscope where a weak cylindrical lens had been placed in the detection path, Kao et al. successfully tracked individual fluorescent particles and determined z positions from the image shape and orientation with a peak detection algorithm. (49) Inspired by this research, many researchers made efforts to develop imaging methods and analyzing algorithms for 3D SPT. (50−57) In recent years, a number of 3D SPT methods have become available to track the dynamic behaviors of biomolecules in the 3D environment. For recent reviews, we refer the reader to refs (58−61).

Figure 1

Figure 1. Timeline of the key developments of the single-virus tracking technique.

Viruses, due to their small size and the dramatic impact they have on human health, are an important and popular system for SPT experiments. Hence, SPT performed on viruses has come to be known as single-virus tracking (SVT). Already in the 1990s, SVT techniques began to show their talent at probing the dynamic mechanisms of virus infection. Originally, organic dyes were used to label viruses by antigen–antibody interactions in fixed cells. (62,63) With the emergence and application of fluorescence video microscopy, organic dyes could be used to labeled viruses and the budding and fusion events of enveloped viruses monitored in live cells. (64−66) From the early 2000s, the SVT technique started to play a more and more important role in studying infection mechanisms of viruses. (67−75) One milestone in SVT was the experiments performed by the group of Bräuchle where they could follow the entry of adeno associated viruses labeled with a single organic fluorophore. (69) In live-cell measurements, care has to be taken when labeling viruses to ensure that the labeling does not interfere with the function of the virus and a single fluorophore is the ultimate limit for fluorescent labeling. The laboratory of Zhuang also contributed significantly to SVT with beautiful investigations that visualized the infectious behaviors of viruses and systematically dissected the dynamic mechanisms of virus entry, virus transport, and genome release. (72−74)
Almost contemporaneously, fluorescent proteins (FPs) came to the fore as fluorescent labels in the biological field. The key feature of FPs is that they allow specific cellular or viral proteins to be labeled by genetic engineering. Once a fortuitous location had been determined for virus labeling, it no longer became necessary to check after each sample preparation whether the labeling had affected the infectivity of the virus. For these reasons, the use of FPs emerged in virology and contributed immensely to the study of virus–cell interactions. In 1995, the green fluorescent protein (GFP) (76) was first introduced into the expression cassette of the potato virus X. (77) Subsequently, different kinds of viral components, including envelope protein, tegument, and capsid, were genetically labeled with FPs, and many subsequent attempts were made to monitor individual FPs-labeled viruses in host cells using SVT. (78−81) Especially the visualization of the transport behaviors of FPs-labeled viruses helped to accelerate our understanding of virus entry, fusion, and cell-to-cell transmission of human immunodeficiency virus (HIV). (82−86) Moreover, the advances made in SPT were quickly applied to SVT, and real-time 3D tracking of FP-labeled viruses provided more accurate information regarding viral processes in live cells. (87,88)
As an alternative to organic dyes and FPs, quantum dots (QDs) have also become an important tool for SPT and SVT and are heavily utilized in the fields of biology, virology, and medicine. The excellent brightness and superior photostability of QDs enable them to be tracked for extended periods of time with low laser intensity, making them particularly favorable for acquiring time-series images or z-stacks for 3D reconstructions. In the early 2000s, QDs were first utilized to track glycine receptors on the plasma membrane. (89) This stimulated the application of QDs in the SPT field and triggered the further development of imaging algorithms. In particular, special imaging algorithms were developed that overcome the drawbacks of QDs in SPT experiments, such as QDs blinking. (90−92) After that, QDs-based SPT made great advances in the investigation of dynamic processes occurring on the plasma membrane and in intracellular/intercellular environments. (93−97) In 2008, Joo et al. proposed a site-specific strategy to label the surface of lentiviruses with QDs, which pointed out a new way forward for QDs applications in virology. (98) Diverse strategies emerged to label different viral components with QDs, (99−106) and QD-labeled viruses were implemented for the long-term tracking of individual viruses during virus infection. (107−110) Additionally, by combining QD-labeling strategies with 3D SVT, viral behavior could be followed over long time scales in three dimensions and new insights gained regarding virus infection. (111,112) These results again ignited the enthusiasm of researchers to study the infection mechanisms of viruses by SVT. (113−118) There is no denying that SVT has greatly improved our understanding of the infection mechanisms of viruses.

3. Fluorescent Labels for Single-Virus Tracking

Click to copy section linkSection link copied!

The first step necessary for performing SVT experiments is to label viral components with fluorescent labels. Viruses are typically densely packed structures, and there can be limitations on the size and location of the tags that can be used as to not inhibit the functionality or even assembly of the virus. Hence, particular care needs to be taken in choosing the correct labeling approach and location on the virus, and proper controls need to be performed to verify that the functionality and infectivity of the virus is not hampered. Also, the assembly of viruses occurs directly in the living host cells such that in cellular labeling approaches are needed to visualize the early stages of assembly. These limitations make the labeling of viruses particularly challenging in comparison to the labeling of other objects such as nanoparticles used for therapeutic applications. In addition, one wishes to acquire image sequences with high spatiotemporal resolution and high signal-to-background ratio, which depends on the number and type of fluorescent labels and the imaging instrument. There is an intricate relationship among the optical characteristics of fluorescent labels, the duration of imaging and the spatial resolution and the accessible temporal sampling of imaging instruments. The brighter the labels are, the faster the time resolution can be and the higher the spatial resolution that can be achieved. Moreover, the more photostable the label is, the longer the virus can be tracked. A fluorescent label is evaluated by the relevant spectroscopic features. High brightness is one of the important properties for any fluorescent label, which means that a good fluorescent label should possess a strong ability to capture photons, such as a large molar absorption coefficient and a high fluorescence quantum yield. Meanwhile, the high photostability is the essential property belonging to the good fluorescent labels, which can endure many excitation–deexcitation cycles prior to photobleaching. This is the principal criterion for fluorescent labels used in the SVT field. It should be noted, however, that in some cases, viruses have a large number of components that can be labeled without deleterious effects. For example, the Gag protein of HIV can be labeled with FPs in a ratio of 1:1 without significantly altering its structure and infectivity. (119) As HIV contains approximately 2400 Gag proteins, ∼1000 FPs are coupled to a single viral particle and the lower photophysical properties of the FP are compensated for by the sheer number of fluorophores. (120)
There are several types of fluorophores that have emerged for labeling viral structures in the SVT field, including organic dyes, FPs, and nanoparticles (Figure 2). Each type of fluorophore has its advantages and drawbacks that the researchers need to balance according to the requirements of SVT experiments. (121) The focus of this section is to describe the recent developments and features of existing fluorescent labels and to highlight the prospective applications for future research in the SVT field.

Figure 2

Figure 2. Comparison of the size scales of fluorescent labels and the spatial resolutions of biological imaging techniques.

3.1. Organic Dyes

As small fluorescent labels (<1 kDa), organic dyes have proven indispensable for fluorescence labeling of biological systems. (122) The fluorescence properties of organic dyes are governed by both fluorophore structure and chemical environment and can be fine-tuned by elaborate design strategies. Beyond their small size, the major advantages of most organic dyes are their good photophysical properties, commercial availability, the availability of a multitude of reactive groups for various labeling strategies, and the wide spectral range of options. (123) Compared with FPs, organic dyes have several excellent properties, such as higher brightness, smaller size, better photostability, and a wider color palette, (10,122,124) which have been broadly used for single-virus imaging. (31,125−127) According to their inherent nature and characteristics, organic dyes can be classified into three categories for virus labeling: covalent labeling dyes, lipophilic dyes, and intercalating dyes.

3.1.1. Covalent Labeling Dyes

Many organic dyes can be used to bind viral components covalently. During the development of the SVT technique, several families of fluorescent dyes have been used for labeling viruses. The photophysical properties of these dyes for single-virus imaging vary widely. More detailed information regarding the properties of the covalent labeling dyes is shown in Table 1.
Table 1. Covalent Labeling Dyes for Virus Imaging
a

The color of emitted light.

b

Maximum excitation wavelength.

c

Maximum emission wavelength.

d

Extinction coefficient.

e

Fluorescence quantum yield.

f

Fluorescence lifetime.

g

Viral ribonucleoprotein.

h

Influenza virus.

i

Adeno-associated virus.

j

Seneca valley virus.

k

Poliovirus.

l

Rabies virus.

m

Semliki forest virus.

n

Vesicular stomatitis virus.

o

Simian virus 40.

p

Human papillomavirus.

q

Foot-and-mouth disease virus.

r

Murine polyoma virus.

s

Canine parvovirus.

t

Reovirus.

u

Uukuniemi virus.

v

Human adenovirus.

w

Not determined.

x

Information from Thermo Fisher.

y

Information from GE Healthcare.

z

Information from Atto-TEC.

Cyanine dyes have received wide attention for biomolecular labeling applications due to their high absorption cross sections, leading to high brightness and photostability. They consist of two quaternized heteroaromatic bases joined by a polymethine bridge. Their emission profiles extend from about 450 to 1000 nm, which can be tuned by the length of the polymethine bridge. (147−149) Cy3 and Cy5 are the most popular cyanine dyes for SVT. (119,129−133) It is worth pointing out that an epoch-making progress happened in 2001, (69,150) when adeno-associated viruses (AAVs) labeled with a single Cy5 dye were tracked in real time to dissect the entry pathway of individual viruses in living cells (Figure 3). The detailed observation and quantitative description of viral behaviors paved a new road to illuminate virus–host cell interactions at single-virus level. Thereafter, the field paid more attention to the use of organic dyes to label various components of viruses for tracking. One also began to use environment-sensitive fluorophores, such as CypHer5, which is a pH-sensitive cyanine dye that has low fluorescence at basic pH and high fluorescence at acidic pH. Based on this property, it was applied to monitor the viral movements from the plasma membrane to acidic endosomes. The double labeling of viruses with Cy3 and CypHer5 made it possible to simultaneously monitor the transport and acidification processes of viruses. (68,128)

Figure 3

Figure 3. Uptake of Cy5-labeled adeno-associated virus (AAV) by a live HeLa cell. (a) Representative trajectories of AAV particles in cells at different stages of the infection. (b) Zoom in of trajectory 2 showing several membrane interactions of the AAV at the cell surface. (c) Mean number of consecutive cell interactions derived for viruses that did not dock. (d–e) Distribution of adsorption times for (d) 137 nondocking and (e) 42 membrane penetrating trajectories. Adapted with permission from ref (69). Copyright 2001 The American Association for the Advancement of Science.

The Alexa Fluor family of organic dyes are synthesized though the sulfonation and modification of certain well-known dye classes such as rhodamine, fluorescein, and cyanine dyes. Due to the sulfonation, Alexa Fluor dyes are normally negatively charged and more hydrophilic than their precursors. With the aid of additional modifications, Alexa Fluor dyes are more photostable and less pH-sensitive than the original dyes. (151,152) In the meanwhile, the emission spectra of the Alexa Fluor series span the visible spectrum and extend into the near-infrared region. These properties make them ideal for investigating the cellular uptake and endosomal transport of viruses. Thus, Alexa Fluor derivatives have been popularly applied to label viruses, including murine polyoma virus (MPV), (139) canine parvovirus (CPV), (142) vesicular stomatitis virus (VSV), (134) simian virus 40 (SV40), (135,141) human papillomavirus (HPV), (137) foot-and-mouth disease virus (FMDV), (138) AAV, (136) and reovirus (RV). (143) For example, by labeling RV with Alexa Fluor 647, Kirchhausen et al. found that individual RV particles were captured and internalized by clathrin-coated pits and vesicles, illustrating RV required access to endosomes for successful infection. (143) Multiple-color imaging of Alexa Fluor-labeled VSV and a shorter, defective interfering particle indicated that the elongated shape of a VSV particle triggered the recruitment of actin filaments to complete the viral internalization process, and the cargo geometry was important for specifying the entry modes of the viruses (Figure 4). (140)

Figure 4

Figure 4. Clathrin structures capture vesicular stomatitis viruses (VSVs) and defective interfering particles (DI-T) with similar kinetics. (a) Schematic of the clathrin-dependent virus internalization pathway. (b) VSVs and DI-T particles captured by clathrin structures in the same cell. BSC1 cells stably expressing s2-eGFP (green) were inoculated with Alexa Fluor 647-labeled DI-T (blue, blue arrowheads) and Alexa Fluor 568-labeled VSV (red, red arrowheads). Adapted with permission from ref (140). Copyright 2010 Public Library of Science.

There are other organic dyes used for labeling viruses such as fluorescein, Atto dyes, and Texas Red. Fluorescein, as a classical fluorescent reagent in biological research, possesses relatively high brightness, strong pH sensitivity, and poor photostability. Owing to the pH-sensitivity of fluorescein, the fluorescence of labeled viruses is quenched and undetectable under acidic conditions. Using the pH sensitivity, investigators could distinguish internalized fluorescein-labeled viruses from the extracellular viruses by changing the culture medium to pH 4.0. (137,139,144) Texas Red is a conventional red fluorescent dye, and its derivative, Texas Red-X (TRX) succinimidyl ester, is commercially available and readily reactive for conjugating to viruses. (67,145,146) Monitoring of TRX-labeled SV40 found that SV40 was internalized into cells by caveolae and transported to the endoplasmic reticulum by caveosomes. (67) Atto dyes have enhanced photostability and longer fluorescence lifetime than either fluorescein or most cyanine dyes, and the emission profiles cover the visible and near-infrared wavelengths. These dyes have been used as fluorescent labels in a wide range of biological imaging experiments including SVT. For example, the unequivocal images of Atto 647N-labeled capsids of CPV demonstrated that CPV capsids had a relatively short residence time on the cell surface, which limited the efficiency of virus internalization. (142)

3.1.2. Lipophilic Dyes

The lipid membrane of enveloped viruses is derived from the plasma membrane or intracellular membrane of the host cells. Hence, virus labeling represents a significant application area for fluorescent membrane probes. Membrane probes include lipophilic organic dyes and fluorescent analogs of natural lipids. While some lipophilic dyes are particularly useful for SVT experiments, other lipid probes are scarcely used to label viruses. Lipophilic dyes are able to incorporate into the envelope of viruses by hydrophobic–lipophilic interactions (Table 2). For lipophilic dyes-based single-virus imaging, these dyes have an additional advantage in that they self-quench when they are incorporated into viral particles at high concentrations. At low pH levels or upon fusion where the viral and cellular membranes mix leading to a decrease in concentration, the lipophilic dyes dequench leading to a striking increase in fluorescence. Thus, the lipophilic dyes can detect the genome-release events of viruses, since the dequenching of the fluorescence signal could be considered as the sign of the occurrence of virus-endosome or virus-plasma membrane fusion. As one kind of early applied lipophilic dyes, rhodamine derivatives were used to study the kinetics of the virus-cell membrane fusion events on the membrane surface. (65,153,154,161) For example, R110-labeled influenza viruses were used to investigate the real-time hemifusion and the pore formation of influenza viruses on a lipid bilayer. The occurrence of the hemifusion was indicated by the transient brightening of individual viruses caused by the fluorescence dequenching of R110. (154)
Table 2. Lipophilic Dyes and Intercalating Dyes for Single-Virus Imaging
a

The color of emitted light.

b

Maximum excitation wavelength.

c

Maximum emission wavelength.

d

Extinction coefficient.

e

Fluorescence quantum yield.

f

Fluorescence lifetime.

g

Not determined.

h

Influenza virus.

i

Uukuniemi virus.

j

Human immunodeficiency viruses.

k

Ebolavirus.

l

Hepatitis B virus.

m

Vesicular stomatitis virus.

n

Dengue virus.

o

Hepatitis C virus.

p

Avian sarcoma and leukosis virus.

q

Chikungunya virus.

r

Poliovirus.

s

Human rhinovirus.

t

Information from Thermo Fisher.

With the emergence and development of fluorescence microscopy, researchers began to observe individual fluorescent viruses for obtaining more intuitive information about virus infection. Long-chain dialkylcarbocyanines (e.g., DiD, DiI, and DiO) with varying fluorescent excitations and emissions were widely adopted to label individual viruses for SVT. These dyes possess high extinction coefficients, moderate quantum yields, and short lifetimes in a hydrophobic environment. Their fluorescence is only detectable when they insert into lipid membranes. Owing to the strong autofluorescence of the cells (toward the blue end of the visible spectrum), the deep-red lipophilic dye (DiD) has been used extensively to track the infection behaviors and dissect the infection pathways of enveloped viruses, including influenza virus, (68,72,74,128) dengue virus (DENV), (73,75) hepatitis C virus (HCV), (71) avian sarcoma and leukosis virus (ASLV), (155) chikungunya virus (CHIKV), (156) and HIV. (82,83) The analogues of DiD, DiO (green) and DiI (red), have also been used to monitor the transport behaviors of viruses, such as HIV, (157) ebola virus (EBOV), (158) hepatitis B virus (HBV), (159) and VSV. (160) By quantitatively measuring the fluorescence intensity of individual viruses, the virus–endosome fusion events could be detected in real time (Figure 5). (68) However, detection of the actual release of the interior content of the virus, as a prerequisite for virus infection, still requires more accurate approaches. In addition, owing to the self-quenching of lipophilic dyes in viruses, the number of viral particles that can be fluorescently detected is very low. (73) When a large number of viruses bind to the cell surface, only 2% of viruses are indicated by DiD signals. This makes it challenging to efficiently and globally monitor the behavior of viruses in individual cells. (99)

Figure 5

Figure 5. Tracking the transport and fusion of individual influenza viruses. (a) Trajectory of a DiD-labeled virus inside a cell. (b) Time trajectories of the velocity (black) and the DiD fluorescence intensity (blue) of a virus. (c–e) Histogram of the viral velocity in each stage. (Inset) Shown is the measured average mean square displacement (⟨Δr2⟩) vs time (Δt) for a virus. Adapted with permission from ref (68). Copyright 2003 National Academy of Sciences, U.S.A.

3.1.3. Intercalating Dyes

Generally, the viral genome is encapsulated into the intact virus particle, which is not accessible for dye attachment. However, several intercalating dyes can penetrate the outer components of viruses to label the viral genomes to a certain extent (Table 2). Ribogreen is an intercalating dye with little fluorescence and negligible absorbance. The dye is fluorogenic, meaning that its fluorescence intensity amplifies by several orders of magnitude when it binds to nucleic acids. This dye has been used for detecting and quantifying both RNA and DNA. By incubating ribogreen with the human rhinovirus (HRV), this dye contacted and bound with the viral genome during “capsid breathing”. (166−168) Later, a metabolic labeling strategy was developed to label the viral genome during virus replication. For instance, acridine orange was incorporated into developing poliovirus (PV) to label the viral RNA. (163−165) However, these dyes could rapidly inactivate the viral RNA upon illumination. SYTO dyes are a kind of cell-permeable nucleic acid dye, which binds to nucleic acids by passive diffusion through the plasma membrane. Each of these dyes possesses different characteristics including optical properties, nucleic acid binding preferences, cell permeability, and DNA/RNA selectivity and can be used to stain DNA and RNA in both live and dead eukaryotic cells. (169) As an orange fluorescent nucleic acid binding dye, SYTO 82 has been successfully used to label the viral genome of RNA viruses, including PV and influenza virus. (99,131,170) [Ru(phen)2(dppz)]2+ showed its potential to label the viral genomes of DNA viruses during viral self-assembly. (171,172)

3.2. Fluorescent Proteins

Green fluorescent protein (GFP) was discovered and purified from Aequorea victoria by Osamu Shimomura in the early 1960s. It began to be utilized as a tool for molecular biologists when the nucleotide sequence of GFP was reported and expressed in Escherichia coli and Caenorhabditis in 1994. (173,174) The application of GFP as a genetically encoded fluorescence marker heralded a new era in cell biology. (175) Thereafter, a broad range of genetic variants of fluorescent protein were developed by mutagenesis, and the diversity of excitation–emission spectra was further extended. (76,176) In 2008, the Nobel Prize was awarded “for the discovery and development of the green fluorescent protein, GFP” to recognize the achievements of GFP labeling technology in the medical and biological sciences. More recently, GFP-like proteins from other species have been discovered with new optical properties, resulting in a further expansion of the color palette. (177,178) Nowadays, there are more than 1000 FP variants reported, which cover the color range from blue to near-infrared spectrum (Figure 6). (179−182) A representative list of FPs and their optical properties are given in Table 3.

Figure 6

Figure 6. Characterization of near-infrared FPs. (a–c) Normalized excitation (a), emission (b), and full absorption spectra of different iRFPs. (d) Schematic representation of directed molecular evolution that led to iRFPs with distinct spectral properties. (e) Brightness of HeLa cells transiently transfected with iRFPs, normalized to the value for iRFP713-expressing cells. Adapted with permission from ref (181). Copyright 2013 Springer Nature.

Table 3. Optical Properties of Representative FPs
Proteinλexa(nm)λemb(nm)εabsc(M–1 cm–1)Φfd(%)pKaRelative Brightnesse(% of EGFP)refs
Sirius35542415,00024<3.011 (183)
EBFP238344832,000564.553 (184,185)
TagBFP40245752,000632.798 (185)
mTurquoise43447430,000844.575 (186)
ECFP43447532,500414.740 (187)
TagCFP45848037,000574.763 (188)
mTFP146249264,000854.3162 (187)
EGFP48850756,000606.0100 (187)
mWasabi49350970,000806.5167 (189)
mNeonGreen506517116,000805.7276 (190)
EYFP51452784,000616.5153 (191)
Citrine51652977,000765.7174 (192)
mOrange54856271,000696.5146 (178)
mKO255156563,800575.5108 (193)
TagRFP555584100,00048<4.0143 (194)
mRuby2559600113,000385.3128 (195)
mCherry58761072,00022<4.547 (178)
mKate258863362,500405.474 (196)
mNeptune60065067,000205.440 (197)
iRFP670643670114,000114.038 (181)
TagRFP67559867546,00085.711 (198)
iRFP70267370293,00084.523 (181)
iRFP71369071398,00064.518 (181)
iRFP72070272096,00064.517 (181)
pH-sensitive FPs
Ecliptic pHluorin495511NDfND7.1ND (199)
Super-Ecliptic pHluorin495512NDND7.2ND (200)
pHuji56659831,000227.720 (200)
pHoran454756183,000667.5163 (200)
a

Maximum excitation wavelength.

b

Maximum emission wavelength.

c

Extinction coefficient.

d

Fluorescence quantum yield.

e

The relative brightness values were calculated from the product of the molar extinction coefficient and quantum yield, divided by the value for EGFP.

f

Not determined.

FPs are genetically encodable such that the cells and organisms can label themselves. (201) Therefore, this method avoids additional procedures for purifying, tagging, and introducing labeled proteins into cells. However, the fluorescent intensity of FPs in live cells is not only relevant to the molecular brightness in themselves, but also to the number of FP molecules in their functional form. For GFP-like proteins, the fluorescence only can be observed after the chromophore has matured and the polypeptide chain has folded. Thus, the expression level is related to many factors, such as transcription and transfection efficiency, protein stability and folding, and chromophore maturation. (202,203) Thus, although the labeling efficiency is near “100%”, the effective labeling can be much less. GFP and GFP derived proteins tend to have a high maturation efficiency (>85%), whereas red fluorescent proteins can be significantly lower, for example 40% for the case of mCherry. (204) For SVT experiments, FPs are a convenient tag for labeling the relevant cellular structures and viral components, especially the internal components of viruses. However, viruses are very dense structures, and the relatively large size of FPs can make it a problem when using them to label viral proteins. Hence, the correct location for adding the FP to the viral genome needs to be found. Often, it is beneficial to spike the sample with a mixture of labeled and unlabeled components. In the case of adding a FP to the Gag protein of HIV-1, spiking with a ratio of 1:1 already restores wild-type like infectivity. (119)
To obtain FPs-labeled viruses, the recombinant gene technology should be used to fuse viral protein genes with FPs genes. (177,205) When the recombinant cDNA clone was transfected into live cells, the viruses could be detected via their fluorescence. For single-virus labeling, FPs can be divided into three classes: autofluorescent proteins, pH-sensitive FPs, and phototransformable FPs.

3.2.1. Autofluorescent Proteins

The main feature of GFP and GFP-like proteins is that its fluorescence is encoded in the sequence and is typically preserved when fused with other proteins. This is a major breakthrough for specific fluorescent tagging of proteins in live cells using simple molecular biology. This discovery aroused the enthusiasm of many researchers to create GFP mutants with better brightness, faster folding, less propensity to oligomerize, or different excitation and emission wavelengths. Enhanced green fluorescent protein (EGFP) was one of the first enhanced variants, exhibiting more desirable characteristics for the practical use in mammalian cells. Wild-type GFP has unsatisfactory properties with respect to brightness (due to the chromophore being often in a dark, protonated state), folding properties, and excitation spectrum. Numerous GFP variants always emit fluorescence in the magic range of 442 to 529 nm. (206) To break this limitation, efforts were devoted to cloning similar FPs from other organisms. So far, the whole palette of autofluorescent proteins spans the emission wavelength from blue to near-infrared spectrum. Both the spectral range as well as photophysical properties of FPs are being continuously expanded.
One of the most important applications of FPs is site-specific labeling of viral components for single-virus imaging in live cells, including the envelope, (207−209) capsid, (209−212) matrix, (213) ribonucleoprotein (vRNP), (207) and other components. (82,84,214−216) For example, a GFP-labeled influenza virus was generated by carrying a GFP reporter in the NS segment to visualize the dynamics of infection progression (Figure 7). (217) Tracking double-labeled rabies viruses (RABV) comprising a RFP-labeled envelope and an EGFP-labeled vRNP found that RABV was transported as a cargo in neurites of neuroblastoma cells in the retrograde direction. (207)

Figure 7

Figure 7. Generation of recombinant influenza viruses carrying a GFP reporter. (a) Schematic representation of the NS segment of WT PR8 virus and NS1-GFP virus. (b) A549 cells were infected with recombinant PR8 virus carrying NS1-GFP. At 10 h postinfection, cells were fixed and stained for NP. NP staining is shown in red and NS1-GFP is shown in green. (c) Fluorescent micrographs of NS1-GFP virus plaques taken at 20× magnification. Adapted with permission from ref (217). Copyright 2010 National Academy of Sciences, U.S.A.

3.2.2. pH-Sensitive Fluorescent Proteins

By mutagenesis, researchers discovered many extremely useful mutants of wide-type FPs, which have various optical properties and environmental sensitivities. (176,182) As protonation affects the photoproperties of the wild-type GFP chromophore, variants could be produced that were sensitive to the physiological pH in the cell and detect changes in pH. The optical parameters of representative pH-sensitive FPs are shown in Table 3. These proteins always display high fluorescence under neutral conditions, while the fluorescence signal markedly decreased under acidic conditions. Thus, they exhibit unique advantages for studying the transport mechanisms of endocytosis and exocytosis in live cells. (218) Since many viruses need to hijack the endocytic pathway of host cells to realize the genome release for virus replication, targeted expression of pH-sensitive FPs to viruses allows for the real-time analysis of the virus-endosome fusion events in live cells. Thus, the pH-sensitive FPs are valuable fluorophores for investigating the virus infection mechanisms. (214,215,219) For example, pHluorin, a pH-sensitive GFP variant, has been used to label HIV. By labeling the Gag protein and altering the external pH of the medium, the fission of newly assembled HIV particles could be detected. (220) By labeling the surface of HIV, the fluorescent signal was used to monitor the uptake and delivery of HIV into acidic endosomes. (214) Meanwhile, Hogue et al. captured the earliest viral exocytosis events and elucidated the intracellular transport pathways and egress mechanisms of alpha herpesvirus. (221) Additionally, pHluorin and mKate2 (a pH-resistant FPs) were introduced to label the envelope and internal content of ASLV simultaneously. Live-cell imaging of infectious dual-labeled ASLV demonstrated the transport and fusion behaviors of ASLV were closely associated with early and intermediate endosomes (Figure 8). (215)

Figure 8

Figure 8. Single ASLV-A entry into acidic endosomes and virus-endosome fusion. (a) Schematic diagram illustrating virus labeling and how the endosomal pH drops and subsequent ASLV-A fusion is visualized. (b) ASLV-A (yellow) fusion with TVA950 cells transiently expressing mKO-Rab5 (blue). Pseudoviruses were labeled with EcpH-ICAM (green) and Gag-mKate2 (red). The right top image panels show consecutive snapshots of the boxed region showing the virus prior to internalization (left), immediately after entry into acidic Rab5-positive endosomes (middle), and after fusion with early endosomes (right). The graph in panel (c) shows the fluorescence intensities of mKO-Rab5 and the viral EcpH-ICAM (green) and Gag-mKate2 (red) signals as a function of time. Adapted with permission from ref (215). Copyright 2014 BioMed Central Ltd.

3.2.3. Phototransformable Fluorescent Proteins

Another extremely powerful functionality of some FPs is that they can be activated or spectrally shifted using light. (222,223) Phototransformable fluorescent proteins (PtFPs) have already attracted worldwide attention with their skyrocketing popularity for super-resolution microscopy in recent years. (222,224) In 2002, Kaede, a GFP homologue, was discovered that was photoconvertible from green-to-red fluorescence emission under UV illumination. (225) In the same year, using mutagenesis, a photoactivatable GFP variant (paGFP) was developed, which was initially irradiated by 413 nm light and then emitted strong fluorescence when excited with 488 nm light. (226) Nowadays, a wide range of PtFPs have been developed to satisfy the requirements for different colors and modes of conversion, including photoactivatable, photoconvertible, and photoswitchable proteins. These proteins have been used for tracking the dynamics of cellular components in live cells (Figure 9). (224,227,228) For example, photoactivated-localization microscopy (PALM), as a kind of single molecule-localization super-resolution microscopy, (229) mainly relies on the amazing photophysical behaviors of PtFPs. This technique uses sequential activation of fluorophores and time-resolved localization to acquire high-resolution images, (180,230,231) which has facilitated the investigation of the mechanisms of virus infection. (232−234) Along with the development of SPT and SVT, which have provided subdiffraction resolution already in the 1980s, and superresolution microscopy, the combination of SPT and PALM (SPT-PALM) has been shown to be capable of visualizing multiple trajectories of viral proteins at high density in live cells. (235)

Figure 9

Figure 9. Use of PtFPs for investigating focal adhesions. (a) Protocol for dual-label super resolution imaging by PALM. (b) Dual-color PALM super resolution image overlay of paxillin (green) and zyxin (red). (c) Diffraction-limited, summed molecule, dual-color TIRF image. (d) DIC image. Adapted with permission from ref (228). Copyright 2007 National Academy of Sciences, U.S.A.

3.3. Fluorescent Nanoparticles

A major challenge in SVT is the development of fluorescent labels that combine small size with high brightness and photostability. To address this need and to enhance the imaging capabilities in SVT, researchers have pursued the development of biocompatible fluorescent nanoparticles for single-virus labeling. Compared with organic dyes and FPs, fluorescent nanoparticles usually show unique chemical and optical properties, such as higher brightness and photostability, which are highly preferable for single-virus tracking. Below, we will discuss commonly used nanoparticles: quantum dots and metal nanoparticles.

3.3.1. Quantum Dots

QDs, as a kind of semiconductor nanoparticles, have already attracted tremendous attention in biological applications. (236−240) This is mainly due to the excellent optical properties of QDs, such as high quantum yield, photostability, and size-tunable narrow emission spectra. (241−243) The spectral emission range of QDs covers the UV to infrared and can be adjusted by changing the size, shape, and composition of QDs. (123,244−246) The high brightness of QDs (10–100 times higher than organic dyes or FPs) facilitates the detection sensitivity and allows high-contrast images to be obtained. (123,247) In addition, the excellent photostability of QDs (100–1000 times higher than organic dyes or FPs) makes it possible to track single viruses over several hours with high temporal resolution. (248) Moreover, QDs possess a wide excitation spectrum and a narrow emission spectrum, which makes them well suited for multicolor imaging where viral components and cellular structures can be tracked simultaneously. (249,250) Based on the prominent properties mentioned above, QDs are broadly used in biolabeling, (251−253) in bioimaging, (254,255) and subsequently for single-particle tracking. (256−259)
In SVT experiments, the most available QDs are made of CdSe cores coated with a ZnS shell, (260) which are usually prepared in the organic phase and covered with hydrophobic organic ligands (Figure 10). For biological applications, the solubilization and biofunctionalization of QDs are essential steps owing to the hydrophobic surface of QDs. A substantial amount of pioneering research has been performed regarding these steps, which has led to a strong boost in the number and variety of applications of QDs in the fields of biology and biophysics. (237,243,260−263) So far, uniform, high-quality, biofunctionalized QDs are readily available via experimental synthesis or can be purchased commercially. In 2003, QDs were first applied to track individual glycine receptors on the neuronal membrane, which laid the cornerstone for exploring the dynamics of biomolecules in live cells by using QDs-based SPT. (89) After that, a huge number of QDs-labeled biomolecules of interest were tracked dynamically in a wide variety of biological systems. (94,238,264−267) In 2008, QDs were first successfully exploited to specifically label the envelope of viruses without significant effect on the infectivity of the virus, thereby allowing the uptake mechanism to be investigated in detail. (98) This was considered a watershed moment for SVT. With the further development of labeling strategies, different components of viruses could be labeled with QDs. (268) The detailed labeling strategies are described in detail in the section entitled Labeling Strategies for Nongenetically Encoded Fluorophores.

Figure 10

Figure 10. Properties of QDs. (a) Schematic drawing of a core–shell QD and fluorescent images of QDs of different sizes under UV light. (b) Absorption (left) and emission (right) spectra of CdSe/ZnS QDs. All QD samples and data were obtained in the group of Pang.

At present, QDs-based SVT techniques have acquired spectacular achievements and researchers have elucidated multifarious infection mechanisms of viruses. For example, Pang et al. utilized this technique to analyze the infection behavior of influenza viruses and dissect the transport mechanism of influenza virus trafficking at different stages of infection. The results indicated that influenza viruses underwent a previously unknown five-stage process from the cytomembrane to the perinuclear region along microfilaments and microtubules. A “driver switchover” mechanism was proposed to answer the question of how the transport of influenza viruses switches from microfilaments to microtubules. (108,110,114,115,118) In another example, Cui et al. designed QD-labeled transcription activator-like effectors to specifically target HIV proviral DNA sequences, and they identified single gene loci in the cell nucleus. (116) By encapsulating QD-conjugated RNAs into influenza viruses, they monitored the uncoating process of individual viruses and revealed the mechanisms of uncoating and vRNP trafficking of influenza viruses. (113)

3.3.2. Metal Nanoparticles

In the middle of the 1980s, Brabander and colleagues visualized the movements of gold nanoparticles (AuNPs) with a size of 40 nm on the surface of live cells by using video-enhanced differential interference contrast microscopy. (42,46) This is the first experiment using AuNPs-based SPT in live cells. Over the years, numerous researchers dedicated their efforts to develop suitable methods for data processing and modeling, and then AuNPs-based SPT was increasingly utilized to study the dynamic organization and heterogeneity of the cell membrane. (269,270) One major advantage of AuNPs in SPT experiments is their high stability, because they have no photobleaching and less biodegradation. AuNPs possess unique optical properties due to the surface plasmon resonance and strong light scattering. The scattering light signal of AuNPs requires dark field microscopy or similar optical setup to be detected. The signal intensity is coupled to the illumination intensity, and thus good image contrast and high temporal resolution could be obtained. Experiments with AuNPs-labeled respiratory syncytial viruses (RSVs) demonstrated that the RSVs still maintain their virulence and could be successfully tracked over extended periods of time. (271) However, the ability to detect multiple species via scattering light is very challenging and the limited availability of multiple labels restricted their application for SVT.
Metal nanoclusters (e.g., Au, Ag) are composed of a small number of atoms and typically have sizes below 2 nm. The emission wavelength of fluorescent metal nanoclusters covers the visible to near-infrared region of the electromagnetic spectrum. (273,274) The fluorescence of metal nanoclusters can be tuned by a number of factors, such as size, composition, ligands, aggregation state, ionic strength, and pH value. Due to the unusual physicochemical and good optical properties, fluorescent metal nanoclusters have attracted increasing attention for biological and biomedical applications. (274−276) To date, there are a number of applications in virus detection, (277−279) but very few reports about virus labeling with nanoclusters. Marjomäki et al. developed site-specific protocols to target the enterovirus capsid with monodisperse gold nanoclusters (Figure 11). The end point dilution assay implied that the binding of gold nanoclusters to the viral surface did not lower the infectivity of the virus. (272) Thus, site-specific labeling of enteroviruses with nanoclusters could facilitate the future structural studies of virus uncoating and become an important new tool for future SVT applications.

Figure 11

Figure 11. Gold nanocluster labeling of enteroviruses. (a) Synthesis of the maleimide functionalized Au102(pMBA)44 clusters and their site-specific conjugation to enteroviruses. (b–c) TEM images of CVB3 viruses treated with functionalized gold clusters. (c) Control TEM image with conventional negative staining of a virus sample incubated with nonfunctionalized clusters. Adapted with permission from ref (272). Copyright 2014 National Academy of Sciences, U.S.A.

4. Labeling Strategies for Nongenetically Encoded Fluorophores

Click to copy section linkSection link copied!

Organic dyes and nanoparticles, as nongenetically encoded fluorophores, can be advantageous over FPs owing to their superior brightness and photostability. However, most of these fluorophores can be used to target the viral components by direct chemical reactions or noncovalent interactions, but it is difficult to label viruses site-specifically. For many questions of interest, it is only necessary to label the viral particles and specific labeling of the virus is not important. Other questions require the labeling of specific viral components. For the following discussion of the several strategies that have been developed for attaching nongenetically encoded fluorophores to viral components, we will divide them into nonspecific and site-specific labeling approaches (Figure 12).

Figure 12

Figure 12. Labeling strategies and labeling sites for fluorescent labels in SVT.

4.1. Nonspecific Labeling

In virtue of their intrinsic properties, it is possible to use hydrophobic–lipophilic interactions or intercalation for some organic dyes to label the viral envelope and genome, which have been described in detail in the previous section. For labeling the external components of viruses (including the envelope of enveloped viruses and the capsid of the nonenveloped viruses), many chemical labeling methods have been adopted for organic dyes and nanoparticles, such as cross-linking, click chemistry, and biotin–streptavidin interactions.

4.1.1. Cross-linking Reaction

Cross-linking reaction is the simplest and versatile method for labeling viral components with organic dyes or nanoparticles, which mainly conjugate proteins and biomolecules with fluorophores by a covalent bond. Many cross-linking reagents (called cross-linkers) have been characterized and can be synthesized to combine two or more reactive groups within one molecule. The reactive elements can then chemically attach to specific functional groups of proteins and other molecules on the viral surface.
Proteins are complex structures composed of a linear sequence constructed from 20 different amino acids. However, for labeling, there are typically only four functional groups of proteins that are targeted: primary amines (−NH2), which exist at the N-terminus of each peptide and the side chain of lysine; carboxyls (−COOH), which exist at the C-terminal of each peptide and the side chain of glutamic acid and aspartic acid; sulfhydryl (−SH), which exists in the side chain of cysteine; carbonyls (−CHO), which can exist in oxidized glycoproteins. (280) Many chemical species can react with the four kinds of functional groups to form chemical bonds including isothiocyanates, acyl azides, N-hydroxysuccinimide (NHS) esters, sulfonyl chlorides, and imidoesters (Figure 13). A wide variety of cross-linkers are commercially available, which can be easily conjugated to proteins or other functional group-containing compounds based on the commercial protocols. Thus, any kind of viruses can be covalently labeled with organic dyes or nanoparticles by cross-linking techniques. Especially for nonenveloped viruses, where the capsid is exposed to the outside, covalent labeling is a desirable choice for labeling. For example, AAV was conjugated with QDs using an amino-carboxyl cross-linking reaction (Figure 14). (136) A mild and clickable reaction between hydrazine and aldehyde was also used to label envelope proteins of viruses with QDs. (101,281) The direct chemical labeling methods are flexible and easy to apply, by which QD-virus conjugates or organic dye-labeled viral particles are readily obtained for SVT experiments.

Figure 13

Figure 13. Cross-linking reactions for conjugating fluorescent labels to viruses.

Figure 14

Figure 14. Covalent attachment of QDs to AAV and characterization of the QD-AAV conjugates. (a) QD-AAV networks are generated by an amide bond formation between the carboxylic source on QDs and the primary amines from lysine residues on the AAV capsid via carbodiimide chemistry. (b) Transmission electron microscope (TEM) images of (left) unconjugated QD525, (middle) AAV only, and (right) QD525-labeled AAV. Adapted with permission from ref (136). Copyright 2011 American Chemical Society.

4.1.2. Click Reaction

“Click Chemistry” is a type of biocompatible small molecule reaction that is commonly used in bioconjugation with fast reaction rates, mild reaction conditions, high yields, simple procedure, and high selectivity. In 1963, Huisgen first discovered the unactivated azide–alkyne cycloaddition reaction, but this reaction was ignored for many years owing to the harsh experimental conditions. (282) The term “Click Chemistry” was first put forward by Kolb et al. in 1998 and fully described in 2001, where they also introduced Cu(I) as a catalyst to realize the azide–alkyne cycloaddition reaction at room temperature with high chemical yield. (283,284) The copper-catalyzed azide–alkyne cycloaddition reaction (CuAAC) is the most universal click reaction, but it is often incompatible with living systems due to the potential toxicity of Cu(I). Nowadays, there are several kinds of copper-free azide–alkyne cycloaddition reactions reported, such as the strain-promoted azide–alkyne cycloaddition (SPAAC), (285,286) thiol–ene reaction, (287) and strain-promoted inverse-electron-demand Diels–Alder cycloaddition (SPIEDAC). (288) The copper-free approaches opened up the possibility of labeling particular biomolecules in living systems with click reactions. For instance, to detect DNA synthesis in vivo, a thymidine analogue 5-ethynyl-2′-deoxyuridine was incorporated into DNA during DNA replication, and the terminal alkyne group was labeled with a fluorescent azide by a click reaction. (289) Similarly, RNA synthesis was detected by using a click reaction between a uridine analog 5-ethynyluridine and fluorescent azide. (290) Researchers have also developed an unnatural sugar-based click labeling strategy. (291−293) The azido-sugars were added into the cell medium for cell culture. After metabolism, the azido groups were incorporated into the glycans on the cell surface, which could be used to bind with fluorophores by click chemistry.
The viral surface has potential targets for biofunctional modification, which can be functionalized to add clickable groups for virus labeling. (105,106,294,295) For example, Zhang et al. modified baculoviruses with a clickable group (4-dibenzocyclooctynols) and then labeled viruses with azido-derivatized multidentate-imidazole polymer ligands-modified QDs by copper-free click chemistry. (106) Lin et al. established a site-specific click labeling strategy on the surface of hepatitis D virus (HDV). By incorporation of pyrrolysine analogues carrying various functional groups onto the envelope proteins of live HDV, they successfully exploited the subsequent click reaction to attach a biotin molecule onto the HDV surface (Figure 15). (296) Additionally, by introducing azide and vinyl groups into proteins and the genome of viruses respectively, the envelope and genome of viruses could be labeled simultaneously via copper-free click chemistry and alkene-tetrazine ligation reactions. (297) Ethynyl-modified nucleosides have also been utilized to label newly synthesized DNA of vaccinia virus, adenovirus, and herpes virus by copper(I)-catalyzed click reactions for tracking the viral genome in host cells at the single-molecule level. (298)

Figure 15

Figure 15. Engineering the hepatitis D virus (HDV) assembly process for site-specific incorporation of unnatural amino acids (UAAs) into its surface envelope proteins. (a) Two-step procedure for the assembly of intact HDV carrying site-specifically incorporated UAA-recognized non-natural amino acids in human hepatocytes Huh-7 cells. (b) Structures of five Pyl analogues used in this study: PenK (Ne-pent-4-ynyloxycarbonyl-l-lysine), ACPK (Ne-((1R,2R)-2-azido-cyclopentyl oxy-carbonyl)-l-lysine), BCN (bicyclo[6.1.0]non-4-yn-9-ylmethanol), DiZPK (3-(3-methyl-3H-diazirine-3-yl)-propaminocarbonyl-Ne-l-lysine), and ONBK (o-nitrobenzyloxy carbonyl-Ne-lysine). Adapted with permission from ref (296). Copyright 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

4.1.3. Biotin–Streptavidin Interaction

The biotin-(strept)avidin system is one of the strongest noncovalent biological interactions present in nature, which also shows high selectivity, fast reaction speed, and good resistance to extremes of temperature or pH. (299) So far, this system has been used extensively in biomolecule detection, protein purification, and biological labeling, and there are a lot of biotinylation reagents available for developing different labeling methods. Therefore, the versatile approach is to covalently attach biotin to the biomolecule of interest and subsequently bind avidin, streptavidin, or neutravidin reagents. To label viruses with fluorophores, the viral components should be biotinylated chemically or enzymatically. Chemical biotinylation utilizes cross-linking reactions to generate nonspecific biotinylation of carboxylates, sulfhydryls, amines, and carbohydrates. Enzymatic biotinylation generates biotins in a specific lysine within a certain sequence of the viruses by a bacterial biotin ligase. (98,300) Details will be described in the following Site-Specific Labeling section. Based on the biotin–streptavidin interaction, two strategies have been developed for labeling viruses.
A one-step labeling approach to virus labeling is to directly obtain fluorescent-labeled virus conjugates by the interaction between biotinylated viruses and streptavidin-modified fluorophores. The conjugates could aid researchers in investigating the interactions between viruses and the plasma membrane in the early stage of virus infection. However, these one-step labeling methods require tedious purification procedures to remove free fluorophores, such as size exclusion and ultrafiltration. These cumbersome steps usually bring about a significant loss in virus and have deleterious effects on the integrity and activity of the viruses. Especially QDs-labeled viruses cannot be preserved for a long time, since viruses can be degraded at room temperature and QDs are unstable or precipitate below freezing. Thus, the method is not well suited for performing many parallel experiments for gathering statistics.
A so-called two-step labeling approach initially incubates the host cells with biotinylated viruses and then the streptavidin-modified fluorophores are added. For QDs labeling, the two-step labeling strategy has been broadly adopted for SVT experiments. After biotinylation, the viruses are added to cells at low temperature and allowed to bind to the viral receptors and then incubated with streptavidin-QDs to fluorescently label the viruses (Figure 16). (108,301,302) The whole process takes less than a half an hour and avoids tedious purification processes. A colocalization analysis indicated that nearly all viral envelopes could be labeled with QDs, and the infectivity of QDs-labeled viruses was still 86% of that of the native viruses. (99) Thus, this method is easy to perform with high efficiency and low damage to the virus infectivity and has been widely used for studying the infection mechanisms of viruses, including influenza viruses and infectious hematopoietic necrosis virus (IHNV). (99,107)

Figure 16

Figure 16. Schematic of a two-step labeling strategy of labeling virus with QDs via the biotin–streptavidin interaction. Adapted with permission from ref (108). Copyright 2012 American Chemical Society.

4.2. Site-Specific Labeling

The primary goal of viruses is to deliver their genome to the proper cellular compartment for transcription and replication. Only labeling external components is insufficient for following the whole infection pathway of a virus because the external components will be dissociated in the process of virus infection. Labeling the internal components of viruses is much more difficult, since fluorophores, especially fluorescent nanoparticles, are difficult to penetrate the external components of the viruses to enter the interior. This is where the use of FPs for fluorescence labeling has great advantages; when the appropriate location can be found that tolerates the tag, the viral genome can handle the increase in genomic size and there are enough copies to allow tracking over reasonable time periods. However, sometimes it would be great to combine the benefits of genetically encoded labels with the brightness and photostability of synthetic dyes or QDs. Thus, one big question is how to encapsulate nanoparticles or organic dyes into viruses and can it be done specifically.
In early 2006, Dixit and co-workers incorporated QDs into the capsids of the brome mosaic virus by self-assembly, and the generated virus-like particles (VLPs) had a similar size to the native virus. (303) Later, combining with site-specific labeling strategies, such as peptide tag-mediated labeling and oligonucleotide-guided labeling, host cell-assisted methods have been extensively developed in recent years, which are an alternative approach to label the internal and external components of viruses during virus assembly. (304−306) For virus labeling, the distinct advantage of host cell-assisted methods is that it is possible to avoid modification of the viral surface, thus minimizing the influence of labeling on the virus–receptor interactions. To date, host cell-assisted methods have played an important role in visualizing the infection behaviors in different infection stages of a variety of viruses including SV40, HIV, and PV. (131,290,307,308)

4.2.1. Peptide Tag-Mediated Labeling

Fluorescent proteins, as genetically encoded fluorescent labels, can be incorporated with high specificity but still suffer from relatively low brightness and poor photostability. (309) Organic dyes and nanoparticles typically have much better photophysical attributes but cannot realize site-specific labeling in live cells. To combine the best of both worlds, another class of genetically encoded proteins has been developed that can catalyze the autoattachment of fluorescent ligands inside living cells. (310) The proteins themselves are nonfluorescent but can be specifically labeled with fluorescent ligands. (311) These tags can be much brighter, more stable, color-tunable, and more chromatically diverse (312) and, similar to FPs, can also possess some specific properties such as environmental sensitivity and photoswitching but with better photophysical properties. (313,314) For imaging experiments, the labeling is controllable in space and time, and the color of the target protein can be selected according to the experimental requirements. (315) We will discuss two major site-specific approaches for labeling viruses with organic dyes or nanoparticles in live cells: self-labeling fusion tags and enzyme-targeted peptide tags (Table 4). (316)
Table 4. Tag-Mediated Site-Specific Labeling Methods
TagSize (amino acids)Labeling reactionFluorophores demonstratedVirusRef for Tag
Self-labeling fusion tags
SNAP tag182Covalently binding with benzylguanine derivativesTMRa, SiRbHIVc, (317,318) (319−321)
CLIP tag182Covalently binding with benzylcytosine derivativesTMRHCVd, (322) (323)
Halo tag296Covalently binding with haloalkane derivativesTMRPrVe, (324) (325)
TMP tag157Engineered Escherichia coli dihydrofolate reductase noncovalently binding with trimethoprim (TMP)-fluorophore conjugatesFluorescein, Atto dyeNDf (326−329)
TC tag6–10Covalently binding with fluorogenic biarsenical compoundsFLAsH, ReAsHHIV, (330) VSV,g, (331) IVh, (332) (333,334)
His tag6Noncovalently binding with Ni-NTA-functionalized fluorophoresQDjPrion, (103) RSVi, (335) (336)
Enzyme-targeted peptide tags
AP tag15Covalently binding with biotin or ketone analogs of biotinQD, Fluorescein, Alexa FluoroHIV, (98,116) Baculovirus (300) (337,338)
LAP tag13–22Covalently binding with lipoic acid derivativesQD, Cy3, Alexa FluoroHIV (116) (336,339,340)
Tub tag14Covalently binding with tyrosine derivativeCoumarinND (341,342)
S6/A1 tag11Covalently binding with coenzyme A derivativesTexas red, Alexa Fluoro, Cy3ND (343,344)
a

Tetramethylrhodamine.

b

Silicon rhodamine.

c

Human immunodeficiency virus.

d

Hepatitis C virus.

e

Pseudorabies virus.

f

Not determined.

g

Vesicular stomatitis virus.

h

Influenza virus.

i

Respiratory syncytial virus.

j

Quantum dot.

4.2.1.1. Self-Labeling Fusion Tags
Self-labeling fusion tags have recognition domains that offer the specific attachment of fluorescent ligands to the target proteins in live cells. In this approach, the target protein binds with a self-labeling fusion peptide or protein sequence. The protein is expressed in live cells and the specific fluorescent ligands are added for protein labeling. As the self-labeling fusion peptide or protein sequence is small, it is easy to create with a wide variety of fluorescent ligands, which can be optimized for the imaging instrumentation.
The SNAP tag, a 182 residues polypeptide (19.4 kDa), is an engineered version of human O6-alkylguanine-DNA alkyltransferase (hAGT). (345) This protein catalyzes the attachment of O6-alkylguanine or O6-benzylguanine to one of its cysteines. To label the SNAP-tagged protein in live cells, the fluorescent membrane permeable O6-alkylguanine substrates are added into cells having expressed proteins fused with SNAP-tag. (319,320) CLIP tag is a new variant of hAGT, which specifically reacts with O6-benzylcytosine substrates. (323) The orthogonal relationship between the SNAP tag and the CLIP tag can be simultaneously exploited for dual-color labeling. (346)
The Halo tag is a modified haloalkane dehalogenase, which specifically binds the reactive primary alkyl halides and covalently attaches a modified fluorescent ligand to the active-site residue. (325,347) The trimethoprim (TMP) tag was developed on the basis of the strong interaction between the folate analogue TMP and the Escherichia coli dihydrofolate reductase (eDHFR). The protein of interest is fused with eDHFR, expressed in live cells, and then the fluorophore-modified TMP is added into the cells and binds with eDHFR with high affinity and selectivity. (326,348) So far, these tags have been widely used for protein imaging and trafficking in live cells. Based on reverse genetic technology, the halo-tag protein has been fused with the smallest pseudorabies virus (PrV) capsid protein VP26. The recombinant PrV was easily harvested and used directly for the virus tracking without further modification (Figure 17). (324) These labeling systems have several obvious advantages. Fluorescence can be turned on when the fluorescent ligands are added into the cells and turned off using available blocking reagents. Alternatively, a ligand with a second dye can be added at a later time point such that the newly produced proteins of interest are labeled with a different color of dye.

Figure 17

Figure 17. A schematic diagram for the generation of Halo tag-labeled pseudorabies viruses. Adapted with permission from ref (324). Copyright 2016 American Chemical Society.

One of the shortest peptide tags available is the tetracysteine (TC) motif (most commonly CCPGCC). The biarsenical dyes FlAsH (green fluorescence) and ReAsH (red fluorescence) specifically bind the TC tag in live cells. The TC tag is only 6 amino acids, and the protein of interest will fluoresce when the biarsenical dye binds. The smaller size and self-labeling capacity of the TC tag make it a very attractive tool for virus labeling. For example, Rudner et al. inserted a TC tag to the C terminus of HIV Gag and investigated the dynamic process of HIV by two-color imaging analysis. (330) By fusing M protein with TC tags and P protein with EGFP, recombinant VSVs could be dually fluorescent-labeled. Time-sequence images confirmed the adsorption of VSV at the plasma membrane and illustrated that the entry and uncoating of VSV in the infected cells occurred with a half-life of approximately 28 min after virus adsorption. (331) However, due to the interactions with other thiol-containing proteins, the background signal is much higher, and time-consuming washing procedures are required before imaging.
The His tag consists of at least six histidine (His) residues and shows a high affinity and selectivity for Ni2+. The (histidine)6-Ni2+-nitrilotriacetate (Ni-NTA) system has been widely utilized in protein purification. With the development of fluorescent Ni-NTA-based probes, the His tag has already been used for live-cell imaging. (103,109,349) For example, PEG-interspersed Ni-NTA-functionalized QDs were developed to label prion proteins expressed on cell surfaces. (103) Time-lapse imaging first demonstrated that the entire process of prion internalization could be divided into four discrete but connected stages and that lipid rafts played an important role in prion localization and internalization. (109) Further, by conjugating the viral surface with specific polypeptide containing histidine residues, Huang et al. developed a Ni-NTA based progeny virus labeling strategy, which is noninvasive and can be used to label other enveloped viruses budding from the plasma membrane (Figure 18). (335)

Figure 18

Figure 18. Scheme of the general strategy for in situ virus labeling during progeny virus assembly. The labeling procedure includes (1) infection of the host cells with the virus, (2) after 2 days’ cultivation, the proteins on the host cell surface were conjugated with polypeptides containing his-tags and carboxyl groups, (3) progeny viruses assemble and are released from the cell surface, incorporating the his-tags in the process, and (4) the progeny viruses are further tagged with Ni2+-NTA modified QDs. Adapted with permission from ref (335). Copyright 2016 The Royal Society of Chemistry.

4.2.1.2. Enzyme-Targeted Peptide Tags
An alternative method for site-specific labeling is the use of enzyme-targeted peptide tags. The enzymes can catalyze the attachment of a specific peptide sequence to a fluorescent substrate. Thus, the enzymes could help to realize the modification of the peptides with high site selectivity. There are several kinds of enzymes used for protein labeling, such as ligases and transferases.
Ligases, including biotin ligase, tubulin tyrosine ligase, and lipoic acid ligase, can bind specific peptide tags to a recognizable sequence. (350) For example, the biotin acceptor peptide (AP)-tag, a 15 amino acids long peptide that is a substrate for biotin ligase (BirA), enables the conjugation of a biotin to a lysine side chain on the AP tag. (351) After the BirA-catalyzed biotinylation, fluorescent labeling of the protein of interest can be achieved using the biotin–(strept)avidin interaction. By taking advantage of this site-specific labeling strategy, the viral envelope incorporated an AP tag and subsequently, streptavidin-conjugated QDs were attached to the surface of virion after the biotinylation of the AP tag happened. (98,300) For example, the capsid protein VP39 of baculoviruses could be specifically labeled with streptavidin-modified QDs by modifying the protein with biotin by a genetic recombination technique during viral assembly in host cells. (102) It is worth noting that the various components of viruses will disassociate at different stages of the infection process. To dissect their whole infection pathway, it is a prerequisite for SVT to be able to simultaneously follow the related external and internal components of viruses. Pang et al. developed a cell-assisted strategy to simultaneously label the envelope, capsid, and genome of baculoviruses with QDs, EGFP, and SYTO 82, respectively. Such a triple-labeled virus makes it possible to visualize the dissociation process of key viral components in real time. (170)
Similarly, a short lipoic acid ligase (LplA) acceptor peptide (LAP) tag is a 22 amino acids long peptide, which can be catalyzed by LplA to conjugate with lipoic acid derivatives in an ATP-dependent manner. (352) The protein of interest can be fused with the LAP tag and labeled with fluorescent lipoic acid derivatives. The tub tag is a 14 amino acid hydrophilic recognition sequence. Using tubulin tyrosine ligase (TTL), it is possible to conjugate a tyrosine with the fluorescent tub tag. (353) Some of these tags have been utilized to label viral components during virus infection. For example, Cui et al. used a pair of QD-labeled transcription activator-like effectors (TALEs) to image single genomic loci of HIV-1 provirus in the cell nucleus. One of the TALEs was fused with LAP tag, and labeled by tetrazine-conjugated red QDs via Diels–Alder cycloaddition chemistry. The other TALE was fused with an AP tag, biotinylated, and labeled with streptavidin-modified green QDs. The fluorescence colocalization of the two QD-TALEs demonstrates that there is a single HIV-1 provirus loci in live cells (Figure 19). (116)

Figure 19

Figure 19. Labeling the HIV-1 proviral loci. Within the cytosol of a live cell, the TALEs fused with a short LplA acceptor peptide (LAP) are decorated with trans-cyclooctene and subsequently labeled with tetrazine-conjugated red QDs via Diels–Alder cycloaddition chemistry. The TALEs fused with an AP tag are biotinylated and labeled with streptavidin-conjugated green QDs. The two QD-TALEs bind to the target HIV-1 proviral DNA sequences, and their fluorescence colocalization demonstrates a single-copy HIV-1 provirus loci in the human chromosomes. Adapted with permission from ref (116). Copyright 2017 Springer Nature.

Transferases can transfer functional groups from a donor substrate to a specific amino acid in a peptide sequence. Phosphopantetheinyl transferases (PPTase), such as Sfp and AcpS, can catalyze the transfer of a phosphopantetheinyl group from coenzyme A (CoA) to a conserved serine. Sfp preferentially recognizes the S6-tag, and AcpS preferentially recognizes the A1-tag. (353,354)

4.2.2. Oligonucleotide-Guided Labeling

The base-pairing propensity of DNA and RNA oligonucleotides can be used to detect the presence of specific target sequences (i.e., complementary nucleic acid sequences) by hybridization. Short oligonucleotides can be synthesized and several different types of groups incorporated for fluorescently labeling the oligonucleotides. Organic dye- or QD-labeled oligonucleotides have been designed and transfected into infected host cells to bind the viral genome of interest in live cells. During virus assembly, fluorophores with oligonucleotides can be assembled into the interior of viruses. A paradigm is that QDs were conjugated with QD-labeled guide RNAs containing the sequence of a packing signal of the viral genome, and then the functionalized QDs would be encapsulated into the capsid of VSV glycoprotein pseudotyped lentivirus (PTLV) in living cells (Figure 20). (355)

Figure 20

Figure 20. Working principle of encapsulating SA-QDs into HIV-based lentivirus in living cells. Adapted with permission from ref (355). Copyright 2013 American Chemical Society.

By labeling the viral oligonucleotides, it is possible to use SVT to follow the fate of the viral genome and where replication occurs. Several strategies have been developed to track the transport process of the viral genome in host cells. Fluorescence in situ hybridization (FISH) is a conventional nucleic acid recognition technique, which can be used to detect and localize endogenous or engineered DNA or RNA through Watson–Crick base pairing. However, FISH is performed in fixed specimens leading to a loss of dynamical information in comparison to tracking nucleic acids in live cells. For live-cell imaging, fluorescently labeled linear oligonucleotides were developed to visualize nucleic acids and allow investigations of trafficking or transient interactions. Using this hybridization approach, Molenaar et al. detected various endogenous nuclear RNAs in live cells without interfering with cell vitality. (356) Often, hybridization techniques suffer from a high level of background fluorescence due to the lack of effective approaches to remove unbounded probes. Here, using nucleic hairpin structures with a fluorescence quencher has been developed to minimize the background fluorescence from nonbound beacons. Upon binding to the target nucleic acid sequence, the hairpin opens and the fluorescence signal increases. One such approach uses fluorescence resonance energy transfer (FRET) to quench the fluorescence signal of the donor and thus to significantly reduce the background fluorescence. Using FRET, a series of QD-labeled molecular beacons were developed with controllable QD valency. A nanobeacon with one conjugated DNA was favorable for labeling and imaging single RNA in live cells and was used for ultrasensitive detection of single HIV RNAs in HIV integrated cells. (357)

5. Optical Implementations for Single-Virus Tracking

Click to copy section linkSection link copied!

Many viruses are on the order of 100–200 nm in size, just slightly smaller than the diffraction limit of a high-end microscope. Hence, it is also potentially possible to monitor some viruses directly without the need for labeling them. One label-free approach that has been applied successfully for tracking HIV particles is interferometric scattering microscopy (iSCAT). (358) By using the interference of light reflected from the surface of the coverslip and that coming from the virus particle itself, it becomes possible to visualize the position of the virus and perform SVT with both high spatial and temporal resolution. Kukura and colleagues combined SPT with iSCAT to follow the diffusion of single Simian Virus 40 particles on supported bilayers with 8 ms temporal resolution and nanometer spatial resolution. By labeling the viruses with QDs, we could also measure the orientation of the virus and thus monitor the tumbling of the virus as it slides along the surface. (359)
Once viruses and/or viral components have been successfully labeled fluorescently, SVT measurements can be performed to investigate the various processes in the lifecycle of the virus. For this, fluorescence microscopy has become an indispensable tool. The basic function of a fluorescence microscope is to excite a sample with a specific band of wavelengths, separate the emitted fluorescence from the excitation wavelengths, and detect the fluorescence emission with high sensitivity. As only the emitted light reaches the observer’s eye or the detectors, high-contrast fluorescence images can be recorded on a dark background. In the early part of the 20th century, the first fluorescence microscopes were built by the companies of Carl Zeiss and Carl Reichert. (360) Subsequently, Ellinger and Hirt developed “intravital microscopes” to visualize living organisms. They utilized UV light to excite the sample and put filters between the samples and eyes that would reflect the excitation light and transmit the emitted light. This provided the basic principle of modern fluorescence microscopy. (361) Nowadays, lasers are typically used for excitation of the sample instead of lamps. When usage continues with wave lasers or nonfemtosecond pulsed lasers, the excitation wavelength can be limited to a very narrow region of the spectra and emission filters can be produced to efficiency block that specific wavelength while not blocking much of the fluorescence emission. In addition, many lasers provide a high-quality beam profile that simplifies the construction of the excitation pathway. The recent developments in lasers, optics, and detectors as well as the broad spectrum of available fluorophores and various labeling methods have resulted in a revolution in fluorescence microscopy and the worldwide use of fluorescence microscopes in various fields including cell biology, virology, and biophysics. (33,362,363) There are several commonly used imaging modalities for single-virus tracking, which we will present below. (364,365)

5.1. Wide-Field Microscopy

The simplest optical implementation for SVT experiments relies on wide-field illumination and a highly sensitive camera. In wide-field microscopy, a large field of view is fully illuminated by the excitation light and the fluorescent structures of the sample can be captured quickly and easily by a single camera. (366) To acquire a high amount of signal, objectives with an NA > 1.2 are typically used along with sharp fluorescence filters having a high transmission (>80%). For detection, a fast frame transfer, high-quantum yield camera is essential for SVT. Conventional charge coupled device (CCD)-based cameras have high sensitivity but slow read-out speeds whereas complementary metal oxide semiconductor (CMOS) cameras offer very fast frame rates but a narrow dynamic range. An electron-multiplied charge coupled device (EMCCD) detector performs the electron amplification on chip before read-out to decrease noise and combines fast read-out speed with high quantum yield and optimum resolution. A newly developed scientific complementary metal-oxide semiconductor (sCMOS) camera is based on a CMOS image sensor design and can also offer low noise, rapid frame rates, and high quantum yield. Both cameras are very suitable for quantitative measurements and dynamic imaging. For live-cell studies, an EMCCD camera is capable of obtaining discernible images with a lower number of photons. However, when fast, full-frame transfer rates are essential, sCMOS cameras are superior for fast imaging at speeds approaching or exceeding 1000 fps. (367−369)
The advantages of wide-field microscopy are the large excitation depth, large depth of focus, and low signal loss allowing the tracking of individual viruses in a large volume. However, there is no discrimination against out of focus light. For experiments with low autofluorescence and sparsely distributed fluorescence viruses, this approach works well. However, for experiments with a high background, such as investigations of the HIV assembly using FP-labeled Gag protein, the out-of-focus signals result in the low-contrast images. (370) In addition, owing to the large depth of field, this microscopy modality is rarely used to acquire 3D data over a certain depth of the sample. Thus, wide-field microscopy is mostly limited to 2D SVT tracking. (68)

5.2. TIRF Microscopy

In 1956, E. J. Ambrose first proposed the idea to illuminate cells that contact a glass surface by using total internal reflection. Total internal reflection fluorescence (TIRF) microscopy was first realized by Daniel Axelrod at the beginning of the 1980s. (371) The basic principle of TIRF microscopy is to use an evanescent wave to excite the sample near the glass–liquid interface. An evanescent wave is generated at the glass–liquid interface where the excitation light impinges on the glass-sample interface above the critical angle, at which point the light cannot physically propagate into the sample (typically buffer) and is thus totally reflected. The evanescent wave is a nonpropagating wave whose intensity decays exponentially with distance from the interface. (372−374) There are two main approaches to producing TIR excitation at the glass–sample interface (Figure 21). The original approach, prism-based TIRF, utilizes an optical prism to couple the excitation light to the upper surface of the glass (typically quartz)–sample interface. Upon the development of objectives with a numerical aperture above 1.4, it became possible to focus light onto the coverslip–sample interface such that the incident beam reaches the glass–sample interface above the critical angle, creating an evanescent field. (375) When using an inverted microscope, objective-type TIRF leaves the sample above the objective free and is thus more convenient and easier to use. Objective-type TIRF is the common modality used for live-cell imaging. (376−379)

Figure 21

Figure 21. Schematic drawing of an objective-based TIRF and a prism-based TIRF.

Due to the exponentially decaying intensity of the evanescent wave, TIRF microscopy is only suitable for exciting fluorescent samples within a depth of ∼200 nm from the interface. (371,377) Thus, TIRF largely reduces the thickness of the excitation plane and improves the image contrast significantly with respect to wide-field imaging (Figure 22). Combined with ultrasensitive and fast detectors, TIRF microscopy has empowered researchers to visualize biological events occurring on the plasma membrane of living cells. (380) It is also possible to adjust the excitation beam such that it impinges on the sample just below the critical angle. The excitation beam then propagates into the sample at an inclined angle, which has the rough effect of only exciting a thin plane in the sample. (381) This technique, known as highly inclined and laminated optical sheet microscopy (HILO) or affectionately as poor man’s TIRF, allows TIRF-like measurements to be performed internally in the cell.

Figure 22

Figure 22. Live cell imaging of individual HIV-1 assembly sites. HeLa cell transfected with a mixture of pCHIV and pCHIVeGFP imaged at 25 h post transfection (a) in WF and (b) in TIRF mode. The scale bar represents 5 μm. Adapted with permission from ref (370). Copyright 2009 Public Library of Science.

Nowadays, most common SVT set-ups perform TIRF excitation by means of objective-based TIRF. In this configuration, it is easy to switch between wide-field to TIRF illumination modalities, even on a frame by frame basis. (370) TIRF microscopy is powerful for investigating dynamics at the plasma membrane, such as clathrin-mediated endocytosis of VSV (134) and the fusion event between viral and cellular membranes. (382) A combination of TIRF microscopy and SVT identified different motional modes of MPV-like particles (VLPs) on the cell surface, and the particle trajectories provided new insights into the lateral mobility of membrane components and the heterogeneity of the plasma membrane. (139)

5.3. Confocal Microscopy

Marvin Minsky developed and patented the concept of confocal microscopy in the late 1950s with the aim of performing microscopy in thick tissues such as the brain. The basic principle of confocal microscopy is to use point illumination and a pinhole before the detector to eliminate the out-of-focus signals. For details regarding confocal microscopy, we refer the readers to ref (383). The excitation pinhole and the detection pinhole are both mounted in image planes of the microscope, thus “con-focal”. In this way, only the fluorescence from the focal plane reaches the detector. This microscopy modality has a thinner depth of field and higher resolution compared to wide-field microscopy. One of the demands that Minsky had on confocal microscopy is that it could image in real time, which, according to Minsky, may have significantly delayed the acceptance of confocal microscopy. (384) Shortly after the development of the confocal microscope, lasers were invented. Lasers had high enough energy densities to perform confocal microscopy and, as light coming from the laser is collimated, an excitation pinhole was no longer needed. In addition to the laser, the development of computers and imaging software contributed to the rapid development of confocal microscopy and became commercially available in the late 1980s. There are two types of confocal microscopes (Figure 23). (385) The laser-scanning confocal microscope (LSCM) scans the sample point-by-point. The sample can be scanned, typically using a piezo stage, or the excitation beam can be scanned using galvanometer mirrors (and nowadays also with resonant scanners) that can be used to increase the scanning speed. In either case, data is collected one pixel at a time and, even when the scanners have sufficient speed for imaging, one is often limited by the number of photons available per pixel. Thus, the typical image speed of a LSCM is limited to a couple of images per second and not suitable to track the dynamic behavior of quickly moving biomolecules in live cells. The second approach is to scan multiple volumes simultaneously, and a first apparatus was already built in the late 1960s. (386) This is done using a Nipkow disk and is referred to as spinning-disk confocal microscopy (SDCM). (385) The sample can be excited by multiple points simultaneously in the focal plane and an area detector such as an EMCCD can be used to collect the detected signals. SDCM and similar approaches can significantly improve the imaging speed. Thus, SDCM has become an indispensable tool for investigating the dynamic events of biomolecules in live cells. Furthermore, combining SDCM with a fast piezo z-scan device allows recording of fast three-dimensional images and has been used for 3D single-virus tracking in live cells. (387,388)

Figure 23

Figure 23. Schematic drawing of (a) a laser scanning confocal microscope and (b) a spinning disk confocal microscope.

5.4. Light Sheet Microscopy

To obtain cellular resolution imaging in intact or in vivo tissues, imaging methods must achieve optical sections of the tissue. Since single-particle experiments are extremely sensitive to background fluorescence and photobleaching, optical sectioning schemes such as TIRF and confocal microscopy have already been widely used for single-particle tracking in live cells. Owing to the limited imaging depth of TIRF, it is not suitable for single-particle tracking in extended 3D samples. Confocal microscopy has limitations in speed when used for 3D volumetric imaging. In addition, a good portion of the sample is always illuminated during confocal microscopy leading to photobleaching of the sample even out of the focal plane. To avoid this difficulty and to allow SVT in large biological objects in three dimensions, light sheet microscopy has been introduced. In light sheet microscopy (LSM), a focused thin plan of light is used to illuminate the sample and the emission light is collected orthogonally with a standard microscope objective and imaged. (389−391) The 3D volumetric image can be obtained by moving the coaligned excitation and detection plane relative to the sample. (392) Thus, compared with confocal microscopy, LSM is able to image thicker tissues (>1 cm) and has already successfully been utilized to image complex organisms at single-cell resolution in three dimensions, e.g. embryos of C. elegans, zebrafish, Drosophila, and even mouse embryos. (393−396) In addition, the plane that is illuminated by the light sheet is in the focal plane for detection and out-of-focus regions are not illuminated.
As the infection of viruses occurs in intricate 3D environments, the viral infection behavior exhibits diversified patterns in vivo, and consequently, the advent of light sheet microscopy will provide new insights regarding virus infection in living biological specimens. (397) Recently, inspired by LSM, Bosse and colleagues developed what they called a “Ring light sheet” and used it to reveal the remodeling of the nuclear architecture upon infection with herpes simplex virus allowing the nuclear herpes virus capsids to reach the nuclear membranes by diffusion. (398) Benefiting from the high spatiotemporal resolution provided by LSM, the tracking of rapid nuclear particle motility could be realized. The findings settled the question of how herpes virus capsids egress from the nucleus and illustrated a pathway for very large nuclear particles to cross the nuclear space by remodeling of the nuclear structure. Hoyer et al. developed a plane-scanning reversible saturable/switchable optical transitions light-sheet nanoscope (RESOLFT), which circumvents the diffraction limit of the light sheet fluorescence microscope in the axial dimension. (399) It is believed that this charming microscopy will spark enormous interest notably in virus research because it is suitable for long-term three-dimensional imaging at high spatiotemporal resolution in living biological specimens.

5.5. SPT-PALM

In this review article, we have not discussed much about super-resolution microscopy in respect to SVT studies. One the one hand, viruses, being often slightly smaller than the diffraction limit, are excellent objects that profit greatly from the increase produced in resolution by super-resolution techniques. As such, super-resolution methods will play an important role for viral studies. For example, PALM (229)/stochastical optical reconstruction microscopy (STORM) (400) microscopies were utilized to define spherical assembly sites of HIV (∼130 nm) in fixed cells, which is consistent with the size of mature virion particles (232,401−403) and to investigate the structure of the endosomal sorting complex required for transport (ESCRT) complex involved in the release of HIV. (404,405) On the other hand, SVT is, in a sense, a super-resolution technique as we are following a single object with nanometer spatial resolution. Thus, traditional SVT methods are more than sufficient for “super-resolution” tracking of individual viruses without the complications of the various super resolution methods, which typically have a low temporal resolution, have a high optical toxicity, and require heavy postacquisition processing. However, it should be noted that in recent years, super resolution techniques have already expanded to allow multicolor, three-dimensional single-particle tracking experiments in live cells. (406,407)
The one super-resolution approach that is of interest for SVT is SPT-PALM. By combining SPT and PALM, individual molecules present at high density can be tracked in live cells. In SPT-PALM, a small number of molecules are photoactivated in a live cell and followed using SPT. As the molecules are only sparsely activated, they can be easily tracked. After the molecules photobleach, new molecules can be photoactivated and tracked. SPT-PALM provides a large quantity of single-particle trajectories, though they are often very short due to the limited photostability of the photoactivatable FPs used for SPT-PALM. This technique has been successfully utilized to characterize the dynamics of biomolecules in a wide range of biological systems. (408−410) With respect to SVT, SPT-PALM has been used to track VSVG tagged with EosFP, providing several orders of magnitude more trajectories per cells as compared to traditional SVT methods. Thereby the authors could generate a spatially resolved map of single-molecule motility within the cell provided information regarding the heterogeneity of the cellular environment (Figure 24). (235)

Figure 24

Figure 24. SPT-PALM imaging of VSVG in COS7cells. (left) PALM image of VSVG tagged with EosFP. (middle) All SPT-PALM trajectories of localized VSVG molecules. (right) Diffusion map of individual EosFP-VSVG molecules in the cell. Adapted with permission from ref (235). Copyright 2008 Springer Nature.

Unfortunately, owing to the poor photophysical properties of autofluorescent proteins, the trajectories of molecules are very short and the localization accuracy is much lower in SPT-PALM experiments. The acquisition time also has a strong influence on the localization accuracy of particles, which is associated with several factors such as imaging modality, brightness of the tags, detector sensitivity and speed, etc. Thus, this technique is much more suited for detecting slow-diffusion events.

5.6. Orbital Tracking

Up until now, all tracking methods that we have been discussing involve ex post facto tracking. Movies are recorded in 2 or 3D and the tracking is performed afterward. These methods are mainly based on modified standard microscopes and achieve subpixel localization accuracy by 2D Gaussian fitting algorithm and 3D resolution using, for example, biplane (411) or multifocal plane detection, (54−56) a double-helix point spread function, (412−414) or astigmatic imaging. (415,416) Thanks to the emergence of spinning-disk confocal microscopy with high temporal resolution, it is also easy to implement z-stack imaging on a commercial confocal microscope. (417) A distinct advantage of the image-based approaches is that many fluorescent particles can be tracked at the same time. However, these methods have a lower temporal resolution.
There is a second class of SPT methods that track single particles in real time using a feedback loop. This includes arranging four detection volumes in a tetrahedral geometry for locating the particle, championed by Werner, (418) a guided confocal microscope using prisms (for lateral tracking) and a pinhole (for axial tracking) from Yang, (419) or the newly developed MinFlux approach from Hell. (420) We utilize the orbital tracking approach proposed originally by J. Enderlein in 2000 to monitor fluorescent molecules motilities within a 2D membrane (421) and first realized in 2D and 3D by Gratton et al. in 2003. (57) In the orbital tracking approach, the laser beam is orbited in a circular path around the fluorescent particle. When the particle is in the center of the orbit, the fluorescence intensity will stay constant throughout the orbit. When the molecule moves from the center of the orbit, the fluorescence signal will modulate with the orbit and the x-y position can be obtained from the phase and the modulation of the periodic fluorescence signal using a fast Fourier transform. (422) For determining the z-position of the fluorescent particle, the difference is taken of the fluorescence intensity between two different z-planes separated by approximately half the axial width of the point-spread function. The localization method is fast and can be utilized in a fast feedback mechanism where the orbit is recentered on the fluorescent particle and the location of the particle is written to disk. Thus, this approach allows us to track individual particles in three dimensions in real time. (58,423,424) The orbiting tracking system was used to monitor the assembly and egress of the matrix protein of Ebola virus. The researchers found that the actin coordinates the movement and assembly of VP40, a critical step in viral egress. (213)
Recently, Lamb et al. utilized a 3D orbital tracking microscope to track individual mitochondria in zebrafish embryos with nanometer precision and millisecond temporal resolution (Figure 25). (425) This demonstrates the possibility of following individual objects with high precision in living organisms. With respect to SVT, the uptake and transport of artificial viruses has also been followed using orbital tracking. (426) Orbital tracking exhibits several distinct advantages compared with image-based approaches. First of all, it has a very high spatial and temporal resolution (2–50 nm and 1–32 ms). Second, the fast Fourier transform as the localization algorithm is not sensitive to background noise and a single particle can be tracked in a scattering environment, although with a slightly lower precision. The main drawback of the orbital tracking approach is that it is not suitable to simultaneously tracking multiple particles in live cells. When particles are moving slowly, multiplexing can be performed, but in general, the approach only tracks one particle at one time. Thus, this approach is not convenient for collecting a high amount of statistics for rare events. On the other hand, as one is following the particle, one has the ability to measure various properties of that particle (e.g., spectra or lifetime (427)) or to photoactivate or manipulate that particle. In addition, the trajectory is written directly to disk in real time, which allows one to skip analysis steps 6.1 and 6.2 in the following section.

Figure 25

Figure 25. 3D orbital tracking. (a) Light microscopy transmission image of a zebrafish embryo and a zoom in on the tail with a typical Rohon–Beard neuron labeled by a membrane-targeted fluorescent protein (shown in yellow). (scale bar, 200 μm). (b) Schematic of the custom-built 3D real-time orbital tracking microscope consisting of a laser scanning confocal modality for tracking and a wide-field modality for simultaneous environmental observation. (c) (Upper image) Confocal reconstruction of a sensory neuron where both the membrane and the individual mitochondria are fluorescently labeled (scale bar, 100 μm). (Lower Image) Photoactivation of a single PA-GFP-labeled axonal mitochondrion (in yellow) (scale bar, 5 mm). (d) Schematic representation of the 3D orbital tracking approach. Different particle locations are indicated through spheres of varying color. Depending on the location of the particle, the phase and modulation of the signal vary. (e) Trajectory of an anterograde moving mitochondrion (100 Hz, 20,000 data points). (f) Autocorrelation carpet (top) of the angle between consecutive orbits and segregation of the trajectory into regions of directed transport (green) and stationary phases (red). Adapted with permission from ref (425). Copyright 2019 ELife Sciences Publications.

6. Data Analysis

Click to copy section linkSection link copied!

The goal of SVT experiments is to quantitatively assess the dynamic properties of viruses during the infection process. After being able to fluorescently label the molecules and follow them using various SVT methods, the crucial procedure becomes how to extract the dynamic information from a time-series of diffraction-limited images of viruses acquired by fluorescence microscopy. For data analysis, the essential steps are to obtain the localization of each particle with subdiffraction resolution and then reconstruct single-virus trajectories by connecting the particle positions in each frame (Figure 26). (428−430) In this part, several advanced algorithms have been developed to perform precise and accurate localization and unbiased tracking. (365,431,432)

Figure 26

Figure 26. Schematic representation of single-virus tracking. (a) Time-series of images acquired using fluorescence microscopy. The optical spatial resolution is about 250 nm in the lateral direction and about 500 nm in the axial direction, although the localization of the particle can be determined with much higher precision. (b) Steps in SVT analysis. From the collected images, the location of the different particles is first determined, and then the same particle needs to be linked through the different frames. Once the trajectories have been determined, various analyses can be performed such as a mean-squared-displacement analysis.

Once the trajectories have been determined, various analyses can be performed to uncover the underlying biological mechanisms in live cells. Generally, to interpret and classify the dynamics of viral behavior, the mean-square displacement (MSD) curves are calculated and fitted to models according to different types of movements. (270,433) The dynamic parameters obtained from curve fitting can be used to classify the types of the motional behaviors. As the type of motional behavior can also change, the instantaneous dynamic parameters (such as instantaneous speed and intensity) are also considered. (269)

6.1. Particle Detection

In SVT experiments, the raw data obtained by the various microscopy methods is typically a time series of diffraction-limited images containing fluorescent particles. In each frame of the series, the blurred spots denote fluorescent particles. Upon detection of the individual particles, we would like to determine the location of the particle with high precision. With SPT, we typically know that the detected signal is coming from a single object. Hence, it is sufficient to locate the center of the diffracted limited spot or PSF, which can be done to a much higher precision than the width of PSF or diffraction limited resolution. To locate the center position, it is first important to understand the intensity profile of the PSF. The intensity of each particle is given by the convolution of the particle shape with the PSF. The 3D diffraction pattern of single particles can be described as a 3D PSF from the Born–Wolf model. (434)
where , , , a/f = NA/n, ρ = r/a. a, f, and r are the radius of the exit pupil, the focal distance of the objective, and the radial coordinate, respectively, n is the refractive index of the medium, λ is the wavelength of light, NA is the numerical aperture, J0() is the Bessel function of zero order, and A is the amplitude. (435) Various algorithms have been developed to detect the particle center, which can be divided into two categories: geometric-based methods and PSF fitting methods.
The simple and most straightforward method is the centroid method, which finds the particle positions by calculating the intensity centroid of the bright region. It can be written as (50)
where xjik is the coordinate of the pixel in the x direction and Iijk is the intensity at the pixel (xijk, yijk, zijk). The formulas for the y and z centroid positions are analogous.
This method has the advantage that it is fast and easy to program. However, the obvious disadvantage of this method is that the localization accuracy is very sensitive to the background noise and the area selected region for the calculation.
Since the intensity of an object taken by a microscope can be described by PSF, PSF-fitting methods are widely used for particle localization. Hereinto, the Gaussian model is commonly used, since the Airy disk can be well approximated by the Gaussian distribution. In SVT, the most common fitting method is the Gaussian nonlinear least-squares fitting method. This method utilizes the iterative fitting to search for the parameters, which can minimize the weighted square error between the fit and the data. (59)
where (xf,yf, zf) is the actual position of the particle. Sx, Sy and Sz are the widths of PSF in the x, y, and z directions, respectively. A and B are the amplitude and background noise, respectively. (436)
The Gaussian nonlinear least-squares fitting method possesses very high localization accuracy and has been widely used in localization-based super-resolution techniques such as STORM and PALM. (432,437) However, this approach is very computationally expensive and not well suited for the large data volumes analyzed in 3D SPT. In addition, initial values are required to be set before Gaussian fitting, which can be very tedious, and inappropriate values can lead to a local minimum or, in the worst case, cause the calculation to crash.
The radial symmetry approach, as a new-type geometric-based method, has been proposed for localizing particle centers with subpixel resolution. (435,438) This method utilizes the fact that the gradient line at each pixel surrounding the signal from a single particle in a 2D or 3D image should theoretically intersect the true center of the fluorescent particle. Considering the influence of background noise and optical aberrations, the gradient lines do not intersect and the center of the particle is estimated by selecting the point that minimizes the distance to all gradient lines. This method has no need for iterative, numerical fitting steps, so the computation speed of the method is about 2 orders of magnitude faster than that of the Gaussian fitting method and similar to that of the centroid method. Also, the radial symmetry approach has low edge sensitivity and subpixel accuracy, similar to that of the Gaussian nonlinear least-squares fitting method (Figure 27). (435) These features make our algorithm an intensely competitive method for 3D SPT applications.

Figure 27

Figure 27. Detection of the accurate position of particles with subdiffraction resolution. (a) Image generated by sampling the point spread function (PSF) of wide-field microscopy on a 3D grid with a lattice size of 20 nm. (b) 3D CCD image simulated from the PSF image (a) with a signal-to-noise ratio of 20. The blue crosses indicate the true center of the 3D particle. (c) 3D scatter plots of the errors illustrating the error ranges of the centroid (green), Gaussian fitting (blue), and radial symmetry algorithm (red), respectively. Adapted with permission from ref (435). Copyright 2013 Springer Nature.

6.2. Particle Linking

Once particles have been detected in the individual frames of a movie, the next step is to connect the localizations coming from the same particle from frame to frame and thereby reconstruct the particle trajectory. For data collected at low particle density, the nearest-neighbor algorithm is frequently used to identify localizations coming from the same particle in different frames. For each particle, the distances to all positions in the next frame are calculated and the minimum distance is taken as the most likely position for the same particle in the successive frame. These two positions are linked together. This procedure is repeated to link positions for as many particles in as many frames as possible and thereby obtain the entire trajectories for all the particles. (439) However, to achieve this last step, the tracking algorithm has to overcome a lot of difficulties such as temporary particle disappearance, particle merging, and particle splitting. Thus, the results acquired from this algorithm are not very reliable and usually require additional input. (440,441) In addition, it is always advisible to visually check the calculated trajectories and to manually correct them if necessary.
At high particle density, the occurrence of the interactions between particles greatly increases the difficulty of particle linking and makes the nearing-neighbor algorithms unsuitable for automatically reconstructing trajectories. Many algorithms have been developed to address tracking at high density and deal with the challenges caused by particle disappearance, merging, splitting, etc. Multiple-hypothesis tracking (MHT) is one of the most accurate methods to solve these problems. (442) All the trajectories are simultaneously constructed for the entire movie. An optimization strategy is used to select the largest nonconflicting ensemble of trajectories where no two trajectories share the same position in any frame. This method is globally optimal in both time and space, but algorithms with high computational efficiency are required to just track a few tens of particles in a few tens of frames simultaneously. Therefore, several schemes have been developed to approximate the MHT solution. (53,443−445) It is worth mentioning that Jaqaman et al. have provided a robust tracking algorithm for SPT under high-density conditions that can solve all the challenges mentioned above with high accuracy and computational feasibility. Based on one mathematical framework, this method initially links the detected positions in successive frames and then connects track segments to close the gap and detect merge and split events (Figure 28). (446)

Figure 28

Figure 28. CD36 receptor aggregation activity depending on motion type. (a) Epifluorescence image of a macrophage where CD36 has been immunolabeled using a primary Fab fragment followed by a Cy3-conjugated secondary Fab fragment. (b) CD36 tracks in a control macrophage. (c and d) CD36 tracks in (c) a blebbistatin-treated and (d) a nocodazole-treated macrophage. Scale bars, 1 μm. (e) Bar plot showing the fraction of particles undergoing linear motion. (f) x coordinate, y coordinate, and amplitude of two sample trajectories as a function of time where merging events (green ovals), splitting events (purple ovals), and closed gaps (orange ovals) have been highlighted. Adapted with permission from ref (446). Copyright 2008 Springer Nature.

6.3. Trajectory Analysis

Once the individual trajectories have been collected, one can begin to extract the wealth of information such measurements provided. Some analyses are straightforward such as looking at colocalization and interactions between different cellular or viral components, or measuring the kinetics of viral assembly via the increase and saturation in fluorescence intensity. As mention in section 3.1.2, fluorescence intensity can also be used as a reporter of membrane fusion, especially when lipophilic dye-labeled viruses are used. Thus, the intensity vs time plot displays a distinct increase after fusion events. (68)
Other analyses can be performed to gain information with respect to the motional behavior of the viruses or viral components. The diffusion coefficient is determined by analyzing the mean square displacement (MSD), which is a measure of the spatial extent of random motion. The MSD is defined as
where r(Δt) is the particle position at the time point of Δt, Δt is the acquisition time of each frame, N is the total frames for the particle trajectory, and n and i are integers. (269,447,448)
How the MSD depends on the time lag (nΔt) depends on the motional behavior of the particle. For Brownian motion, the MSD depends linearly on the time lag: (12,449)
where d is the space dimensionality and D is the diffusion coefficient. Hence, the diffusion coefficient can be determined from the slope of the MSD plot.
Pure random or Brownian motion is the simplest type of stochastic process. However, the cell is a crowded heterogeneous environment where many interactions can potentially happen. (12,17) In such a heterogeneous environment, particles often display anomalous diffusion. The relationship between MSD and nΔt for anomalous diffusion is given by
where α is anomalous diffusion exponent (α < 1).
Another type of motion that is often observed in live cells is confined diffusion. In confined diffusion, there is Brownian motion inside an enclosed environment from which the particle cannot easily escape. The dependence of MSD vs nΔt is related to the shape of the confined region and the spatial dimensionality. The formula of this type of motion in 2D for confinement in a square is given by
where L is the length of the side of the square. (269,450,451)
In live cells, viruses are often transported along the cytoskeleton. The cytoskeleton, such as microfilaments and microtubules, is the highway of the cells. Several molecular motors walk along the cytoskeletal filaments and transport their cargo. For directed motion with a diffusional component, the MSD is given by
where V is the constant velocity for directed transport. (59) By fitting the MSD, the type of diffusional behavior can be determined as well other relevant information such as the diffusion coefficient, the velocity of directed transport, the size of confinement, or the degree of deviation from Brownian motion.
The MSD analysis is a statistical analysis and thereby very powerful but assumes the motional behavior is constant during the measurement. Often, viruses change their motional behavior, for example from 2D diffusion on the cell membrane to directed transport and then to 3D anomalous diffusion within the cytosol. In cases like this, the instantaneous speed of the particle is a useful way to characterize the transport behavior of the particle. It can clearly identify the obvious periods of directed transport of the particle and provide information on the types of motors involved in the transport process. Research has reported that the movements related to actin filaments have lower instantaneous speed in the range of 0.1–0.4 μm/s, and the instantaneous speeds associated with microtubules are one to several μm/s in live cells. (97,130,452,453) The particles may experience several different motional modes in one trajectory. By means of the dependence of instantaneous speed vs time, the different motions from a trajectory can be distinguished and analyzed separately.

7. Viral Infection Mechanisms Revealed by Single-Virus Tracking

Click to copy section linkSection link copied!

In the section below, we describe the current state of various applications of SVT in virology and elaborate the representative studies in detail to illustrate what information can be acquired and how SVT can be applied experimentally. The lifecycle of viruses, as obligatory intracellular parasites, is strongly coupled to interactions with the host cell. There are a number of processes that are needed for viral replication. The first encounter between viruses and host cells usually occurs via the attachment factors or receptors (such as a protein, an oligosaccharide, or a glycolipid, etc.) exposed on the cell surface. To overcome the barrier of the plasma membrane, numerous viruses hijack the endocytic pathway of host cells for internalization. Viruses are then trapped into membrane vesicles and transported to special regions for genome release. After the replication of viral components, new viruses are assembly and eventually egress to look for new cells to invade. (454,455) There is an extensive amount of excellent work in the literature, and it is not possible to highlight all articles that have made significant contributions to the field or deserve special attention.

7.1. Virus-Receptor Interactions

For virus infection, viruses primarily binding nonspecifically to attachment factors on the cell surface and migrate along the cell surface until they recognize and bind to the specific receptors. The virus-receptor binding will activate the downstream signaling and trigger the internalization of viruses. (3,5,454,456) The detailed processes of how viruses move on the cell surface to bind specific receptors is difficult to explore by conventional biochemical approaches. SVT can directly provide detailed kinetic information on this process and such studies have revolutionized our understanding of virus–receptor interactions. (59,457)
A recent study has highlighted the vital role of filopodia during virus infection. (458) Filopodia are actin-rich bundles protruding from the plasma membranes and participate in probing the extracellular environment, promote cell motility, and facilitate cell-to-cell interactions. More and more pieces of research reported that filopodia were exploited during the initial step of virus infection and visualized movements of different viruses along filopodia. (71,132,137,139,208,212,216) By tracking individual murine leukemia viruses (MLVs), the researchers found that MLV initially attached to the filopodia and underwent a rapid and actin-dependent lateral movement along the filopodia toward the cell body (Figure 29). (208) Meanwhile, by monitoring the lateral motility of HPV on the cell surface, four modes of HPV mobility were discovered, and only the directed movement along actin protrusions (such as filopodia or retraction fibers) enhanced HPV infection. (137) All these findings support the fact that viruses must bind to cellular receptors for promoting internalization into the cell body.

Figure 29

Figure 29. Virus cell surfing along filopodia. (a) Individual murine leukemia virus (MLV) labeled with YFP (red) surfing along the filopodium of a HEK 293 cell transduced with mCAT-1-CFP (green). The time in the upper righthand corner is given in seconds, and the motion from two particles is summarized as white arrows in the right-most panel. (b) Image summarizing the overall movement of selected particles on filopodia of a single HEK 293 cell. (c) Thirty-one frames from a recorded movie superimposed to show the transport and photobleaching of MLVs during the SVT experiment (moving particles are highlighted in white). (d) To quantify virus cell surfing, the motility of 85 individual MLV particles was plotted over time where time point 0 represents the moment the virus attaches to a filopodium. Adapted with permission from ref (208). Copyright 2005 The Rockefeller University Press.

In addition, recent studies implied that viruses have different receptors for viral entry depending on cell types. The simultaneous tracking of ASLV and different receptors revealed that the infection efficiency was closely associated with the type of receptors the viruses bound to. Binding to lipid-anchored receptors may result in virus–cell membrane fusion where the genome is released into the cytosol. However, the transmembrane receptor accelerated virus uptake and provided a delay of the virus–endosome fusion event. (155) As another example, sialic acids act as receptors for many viruses, including human and avian influenza viruses. Human and avian influenza viruses preferentially bind to sialic acid linked to galactose by α-2,6 linkage and α-2,3 linkage, respectively. (459,460) The binding specificity of sialic acid receptors is an important barrier in cross-species transmission. SVT was utilized to explore the dynamic mechanisms of different receptors in live cells. These observations indicated that the infection behavior of viruses was determined by the transport behavior of the sialic acid receptors. (112)

7.2. Virus Internalization

To infect and replicate, viruses must enter the intracellular environment of the host cells. After viruses bind to the receptors on the cell surface, there are mainly two strategies for virus internalization: endocytosis-independent and endocytosis-dependent internalization. In the first strategy, viruses bind to the receptors on the cell surface and then directly fuse with the plasma membrane to enter the cell. It has been known that certain enveloped viruses, such as herpes simplex virus (HSV) and Sendai virus, are internalized into cells by fusing with the plasma membrane directly at neutral pH. (454,461,462) It is considered an effective way for enveloped viruses to deliver viral genome into the cytosol. In this process, viruses first bind the specific receptors on the cell surface, which then promote the virus–membrane fusion event. On the other hand, endocytosis is hijacked by most viruses to enter the cells, which may occur via several different mechanisms, such as clathrin-mediated, caveolae-mediated, clathrin- and caveolae-independent endocytosis, and macropinocytosis. (456,463,464)
In the past, researchers investigated the endocytosis-dependent uptake of viruses by using conventional techniques such as TEM and inhibition experiments. A detailed understanding of the entry mechanisms and the dynamic processes involved in viral internalization is still lacking for most viruses. SVT has greatly contributed to our understanding of viral entry mechanisms in particular when combined with multicolor live-cell imaging. For example, by visualizing the interaction between the capsid of CPV and transferrin receptors on the cell surfaces, it became apparent that the interactions facilitate trapping of the viral capsid into clathrin-mediated endocytic structures by a rapid diffusion-based mechanism (Figure 30). (142) By tracking the infection behaviors of influenza virus in living cells, the entry of influenza virus followed two distinct pathways: a clathrin-mediated pathway, and a clathrin- and caveolae-independent pathway. (72) Simultaneous tracking of viruses and clathrin-coated pits indicate that most viruses promote the de novo formation of clathrin-coated pits around the viruses and exploit the clathrin-mediated pathway for virus internalization. In parallel, the remaining viruses enter the host cells by a clathrin- and caveolin-independent endocytic pathway with similar efficiency. Through the application of QD-based SVT and multicolor imaging, Pang’s lab revealed that dynamin is involved in the clathrin-mediated pathway of influenza virus uptake and participates in the maturation and membrane fission of clathrin-coated pits in this pathway. (114) Macropinocytosis is usually considered as a nonspecific mechanism for virus entry. Several kinds of viruses have been reported to utilize macropinocytosis to infect the cells such as VV, HIV, and HSV. (462)

Figure 30

Figure 30. Real-time imaging of clathrin-dependent CPV internalization. (a) Example of clathrin-dependent CPV endocytosis. Left panels, CRFK σ2-eGFP cells (green, AP-2) were inoculated with fluorescent capsids (red) and imaged as before. Right panel, diffusion path of the capsid shown at left. A color-coded line trace of the capsid diffusion path is overlaid onto the t = 51-s image. (b) Plot of the background-corrected AP-2 (green) and capsid (red) fluorescence intensities with respect to time for the event in panel a. For frames prior to pit initiation, the AP-2 fluorescence intensity was quantified at the eventual site of pit initiation. (c) Efficiency of clathrin-dependent CPV entry. (d) Examples of CPV dissociation from the cell surface. Time-lapse images showing the attachment (downward-facing arrows) of two capsids (red; no. 1, no. 2) and subsequent capsid dissociation (upward-facing arrows). (e) Residence time of CPV capsids that dissociated from CRFK cells. Adapted with permission from ref (142). Copyright 2012 American Society for Microbiology.

7.3. Virus Transport

As many viruses enter cells via an endocytosis pathway, they find themselves in intracellular vesicles and are transported to specific sites in the cell for genome release and replication. Endosomal transport along the cytoskeleton is assisted by several molecular motors including myosin, dynein, and kinesin. As a result, viral transport is a complex and multistep process, and viruses often follow several different pathways in the cytosol. With SVT, it is possible to monitor individual viruses in real time and dissect the infection behavior of each virus in living cells and thereby provide new mechanistic insights into the infection pathway of viruses. HIV has long been assumed to fuse at the plasma membrane and release the genome directly into the cytosol. However, by monitoring the early phase of viral infection, new evidence arose suggesting that the virus fused with endosomes in the cytosol of cells after receptor-mediated internalization (Figure 31). (83) Furthermore, Cui et al. demonstrated that HIV was endocytosed and translocated into endosomes in a clathrin- and actin-dependent manner in macrophages and the viral core was released into the cytoplasm by endosomal fusion. (157)

Figure 31

Figure 31. Identification of HIV-1 fusion sites by single-virus imaging. (a) Schematic presentation of redistribution of viral lipid and content markers upon fusion with a plasma membrane (left) and with an endosome (right). Viruses colabeled with membrane (red) and content (green) markers are pseudocolored yellow. (b and c) Partial fusion of JRFL with the plasma membrane of TZM-bl cells. The time from the beginning of imaging is shown. The two-dimensional projection of the particle’s trajectory (cyan) is overlaid on the last image. Changes in fluorescence intensities (in arbitrary units) of membrane (red) and content (green) markers, as well as the instantaneous velocity (blue trace) of the particle, are shown. Adapted with permission from ref (83). Copyright 2009 Elsevier.

There is plenty of evidence from SVT experiments that many viruses are transported in the cytosol in an actin filament- and microtubule-dependent manner, and microtubules assist viruses to move from the plasma membrane to the perinuclear region. This phenomenon has been reported for several kinds of viruses, including influenza virus, (68,108) DENV, (75,162) and adenovirus. (70,465) Viral transportation is a highly regulated process in live cells. For example, SVT results indicated that influenza viruses follow a five-stage process during trafficking inside the cell: viruses attach to the cell surface initially, move slowly along the actin filaments in the cell periphery, and travel rapidly toward the cell nucleus in a microtubule-dependent manner, followed by interacting and fusing with late endosomes for genome release. (108) Furthermore, the transport behavior of influenza viruses in the cytosol could be influenced by the microtubule structures. The microtubule configuration influences the destiny of individual viruses during viral transport in living cells. (110) QDs-based SVT and multicolor imaging illustrated that the retrograde motor proteins, myosin VI and dynein, were responsible for the seamless transport of viruses from microfilaments to microtubules during virus transport. (118) 3D tracking of influenza virus demonstrated that the distinct transport behaviors of viruses were associated with early and late endosomes, and the transition from early to late endosomes occurred in the perinuclear region. (111) Multicolor tracking of individual viruses and autophagosome provided an unambiguous dissection of the autophagic trafficking of viruses. Roughly one-fifth of the viruses found to enter the host cells did so through the autophagic pathway. The results provided dynamic and distinct insights into the relationship between autophagy and virus entry. (115)

7.4. Fusion and Genome Delivery of Viruses

After viruses are internalized into cells, the viral genome needs to be released into the cytosol for replication. Enveloped viruses usually enter cells via endocytosis, which has the advantage that they can easily be transported toward the nucleus, but they need to find a way to escape the endosomes. The fusion proteins of most viruses are commonly activated under acidic pH. For instance, in late endosomes, the acidic environment induces a conformational change in the hemagglutinin, a fusion protein of influenza viruses, which mediates virus–endosome fusion for genome release. (466) Of course, not all viruses undergo pH-dependent release; nonenveloped viruses can escape the endosome for genome release through a fusion-independent manner and even for enveloped viruses. There are several pH-independent pathways and the molecular mechanisms underlying this portion of the virus life cycle remain only partially understood.
Some viruses fuse directly at the plasma membrane or can fuse either with the plasma membrane or with endosomes. Prototype foamy virus is thought to enter via both pathways. Using a dual-labeled variant of PFV, Lindemann and co-workers could visualize the fusion event in real time. Here, the envelop protein was labeled with mCherry and the capsid with eGFP. Before fusion, the virus was observable in both the eGFP and mCherry channels. Upon fusion, the eGFP from the capsid was observed to separate from the mCherry signal and was then transported into the cytoplasm (Figure 32). (467)

Figure 32

Figure 32. Fusion of PFV. (a) Bright field image of a cell overlaid with the trajectory of a dual-color PFV virus during fusion at or near the plasma membrane. The dual-color signal is shown in yellow and the single-labeled capsid in green. (b) Tracking image correlation (TrIC) analysis of the fusion event observed in panel (a). (upper panel) The fluorescence intensity of the Gag-eGFP signal (green) and mCherry-Env (red) signal, (second panel) instantaneous velocity, (third panel) cross-correlation amplitude (blue) and randomized cross-correlation signal (black), and (lower panel) relative distance between the Gag-eGFP and mCherry-Env signals plotted as a function of time. (c) 3D relative trajectory of the Env-labeled envelop with respect to the Gag-capsid showing movement in the order of hundreds of nanometers between the two labels before the completion of the fusion process. Adapted with permission from ref (467). Copyright 2013 Elsevier.

By virtue of multicolor labeled HIV viruses, Melikyan et al. found that complete viral fusion occurred in endosomes and not at the plasma membrane. (83) By labeling HIV integrase, Charneau and co-workers showed that cytosolic HIV complexes moved directly toward the cell nucleus in a microtubule and actin-dependent manner, then docked near the nuclear membrane, and eventually diffused inside the nucleus. (87) In the case of PV, time-lapse imaging analysis indicated that the virus enters the host cell via a tyrosine- and actin-dependent endocytic pathway, and the genome release of PV occurs in the endosomes near the plasma membrane. (131) This result settled a long-lasting debate regarding where PV releases its genome.
SVT measurements of the dynamic uncoating of individual influenza viruses indicated that approximately 30% of influenza virus particles undergo uncoating through fusion with late endosomes. After viral fusion and uncoating, vRNPs are released separately into the cytosol and, following a three-stage transport process, reach the vicinity of the cell nucleus. Visualization of the intranuclear dynamic behavior of the vRNPs revealed two diffusion patterns within the nucleus. Thus, SVT significantly contributed to our understanding of the uncoating and vRNP trafficking mechanisms of influenza virus (Figure 33) (113) in particular and is helping to disperse the enigma of genome delivery in general.

Figure 33

Figure 33. Real-time imaging of vRNP of influenza A viruses (IAV) release from a Rab7-positive endosome. (a) A fluorescence movie of a cell containing QD625-labeled influenza viruses (red) and Rab7-ECFP labeled endosomes (cyan) was recorded and SVT was performed. (b) Trajectories of the QD-labeled influenza virus colocalizing with the fluorescently labeled endosome from panel a. (c) Fluorescence image of an infected cell treated with NH4Cl. (d) Trajectories of the QD625 and ECFP fluorescent signals in NH4Cl-treated cells. (e) Model for IAV uncoating and vRNP dynamics. An IAV virion enters the host cell via endocytosis. Individual vRNPs finally undergo a three-stage active transport process to arrive at the cell nucleus and display two diffusion patterns within the nucleus. Adapted with permission from ref (113). Copyright 2019 National Academy of Sciences, U.S.A.

Furthermore, the viral genome of influenza virus is generally replicated in the cell nucleus and exported to the cytosol as vRNPs and transported to the plasma membrane for virus egress with an uncertainty. (468,469) Live-cell tracking of fluorescent vRNPs showed that the cytoplasmic vRNPs accumulated in the recycling endosome vesicles with a Rab11 and microtubule-dependent manner (470,471) and in the vRNP/Rab11 hotspots.

7.5. Assembly and Egress of Viruses

After genome replication and protein synthesis, the goal of virus infection is to assemble and release progeny virus particles. The newly synthesized components are transported to a specific site for virus assembly, and the progeny viruses can be released from the host cells by a variety of mechanisms such as exocytosis, lysis of the cell, or budding from the plasma membrane. Compared to virus entry and transport processes, it is more challenging to investigate the dynamic mechanisms of virus assembly and egress since it is hard to label newly synthesized viral components with fluorescence. Here, FP-labeling of individual components is powerful and, with labeled constructs, fluorescence fluctuation spectroscopy can play an important role where the motional behavior of a small number of proteins can be analyzed to gain insights into mobility and interactions between viral components or between virus and cellular components. Hendrix and co-workers used a number of correlation methods to elucidate the early cytosolic steps in HIV assembly. (472) Nevertheless, there are also situations where SVT can be used to elucidate the molecular location, dynamics, and mechanisms during viral assembly and egress. (473)
Many enveloped viruses such as HIV are assembled and released from the plasma membrane of the host cell by the abscission of the viral envelope. (474) The Gag proteins of HIV are necessary for the assembly and release of virus particles. Time-lapse imaging showed that HIV Gag is initially distributed in the perinuclear region of the cytosol and then travels to the plasma membrane. (475) Using the photon counting histogram approach as well as a quantitative PALM analysis, the size and density of the HIV-Gag cluster during the assembly of virions could be calculated. (476−478) To investigate the dynamic process of HIV genome packaging, HIV RNA was labeled with a photoconvertible Eos protein. TIRF imaging results indicated that the presence of the Gag protein distinctly increased the dwell time of HIV RNA near the plasma membrane. (479) Furthermore, simultaneous measurement of F-actin and HIV particles revealed that there is no characteristic pattern nor transient recruitment of F-actin during the viral budding process. The result demonstrated that the actin filaments-dependent transport pathway was dispensable for HIV Gag assembly on the plasma membrane. (480) By combining wide-field and TIRF microscopy, the assembly of the HIV protein shell was observed within ∼8–9 min after nucleation of an assembly site and virus particles were formed individually. HIV release occurred ∼25 min after nucleation of the viral assembly site. (370) Moreover, the transient recruitment of the ATPase VPS4 (vacuolar protein sorting 4) to nascent HIV particles at HIV budding sites on the host cell plasma membrane was observed before viral release, indicating that VPS4A played a distinct role in membrane scission for HIV-1 release (Figure 34). (481)

Figure 34

Figure 34. Recruitment of VPS4A to HIV assembly sites. (a) Wide-field image and time projections (5,926 s) from a TIRFM image series exemplifying frequent colocalization of eGFP-VPS4A bursts (green) with nascent HIV particles (magenta). (b) TIRFM images of the assembly and release of a HIV particle (top panel, arrows) and the corresponding eGFP-VPS4A channel (bottom panel, arrows). (c) Number of VPS4A bursts detected within 528 s (200 frames) in the presence of the indicated HIV derivatives (left) and number of HIV budding sites detected (right). (d) Wide-field image and time-projected TIRFM image of cells coexpressing eGFP-VPS4A (green) and the nonbudding HIV late minus mutant (magenta). All scale bars, 800 nm. Adapted with permission from ref (481). Copyright 2011 Springer Nature.

7.6. Cell-to-Cell Transmission of Viruses

Upon release of new viruses, the life-cycle continues with the infection of a new host cell. One mechanism for infection is cell-to-cell transmission. Nascent viruses reach a new host cell through direct cell–cell contacts, a pathway for infection that has been estimated to be 100–1000 times more efficient than the spread by cell-free dissemination. (482,483) Significantly, this spread pathway is less susceptible to the external surroundings (e.g., neutralizing antibodies, antivirus drugs, etc.). Virological synapses, (86,205,484) cell filopodia, (208,212,458,485,486) and membrane nanotubes (487−490) are three typical physical connections between cells which dramatically augment cell-to-cell transmission of many viruses. By means of SVT, the cell-to-cell transmission process can be visualized and the underlying mechanisms further uncovered by the dynamic evidence.
For instance, many viruses including HIV, HSV, and human T-lymphotropic virus (HTLV) tend to establish virological synapses between infected donor cells and uninfected target cells through cell-to-cell transmission. (491−494) The direct translocation of HIV across the virological synapse was captured by continuous time-lapse monitoring of HIV. The dynamic information provided by quantitative, high-speed three-dimensional video microscopy indicated that HIVs dissemination between cells may be enhanced by virological synapse-mediated cell adhesion coupled with viral endocytosis. (486) Additionally, retroviruses could establish filopodial bridges by connecting infected cells with noninfected cells, and virus particles budding from infected cells would move along the outer surface of the filopodial bridge toward noninfected cells. (485) The whole process of transmission was visualized by SVT and clearly demonstrated that the cell filopodia could be exploited by retroviruses for the purpose of viral spread. Membrane nanotubes, as recently discovered membranous tethers between cells, facilitate direct intercellular communication, signaling, and the spread of pathogens. (96,489,495,496) Compared with filopodial bridges, membrane nanotubes usually span over longer distances, which means that these structures can aid the spread of virus rapidly and efficiently. The movements of GFP-fused recombinant HIVs on nanotubes were recorded, indicating that the viruses moved along the nanotubes from the infected toward uninfected cell. The process of HIVs transported along membrane nanotubes was receptor-dependent with a speed of 0.08 ± 0.03 μm/s. The results showed that membrane nanotubes presented a novel route for the rapid spread of HIV between T cells (Figure 35). (489)

Figure 35

Figure 35. Membrane nanotubes present a novel route for HIV-1 to spread between T cells. (a) Membrane nanotubes were formed after intercellular contact between an infected Jurkat T cell (red) and an uninfected Jurkat T cell. (b) The frequency of membrane nanotubes formed between uninfected and infected Jurkat T cells or between two populations of uninfected Jurkat T cells. (c) Time-lapse imaging of Gag-GFP (green), expressed in the context of the fully infectious virus, along a membrane nanotube connecting infected with uninfected Jurkat T cells (red). (d) The arrow indicates Gag-GFP within the cytoplasm of the initially uninfected T cell. (e) The position of Gag-GFP is plotted against time showing generally directed movement from uninfected to infected cells. Adapted with permission from ref (489). Copyright 2008 Springer Nature.

8. Conclusions and Perspectives

Click to copy section linkSection link copied!

Single-virus tracking is a powerful tool for investigating complex dynamic processes of viruses and has become a standard lab technique now in the field of virology. The evolution and development of SVT in the past decades shed light on the mechanisms involved in the life-cycle of a variety of viruses including virus internalization, virus transport, genome delivery, and virus assembly. As an interdisciplinary technique, SVT required consecutive efforts from experts in chemistry, biology, virology, and physics. With the development of new fluorescent tags, better labeling strategies, and novel optical instruments, SVT is continuously undergoing rapid expansion. In this review, we have given practical considerations of how to perform SVT experiments in live cells, including the choice of fluorescent tags, labeling strategies, imaging instrumentation, and data analysis, and have demonstrated the power of SVT by mentioning a few applications.
SVT has been established nearly two decades ago, and this booming technique shows no signs of slowing down. However, there are still several issues that need to be ironed out for SVT in the future. First of all, the sizes of different kinds of viruses (10–300 nm) vary largely and fluorescent tags may impair the virus infectivity in varying degrees. To reduce the influence of fluorescent labeling, only a limited amount of fluorescent tags can be used to attach to the viral components. New organic dyes and FPs with better photophysical properties are being developed and will contribute to improve SVT. Even so, monitoring the viral infection processes continuously with high temporal resolution over the entire infection process remains a big challenge. QDs, with their excellent optical brightness and photostability, are a great option and have the potential of tracking the whole infection process of individual viruses in living cells. However, QDs also have some limitations such as their larger size, photoblinking, and potential interference with the functionality of the virus. Fortunately, in many cases, QDs have been shown to have minimal influence on the virus characteristics and do not affect the viral infectivity, although to what extent QDs labeling may affect the real behavior of viruses in living cells is unclear. SVT will certainly profit from the development of new-types of QDs with small size and nonblinking to circumvent these limitations. (497−499) Smaller QDs will also most likely minimize any deleterious effects of the labeling process.
Second, the process of virus infection involves a vast number of interactions between host cells and viruses. Interactions often occurred between a small number of viral and cellular molecules. One of the future challenges will be visualizing these interactions. Here, multicolor labeling will be necessary. One possibility, as discussed above, is fluorescence fluctuation spectroscopy. A second approach is super-resolution imaging, which has developed extensively over the past ten years and allows researchers to delineate the cellular processes on the nanoscale. (500) Super-resolution methods are commercially available and have pushed the optical resolution into the 20–100 nm range. (230,501,502) This opens the avenue for investigating the virus infection mechanisms within a subcellular environment and with subviral resolution thereby making it possible to uncover the underlying mechanisms of virus infection. New imaging techniques are still in demand to combine single-virus tracking and super-resolution microscopy for capturing and quantitative understanding of the fundamental processes involved in virus infection at nanometer spatial resolution.
Lastly, single-virus tracking is currently only limited to investigations of the infection mechanism of viruses in cultured cells, which is a simplified model system. In vivo experiments are needed to fully comprehend the mechanisms of virus infection. By tracking individual viruses in live tissue and animals, it may be possible to dissect the processes involved in the cell-to-cell transmission of viruses and learn how viruses break through the defense barriers of the host. To date, several groups reported the noninvasive visualization of viruses in mice, (503,504) but the real-time tracking of individual viruses in vivo still remains a challenge because of the limitations of current bioimaging techniques. Although optical microscopy has been a fundamental tool for biological researchers for more than three centuries, in vivo imaging is still restricted by light scattering. Recent advances in optical imaging techniques and in vivo microscopy allow images to be acquired at high resolution and unprecedented depths. (505,506) Additionally, the use of near-infrared fluorescent tags allows researchers to enhance tissue penetration of light and minimize the interference of tissue autofluorescence in vivo. (507−509) A series of near-infrared QDs were recently synthesized with an emission range from 800 to 1600 nm. (244,510,511,512) Of particular interest are the ultrasmall near-infrared QDs with a size of ∼2 nm and low toxicity generated via quasi biosynthesis, for example by utilizing the GSH enzymatic pathway. (245,246) Thus, enabled with these novel tools, new opportunities are becoming available for SVT to probe the dynamic interactions of viruses in vivo and thereby elucidate the mysteries of the infection processes.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Dai-Wen Pang - State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. ChinaCollege of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Wuhan 430072, P. R. ChinaOrcidhttp://orcid.org/0000-0002-7017-5725 Email: [email protected]
  • Authors
    • Shu-Lin Liu - State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. ChinaEngineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. ChinaOrcidhttp://orcid.org/0000-0002-1043-4238
    • Zhi-Gang Wang - State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. ChinaOrcidhttp://orcid.org/0000-0002-3461-4014
    • Hai-Yan Xie - School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. ChinaOrcidhttp://orcid.org/0000-0002-6330-7929
    • An-An Liu - State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
    • Don C. Lamb - Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München, 81377, GermanyOrcidhttp://orcid.org/0000-0002-0232-1903
  • Author Contributions

    S.-L.L. and Z.-G.W. contributed equally to this work.

  • Notes
    The authors declare no competing financial interest.

Biographies

Click to copy section linkSection link copied!

Shu-Lin Liu obtained her B.S. degree from Zhengzhou University (2007) and obtained her Ph.D. degree (2013) in Analytical Chemistry from Wuhan University. She worked as a postdoctoral researcher at University of Illinois at Chicago (2013–2017). After that, she worked as a professor at China University of Geosciences and now is a professor in Chemistry Department of Nankai University. Her research interests are mainly focused on single-virus tracking, lipid-mediated cell signaling, and developing new techniques for biological applications.

Zhi-Gang Wang received his B.S. degree (2005) and M.S. degree (2008) from the Department of Chemistry at Zhengzhou University. He obtained his Ph.D. degree (2014) in Analytical Chemistry from Wuhan University and finished his postdoctoral research at University of Illinois at Chicago during 2014–2017. Currently, he is an associate professor at School of Medicine, Nankai University. His main research interests include bioapplication of nanoparticles, single molecule/particle tracking, and signaling pathway and biosynthesis of QDs.

Hai-Yan Xie is a professor in the School of Life Sciences, Beijing Institute of Technology, China. She received her Ph.D. in Analytical Chemistry from Wuhan University in 2004. From 2013 to 2014, she worked as a visiting scholar in Stanford University. Her research focuses on the interdisciplinary work on biorthogonal chemistry, nanotechnology, and biomimetic biology for disease diagnosis and treatments.

An-An Liu received her bachelor’s degree from Nankai University in 2008 and her Ph.D. in analytical chemistry from Wuhan University in 2016. Then she carried out postdoctoral research on single molecule imaging at Kyoto University and Okinawa Institute of Science and Technology Graduate University in Japan. She joined Nankai University in 2019 as an assistant professor. Her research focuses on developing nanomaterials and nanoprobes for bioimaging.

Don C. Lamb is Professor for Biophysical Chemistry at the LMU Munich. He obtained his Ph.D. degree from the University of Illinois at Urbana–Champaign and was a research fellow at the Harvard Medical School, an Alexander von Humboldt Research Fellow at the TU Munich, a member of the Laboratory for Fluorescence Dynamics at the University of Illinois at Urbana–Champaign, and a visiting scientist at the University of Ulm. His research focused on ultrasensitive fluorescence methods, advanced microscopy methods, protein function and dynamics, fluorescence fluctuation spectroscopies, live-cell imaging, single particle tracking, single virus tracing, and DNA nanodevices.

Dai-Wen Pang graduated with a B.S. degree in chemistry from Wuhan University in 1982 and received his Ph.D. degree in electrochemistry from Wuhan University in 1992. He was a professor at Wuhan University from 1996 to 2018 and now is a distinguished professor at Nankai University. His research interest focuses on biomedical-used quantum dots (BioQDs, especially ultrasmall biocompatible NIR-fluorescent semiconductor nanocrystals), including space-time coupled living-cell synthesis of QDs, quasi-bio synthesis of QDs, single-virus tracking with QDs, photoluminescence mechanism of luminescent nanomaterials, and also backlight display with QDs. He was the Head of the Creative Research Group for Biomedical Probes of the National Natural Science Foundation of China (2006–2012) and 973 Chief Scientist appointed by the Ministry of Science and Technology of China for two projects of the National Key Scientific Program (2006–2015). He is now the Director of the Research Center for Analytical Sciences of Nankai University, member of the National Steering Committee for Nanotechnology, member of the Editorial Advisory Board of Analytical Chemistry, and Associate Editor for New Journal of Chemistry.

Acknowledgments

Click to copy section linkSection link copied!

This work was supported by the National Natural Science Foundation of China (Nos. 21535005, 21877102, 21977054, 91953107, and 21827808) and by the Ludwig-Maximilians-University Munich via the Center for NanoScience and the LMUInnovativ BioImaging Network.

References

Click to copy section linkSection link copied!

This article references 512 other publications.

  1. 1
    Smith, A. E.; Helenius, A. How Viruses Enter Animal Cells. Science 2004, 304, 237242,  DOI: 10.1126/science.1094823
  2. 2
    Greber, U. F.; Way, M. A Superhighway to Virus Infection. Cell 2006, 124, 741754,  DOI: 10.1016/j.cell.2006.02.018
  3. 3
    Marsh, M.; Helenius, A. Virus Entry: Open Sesame. Cell 2006, 124, 729740,  DOI: 10.1016/j.cell.2006.02.007
  4. 4
    Gruenberg, J. Viruses and Endosome Membrane Dynamics. Curr. Opin. Cell Biol. 2009, 21, 582588,  DOI: 10.1016/j.ceb.2009.03.008
  5. 5
    Sun, E.; He, J.; Zhuang, X. Live Cell Imaging of Viral Entry. Curr. Opin. Virol. 2013, 3, 3443,  DOI: 10.1016/j.coviro.2013.01.005
  6. 6
    Pelkmans, L.; Helenius, A. Insider Information: What Viruses Tell Us about Endocytosis. Curr. Opin. Cell Biol. 2003, 15, 414422,  DOI: 10.1016/S0955-0674(03)00081-4
  7. 7
    Conner, S. D.; Schmid, S. L. Regulated Portals of Entry into the Cell. Nature 2003, 422, 3744,  DOI: 10.1038/nature01451
  8. 8
    Horan, P. K.; Melnicoff, M. J.; Jensen, B. D.; Slezak, S. E. Fluorescent Cell Labeling for in Vivo and in Vitro Cell Tracking. Methods Cell Biol. 1990, 33, 469490,  DOI: 10.1016/S0091-679X(08)60547-6
  9. 9
    Giepmans, B. N. G. The Fluorescent Toolbox for Assessing Protein Location and Function. Science 2006, 312, 217224,  DOI: 10.1126/science.1124618
  10. 10
    Alcor, D.; Gouzer, G.; Triller, A. Single-Particle Tracking Methods for the Study of Membrane Receptors Dynamics. Eur. J. Neurosci. 2009, 30, 987997,  DOI: 10.1111/j.1460-9568.2009.06927.x
  11. 11
    Cang, H.; Shan Xu, C.; Yang, H. Progress in Single-Molecule Tracking Spectroscopy. Chem. Phys. Lett. 2008, 457, 285291,  DOI: 10.1016/j.cplett.2008.03.098
  12. 12
    Levi, V.; Gratton, E. Exploring Dynamics in Living Cells by Tracking Single Particles. Cell Biochem. Biophys. 2007, 48, 115,  DOI: 10.1007/s12013-007-0010-0
  13. 13
    Shen, H.; Tauzin, L. J.; Baiyasi, R.; Wang, W.; Moringo, N.; Shuang, B.; Landes, C. F. Single Particle Tracking: From Theory to Biophysical Applications. Chem. Rev. 2017, 117, 73317376,  DOI: 10.1021/acs.chemrev.6b00815
  14. 14
    Xia, T.; Li, N.; Fang, X. H. Single-Molecule Fluorescence Imaging in Living Cells. Annu. Rev. Phys. Chem. 2013, 64, 459480,  DOI: 10.1146/annurev-physchem-040412-110127
  15. 15
    Manzo, C.; Garcia-Parajo, M. F. A Review of Progress in Single Particle Tracking: from Methods to Biophysical Insights. Rep. Prog. Phys. 2015, 78, 124601,  DOI: 10.1088/0034-4885/78/12/124601
  16. 16
    Miller, H.; Zhou, Z.; Shepherd, J.; Wollman, A. J. M.; Leake, M. C. Single-Molecule Techniques in Biophysics: A Review of the Progress in Methods and Applications. Rep. Prog. Phys. 2018, 81, 024601  DOI: 10.1088/1361-6633/aa8a02
  17. 17
    Wieser, S.; Schutz, G. J. Tracking Single Molecules in the Live Cell Plasma Membrane-Do’s and Don’t’s. Methods 2008, 46, 131140,  DOI: 10.1016/j.ymeth.2008.06.010
  18. 18
    Kusumi, A.; Tsunoyama, T. A.; Hirosawa, K. M.; Kasai, R. S.; Fujiwara, T. K. Tracking Single Molecules at Work in Living Cells. Nat. Chem. Biol. 2014, 10, 524532,  DOI: 10.1038/nchembio.1558
  19. 19
    Kusumi, A.; Shirai, Y. M.; Koyama-Honda, I.; Suzuki, K. G. N.; Fujiwara, T. K. Hierarchical Organization of the Plasma Membrane: Investigations by Single-Molecule Tracking vs. Fluorescence Correlation Spectroscopy. FEBS Lett. 2010, 584, 18141823,  DOI: 10.1016/j.febslet.2010.02.047
  20. 20
    Kusumi, A.; Fujiwara, T. K.; Chadda, R.; Xie, M.; Tsunoyama, T. A.; Kalay, Z.; Kasai, R. S.; Suzuki, K. G. Dynamic Organizing Principles of the Plasma Membrane That Regulate Signal Transduction: Commemorating the Fortieth Anniversary of Singer and Nicolson’s Fluid-Mosaic Model. Annu. Rev. Cell Dev. Biol. 2012, 28, 215250,  DOI: 10.1146/annurev-cellbio-100809-151736
  21. 21
    Suzuki, K. G.; Kasai, R. S.; Hirosawa, K. M.; Nemoto, Y. L.; Ishibashi, M.; Miwa, Y.; Fujiwara, T. K.; Kusumi, A. Transient GPI-Anchored Protein Homodimers Are Units for Raft Organization and Function. Nat. Chem. Biol. 2012, 8, 774783,  DOI: 10.1038/nchembio.1028
  22. 22
    Zhang, W.; Jiang, Y.; Wang, Q.; Ma, X.; Xiao, Z.; Zuo, W.; Fang, X.; Chen, Y. G. Single-Molecule Imaging Reveals Transforming Growth Factor-Induced Type II Receptor Dimerization. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 1567915683,  DOI: 10.1073/pnas.0908279106
  23. 23
    Kasai, R. S.; Kusumi, A. Single-Molecule Imaging Revealed Dynamic GPCR Dimerization. Curr. Opin. Cell Biol. 2014, 27, 7886,  DOI: 10.1016/j.ceb.2013.11.008
  24. 24
    Courty, S.; Luccardini, C.; Bellaiche, Y.; Cappello, G.; Dahan, M. Tracking Individual Kinesin Motors in Living Cells Using Single Quantum-Dot Imaging. Nano Lett. 2006, 6, 14911495,  DOI: 10.1021/nl060921t
  25. 25
    Nishikawa, S.; Arimoto, I.; Ikezaki, K.; Sugawa, M.; Ueno, H.; Komori, T.; Iwane, A. H.; Yanagida, T. Switch between Large Hand-over-Hand and Small Inchworm-Like Steps in Myosin VI. Cell 2010, 142, 879888,  DOI: 10.1016/j.cell.2010.08.033
  26. 26
    Pierobon, P.; Achouri, S.; Courty, S.; Dunn, A. R.; Spudich, J. A.; Dahan, M.; Cappello, G. Velocity, Processivity, and Individual Steps of Single Myosin V Molecules in Live Cells. Biophys. J. 2009, 96, 42684275,  DOI: 10.1016/j.bpj.2009.02.045
  27. 27
    Liu, S. L.; Wang, Z. G.; Hu, Y.; Xin, Y.; Singaram, I.; Gorai, S.; Zhou, X.; Shim, Y.; Min, J. H.; Gong, L. W. Quantitative Lipid Imaging Reveals a New Signaling Function of Phosphatidylinositol-3,4-Bisphophate: Isoform- and Site-Specific Activation of Akt. Mol. Cell 2018, 71, 10921104, e5  DOI: 10.1016/j.molcel.2018.07.035
  28. 28
    Sheng, R.; Chen, Y.; Yung Gee, H.; Stec, E.; Melowic, H. R.; Blatner, N. R.; Tun, M. P.; Kim, Y.; Kallberg, M.; Fujiwara, T. K. Cholesterol Modulates Cell Signaling and Protein Networking by Specifically Interacting with PDZ Domain-Containing Scaffold Proteins. Nat. Commun. 2012, 3, 1249,  DOI: 10.1038/ncomms2221
  29. 29
    Komura, N.; Suzuki, K. G.; Ando, H.; Konishi, M.; Koikeda, M.; Imamura, A.; Chadda, R.; Fujiwara, T. K.; Tsuboi, H.; Sheng, R. Raft-Based Interactions of Gangliosides with a GPI-Anchored Receptor. Nat. Chem. Biol. 2016, 12, 402410,  DOI: 10.1038/nchembio.2059
  30. 30
    Liu, S. L.; Wang, Z. G.; Zhang, Z. L.; Pang, D. W. Tracking Single Viruses Infecting Their Host Cells Using Quantum Dots. Chem. Soc. Rev. 2016, 45, 12111224,  DOI: 10.1039/C5CS00657K
  31. 31
    Brandenburg, B.; Zhuang, X. Virus Trafficking–Learning from Single-Virus Tracking. Nat. Rev. Microbiol. 2007, 5, 197208,  DOI: 10.1038/nrmicro1615
  32. 32
    Huang, L. L.; Xie, H. Y. Progress on the Labeling and Single-Particle Tracking Technologies of Viruses. Analyst 2014, 139, 33363346,  DOI: 10.1039/C4AN00038B
  33. 33
    Parveen, N.; Borrenberghs, D.; Rocha, S.; Hendrix, J. Single Viruses on the Fluorescence Microscope: Imaging Molecular Mobility, Interactions and Structure Sheds New Light on Viral Replication. Viruses 2018, 10, 250,  DOI: 10.3390/v10050250
  34. 34
    Axelrod, D.; Koppel, D. E.; Schlessinger, J.; Elson, E.; Webb, W. W. Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics. Biophys. J. 1976, 16, 10551069,  DOI: 10.1016/S0006-3495(76)85755-4
  35. 35
    Simons, K.; Gerl, M. J. Revitalizing Membrane Rafts: New Tools and Insights. Nat. Rev. Mol. Cell Biol. 2010, 11, 688699,  DOI: 10.1038/nrm2977
  36. 36
    Magde, D.; Elson, E.; Webb, W. W. Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy. Phys. Rev. Lett. 1972, 29, 705708,  DOI: 10.1103/PhysRevLett.29.705
  37. 37
    Hess, S. T.; Huang, S.; Heikal, A. A.; Webb, W. W. Biological and Chemical Applications of Fluorescence Correlation Spectroscopy: A Review. Biochemistry 2002, 41, 697705,  DOI: 10.1021/bi0118512
  38. 38
    Haustein, E.; Schwille, P. Ultrasensitive Investigations of Biological Systems by Fluorescence Correlation Spectroscopy. Methods 2003, 29, 153166,  DOI: 10.1016/S1046-2023(02)00306-7
  39. 39
    Berg, H. C. How to Track Bacteria. Rev. Sci. Instrum. 1971, 42, 868871,  DOI: 10.1063/1.1685246
  40. 40
    Berg, H. C.; Brown, D. A. Chemotaxis in Escherichia Coli Analysed by Three-Dimensional Tracking. Nature 1972, 239, 500504,  DOI: 10.1038/239500a0
  41. 41
    Barak, L. S.; Webb, W. W. Diffusion of Low Density Lipoprotein-Receptor Complex on Human Fibroblasts. J. Cell Biol. 1982, 95, 846852,  DOI: 10.1083/jcb.95.3.846
  42. 42
    De Brabander, M.; Geuens, G.; Nuydens, R.; Moeremans, M.; De Mey, J. Probing Microtubule-Dependent Intracellular Motility with Nanometre Particle Video Ultramicroscopy (Nanovid Ultramicroscopy). Cytobios 1985, 43, 273283
  43. 43
    Lee, G. M.; Ishihara, A.; Jacobson, K. A. Direct Observation of Brownian Motion of Lipids in a Membrane. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 62746278,  DOI: 10.1073/pnas.88.14.6274
  44. 44
    Gelles, J.; Schnapp, B. J.; Sheetz, M. P. Tracking Kinesin-Driven Movements with Nanometre-Scale Precision. Nature 1988, 331, 450453,  DOI: 10.1038/331450a0
  45. 45
    Geerts, H.; de Brabander, M.; Nuydens, R. Nanovid Microscopy. Nature 1991, 351, 765766,  DOI: 10.1038/351765a0
  46. 46
    Geerts, H.; De Brabander, M.; Nuydens, R.; Geuens, S.; Moeremans, M.; De Mey, J.; Hollenbeck, P. Nanovid Tracking: A New Automatic Method for the Study of Mobility in Living Cells Based on Colloidal Gold and Video Microscopy. Biophys. J. 1987, 52, 775782,  DOI: 10.1016/S0006-3495(87)83271-X
  47. 47
    Inoué, S. Imaging of Unresolved Objects, Superresolution, and Precision of Distance Measurement with Video Microscopy. Methods Cell Biol. 1989, 30, 85112,  DOI: 10.1016/S0091-679X(08)60976-0
  48. 48
    Saxton, M. J. Single-Particle Tracking: Models of Directed Transport. Biophys. J. 1994, 67, 21102019,  DOI: 10.1016/S0006-3495(94)80694-0
  49. 49
    Kao, H. P.; Verkman, A. S. Tracking of Single Fluorescent Particles in 3 Dimensions-Use of Cylindrical Optics to Encode Particle Position. Biophys. J. 1994, 67, 12911300,  DOI: 10.1016/S0006-3495(94)80601-0
  50. 50
    Patwardhan, A. Subpixel Position Measurement Using 1D, 2D and 3D Centroid Algorithms with Emphasis on Applications in Confocal Microscopy. J. Microsc. 1997, 186, 246257,  DOI: 10.1046/j.1365-2818.1997.1970761.x
  51. 51
    Peters, I. M.; van Kooyk, Y.; van Vliet, S. J.; de Grooth, B. G.; Figdor, C. G.; Greve, J. 3D Single-Particle Tracking and Optical Trap Measurements on Adhesion Proteins. Cytometry 1999, 36, 189194,  DOI: 10.1002/(SICI)1097-0320(19990701)36:3<189::AID-CYTO7>3.0.CO;2-3
  52. 52
    Bacher, C. P.; Reichenzeller, M.; Athale, C.; Herrmann, H.; Eils, R. 4-D Single Particle Tracking of Synthetic and Proteinaceous Microspheres Reveals Preferential Movement of Nuclear Particles Along Chromatin-Poor Tracks. BMC Cell Biol. 2004, 5, 45,  DOI: 10.1186/1471-2121-5-45
  53. 53
    Genovesio, A.; Liedl, T.; Emiliani, V.; Parak, W. J.; Coppey-Moisan, M.; Olivo-Marin, J. C. Multiple Particle Tracking in 3-D+T Microscopy: Method and Application to the Tracking of Endocytosed Quantum Dots. IEEE Trans. Image Process. 2006, 15, 10621070,  DOI: 10.1109/TIP.2006.872323
  54. 54
    Ram, S.; Kim, D.; Ward, E. S.; Ober, R. J. Fast 3D Single Molecule Tracking with Multifocal Plane Microscopy in Polarized Epithelia Reveals a Novel Cellular Process of Intercellular Transfer. Biophys. J. 2013, 104, 535a,  DOI: 10.1016/j.bpj.2012.11.2962
  55. 55
    Ram, S.; Kim, D.; Ober, R. J.; Ward, E. S. 3D Single Molecule Tracking with Multifocal Plane Microscopy Reveals Rapid Intercellular Transferrin Transport at Epithelial Cell Barriers. Biophys. J. 2012, 103, 15941603,  DOI: 10.1016/j.bpj.2012.08.054
  56. 56
    Ram, S.; Prabhat, P.; Chao, J.; Ward, E. S.; Ober, R. J. High Accuracy 3D Quantum Dot Tracking with Multifocal Plane Microscopy for the Study of Fast Intracellular Dynamics in Live Cells. Biophys. J. 2008, 95, 60256043,  DOI: 10.1529/biophysj.108.140392
  57. 57
    Levi, V.; Ruan, Q.; Kis-Petikova, K.; Gratton, E. Scanning FCS, a Novel Method for Three-Dimensional Particle Tracking. Biochem. Soc. Trans. 2003, 31, 9971000,  DOI: 10.1042/bst0310997
  58. 58
    Dupont, A.; Lamb, D. C. Nanoscale Three-Dimensional Single Particle Tracking. Nanoscale 2011, 3, 45324541,  DOI: 10.1039/c1nr10989h
  59. 59
    Ruthardt, N.; Lamb, D. C.; Brauchle, C. Single-Particle Tracking as a Quantitative Microscopy-Based Approach to Unravel Cell Entry Mechanisms of Viruses and Pharmaceutical Nanoparticles. Mol. Ther. 2011, 19, 11991211,  DOI: 10.1038/mt.2011.102
  60. 60
    Hou, S.; Johnson, C.; Welsher, K. Real-Time 3D Single Particle Tracking: Towards Active Feedback Single Molecule Spectroscopy in Live Cells. Molecules 2019, 24, 2826,  DOI: 10.3390/molecules24152826
  61. 61
    Montiel, D.; Yang, H. Real-Time Three-Dimensional Single-Particle Tracking Spectroscopy for Complex Systems. Laser Photonics Rev. 2010, 4, 374385,  DOI: 10.1002/lpor.200910012
  62. 62
    Walsh, E. E.; Hruska, J. Monoclonal Antibodies to Respiratory Syncytial Virus Proteins: Identification of the Fusion Protein. J. Virol. 1983, 47, 171177,  DOI: 10.1128/JVI.47.1.171-177.1983
  63. 63
    Matlin, K. S.; Reggio, H.; Helenius, A.; Simons, K. Infectious Entry Pathway of Influenza Virus in a Canine Kidney Cell Line. J. Cell Biol. 1981, 91, 601613,  DOI: 10.1083/jcb.91.3.601
  64. 64
    Bächi, T. Direct Observation of the Budding and Fusion of an Enveloped Virus by Video Microscopy of Viable Cells. J. Cell Biol. 1988, 107, 16891695,  DOI: 10.1083/jcb.107.5.1689
  65. 65
    Lowy, R. J.; Sarkar, D. P.; Chen, Y.; Blumenthal, R. Observation of Single Influenza Virus-Cell Fusion and Measurement by Fluorescence Video Microscopy. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 18501854,  DOI: 10.1073/pnas.87.5.1850
  66. 66
    Georgi, A.; Mottola-Hartshorn, C.; Warner, A.; Fields, B.; Chen, L. B. Detection of Individual Fluorescently Labeled Reovirions in Living Cells. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 65796583,  DOI: 10.1073/pnas.87.17.6579
  67. 67
    Pelkmans, L.; Kartenbeck, J.; Helenius, A. Caveolar Endocytosis of Simian Virus 40 Reveals a New Two-Step Vesicular-Transport Pathway to the ER. Nat. Cell Biol. 2001, 3, 473483,  DOI: 10.1038/35074539
  68. 68
    Lakadamyali, M.; Rust, M. J.; Babcock, H. P.; Zhuang, X. Visualizing Infection of Individual Influenza Viruses. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 92809285,  DOI: 10.1073/pnas.0832269100
  69. 69
    Seisenberger, G.; Ried, M. U.; Endress, T.; Buning, H.; Hallek, M.; Brauchle, C. Real-Time Single-Molecule Imaging of the Infection Pathway of an Adeno-Associated Virus. Science 2001, 294, 19291932,  DOI: 10.1126/science.1064103
  70. 70
    Suomalainen, M.; Nakano, M. Y.; Keller, S.; Boucke, K.; Stidwill, R. P.; Greber, U. F. Microtubule-Dependent Plus- and Minus End-Directed Motilities Are Competing Processes for Nuclear Targeting of Adenovirus. J. Cell Biol. 1999, 144, 657672,  DOI: 10.1083/jcb.144.4.657
  71. 71
    Coller, K. E.; Berger, K. L.; Heaton, N. S.; Cooper, J. D.; Yoon, R.; Randall, G. RNA Interference and Single Particle Tracking Analysis of Hepatitis C Virus Endocytosis. PLoS Pathog. 2009, 5, e1000702  DOI: 10.1371/journal.ppat.1000702
  72. 72
    Rust, M. J.; Lakadamyali, M.; Zhang, F.; Zhuang, X. Assembly of Endocytic Machinery around Individual Influenza Viruses During Viral Entry. Nat. Struct. Mol. Biol. 2004, 11, 567573,  DOI: 10.1038/nsmb769
  73. 73
    van der Schaar, H. M.; Rust, M. J.; Waarts, B. L.; van der Ende-Metselaar, H.; Kuhn, R. J.; Wilschut, J.; Zhuang, X.; Smit, J. M. Characterization of the Early Events in Dengue Virus Cell Entry by Biochemical Assays and Single-Virus Tracking. J. Virol. 2007, 81, 1201912028,  DOI: 10.1128/JVI.00300-07
  74. 74
    Chen, C.; Zhuang, X. Epsin 1 Is a Cargo-Specific Adaptor for the Clathrin-Mediated Endocytosis of the Influenza Virus. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 1179011795,  DOI: 10.1073/pnas.0803711105
  75. 75
    van der Schaar, H. M.; Rust, M. J.; Chen, C.; van der Ende-Metselaar, H.; Wilschut, J.; Zhuang, X.; Smit, J. M. Dissecting the Cell Entry Pathway of Dengue Virus by Single-Particle Tracking in Living Cells. PLoS Pathog. 2008, 4, e1000244  DOI: 10.1371/journal.ppat.1000244
  76. 76
    Tsien, R. Y. The Green Fluorescent Protein. Annu. Rev. Biochem. 1998, 67, 509544,  DOI: 10.1146/annurev.biochem.67.1.509
  77. 77
    Baulcombe, D. C.; Chapman, S.; Santa Cruz, S. Jellyfish Green Fluorescent Protein as a Reporter for Virus Infections. Plant J. 1995, 7, 10451053,  DOI: 10.1046/j.1365-313X.1995.07061045.x
  78. 78
    Elliott, G.; O’Hare, P. Live-Cell Analysis of a Green Fluorescent Protein-Tagged Herpes Simplex Virus Infection. J. Virol. 1999, 73, 41104119,  DOI: 10.1128/JVI.73.5.4110-4119.1999
  79. 79
    Cruz, S. S.; Chapman, S.; Roberts, A. G.; Roberts, I. M.; Prior, D.; Oparka, K. J. Assembly and Movement of a Plant Virus Carrying a Green Fluorescent Protein Overcoat. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 62866290,  DOI: 10.1073/pnas.93.13.6286
  80. 80
    Desai, P.; Person, S. Incorporation of the Green Fluorescent Protein into the Herpes Simplex Virus Type 1 Capsid. J. Virol. 1998, 72, 75637568,  DOI: 10.1128/JVI.72.9.7563-7568.1998
  81. 81
    Moradpour, D.; Evans, M. J.; Gosert, R.; Yuan, Z.; Blum, H. E.; Goff, S. P.; Lindenbach, B. D.; Rice, C. M. Insertion of Green Fluorescent Protein into Nonstructural Protein 5A Allows Direct Visualization of Functional Hepatitis C Virus Replication Complexes. J. Virol. 2004, 78, 74007409,  DOI: 10.1128/JVI.78.14.7400-7409.2004
  82. 82
    McDonald, D.; Vodicka, M. A.; Lucero, G.; Svitkina, T. M.; Borisy, G. G.; Emerman, M.; Hope, T. J. Visualization of the Intracellular Behavior of HIV in Living Cells. J. Cell Biol. 2002, 159, 441452,  DOI: 10.1083/jcb.200203150
  83. 83
    Miyauchi, K.; Kim, Y.; Latinovic, O.; Morozov, V.; Melikyan, G. B. HIV Enters Cells via Endocytosis and Dynamin-Dependent Fusion with Endosomes. Cell 2009, 137, 433444,  DOI: 10.1016/j.cell.2009.02.046
  84. 84
    Koch, P.; Lampe, M.; Godinez, W. J.; Müller, B.; Rohr, K.; Kräusslich, H.-G.; Lehmann, M. J. Visualizing Fusion of Pseudotyped HIV-1 Particles in Real Time by Live Cell Microscopy. Retrovirology 2009, 6, 84,  DOI: 10.1186/1742-4690-6-84
  85. 85
    Endreß, T.; Lampe, M.; Briggs, J. A. G.; Kräusslich, H.-G.; Bräuchle, C.; Müller, B.; Lamb, D. C. HIV-1–Cellular Interactions Analyzed by Single Virus Tracing. Eur. Biophys. J. 2008, 37, 12911301,  DOI: 10.1007/s00249-008-0322-z
  86. 86
    Jolly, C.; Kashefi, K.; Hollinshead, M.; Sattentau, Q. J. HIV-1 Cell to Cell Transfer Across an Env-Induced, Actin-Dependent Synapse. J. Exp. Med. 2004, 199, 283293,  DOI: 10.1084/jem.20030648
  87. 87
    Arhel, N.; Genovesio, A.; Kim, K. A.; Miko, S.; Perret, E.; Olivo-Marin, J. C.; Shorte, S.; Charneau, P. Quantitative Four-Dimensional Tracking of Cytoplasmic and Nuclear HIV-1 Complexes. Nat. Methods 2006, 3, 817824,  DOI: 10.1038/nmeth928
  88. 88
    Hubner, W.; McNerney, G. P.; Chen, P.; Dale, B. M.; Gordon, R. E.; Chuang, F. Y.; Li, X. D.; Asmuth, D. M.; Huser, T.; Chen, B. K. Quantitative 3D Video Microscopy of HIV Transfer Across T Cell Virological Synapses. Science 2009, 323, 17431747,  DOI: 10.1126/science.1167525
  89. 89
    Dahan, M.; Levi, S.; Luccardini, C.; Rostaing, P.; Riveau, B.; Triller, A. Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking. Science 2003, 302, 442445,  DOI: 10.1126/science.1088525
  90. 90
    Bonneau, S.; Dahan, M.; Cohen, L. D. Single Quantum Dot Tracking Based on Perceptual Grouping Using Minimal Paths in a Spatiotemporal Volume. IEEE T. Image Process 2005, 14, 13841395,  DOI: 10.1109/TIP.2005.852794
  91. 91
    Bachir, A. I.; Durisic, N.; Hebert, B.; Grütter, P.; Wiseman, P. W. Characterization of Blinking Dynamics in Quantum Dot Ensembles Using Image Correlation Spectroscopy. J. Appl. Phys. 2006, 99, 064503  DOI: 10.1063/1.2175470
  92. 92
    Durisic, N.; Bachir, A. I.; Kolin, D. L.; Hebert, B.; Lagerholm, B. C.; Grutter, P.; Wiseman, P. W. Detection and Correction of Blinking Bias in Image Correlation Transport Measurements of Quantum Dot Tagged Macromolecules. Biophys. J. 2007, 93, 13381346,  DOI: 10.1529/biophysj.107.106864
  93. 93
    He, K.; Luo, W.; Zhang, Y.; Liu, F.; Liu, D.; Xu, L.; Qin, L.; Xiong, C.; Lu, Z.; Fang, X. Intercellular Transportation of Quantum Dots Mediated by Membrane Nanotubes. ACS Nano 2010, 4, 30153022,  DOI: 10.1021/nn1002198
  94. 94
    Chang, Y.-P.; Pinaud, F.; Antelman, J.; Weiss, S. Tracking Bio-Molecules in Live Cells Using Quantum Dots. J. Biophotonics 2008, 1, 287298,  DOI: 10.1002/jbio.200810029
  95. 95
    Pinaud, F.; Clarke, S.; Sittner, A.; Dahan, M. Probing Cellular Events, One Quantum Dot at a Time. Nat. Methods 2010, 7, 275285,  DOI: 10.1038/nmeth.1444
  96. 96
    Wang, Z. G.; Liu, S. L.; Tian, Z. Q.; Zhang, Z. L.; Tang, H. W.; Pang, D. W. Myosin-Driven Intercellular Transportation of Wheat Germ Agglutinin Mediated by Membrane Nanotubes between Human Lung Cancer Cells. ACS Nano 2012, 6, 1003310041,  DOI: 10.1021/nn303729r
  97. 97
    Liu, S. L.; Zhang, Z. L.; Sun, E. Z.; Peng, J.; Xie, M.; Tian, Z. Q.; Lin, Y.; Pang, D. W. Visualizing the Endocytic and Exocytic Processes of Wheat Germ Agglutinin by Quantum Dot-Based Single-Particle Tracking. Biomaterials 2011, 32, 76167624,  DOI: 10.1016/j.biomaterials.2011.06.046
  98. 98
    Joo, K.-I.; Lei, Y.; Lee, C.-L.; Lo, J.; Xie, J.; Hamm-Alvarez, S. F.; Wang, P. Site-Specific Labeling of Enveloped Viruses with Quantum Dots for Single Virus Tracking. ACS Nano 2008, 2, 15531562,  DOI: 10.1021/nn8002136
  99. 99
    Liu, S. L.; Tian, Z. Q.; Zhang, Z. L.; Wu, Q. M.; Zhao, H. S.; Ren, B.; Pang, D. W. High-Efficiency Dual Labeling of Influenza Virus for Single-Virus Imaging. Biomaterials 2012, 33, 78287833,  DOI: 10.1016/j.biomaterials.2012.07.026
  100. 100
    Lv, C.; Lin, Y.; Liu, A. A.; Hong, Z. Y.; Wen, L.; Zhang, Z.; Zhang, Z. L.; Wang, H.; Pang, D. W. Labeling Viral Envelope Lipids with Quantum Dots by Harnessing the Biotinylated Lipid-Self-Inserted Cellular Membrane. Biomaterials 2016, 106, 6977,  DOI: 10.1016/j.biomaterials.2016.08.013
  101. 101
    Hong, Z. Y.; Lv, C.; Liu, A. A.; Liu, S. L.; Sun, E. Z.; Zhang, Z. L.; Lei, A. W.; Pang, D. W. Clicking Hydrazine and Aldehyde: The Way to Labeling of Viruses with Quantum Dots. ACS Nano 2015, 9, 1175011760,  DOI: 10.1021/acsnano.5b03256
  102. 102
    Wen, L.; Lin, Y.; Zheng, Z. H.; Zhang, Z. L.; Zhang, L. J.; Wang, L. Y.; Wang, H. Z.; Pang, D. W. Labeling the Nucleocapsid of Enveloped Baculovirus with Quantum Dots for Single-Virus Tracking. Biomaterials 2014, 35, 22952301,  DOI: 10.1016/j.biomaterials.2013.11.069
  103. 103
    Xie, M.; Luo, K.; Huang, B.-H.; Liu, S.-L.; Hu, J.; Cui, D.; Zhang, Z.-L.; Xiao, G.-F.; Pang, D.-W. PEG-Interspersed Nitrilotriacetic Acid-Functionalized Quantum Dots for Site-Specific Labeling of Prion Proteins Expressed on Cell Surfaces. Biomaterials 2010, 31, 83628370,  DOI: 10.1016/j.biomaterials.2010.07.063
  104. 104
    Wen, L.; Zheng, Z. H.; Liu, A. A.; Lv, C.; Zhang, L. J.; Ao, J.; Zhang, Z. L.; Wang, H. Z.; Lin, Y.; Pang, D. W. Tracking Single Baculovirus Retrograde Transportation in Host Cell via Quantum Dot-Labeling of Virus Internal Component. J. Nanobiotechnol. 2017, 15, 37,  DOI: 10.1186/s12951-017-0270-9
  105. 105
    Hao, J.; Huang, L. L.; Zhang, R.; Wang, H. Z.; Xie, H. Y. A Mild and Reliable Method to Label Enveloped Virus with Quantum Dots by Copper-Free Click Chemistry. Anal. Chem. 2012, 84, 83648370,  DOI: 10.1021/ac301918t
  106. 106
    Zhang, P.; Liu, S.; Gao, D.; Hu, D.; Gong, P.; Sheng, Z.; Deng, J.; Ma, Y.; Cai, L. Click-Functionalized Compact Quantum Dots Protected by Multidentate-Imidazole Ligands: Conjugation-Ready Nanotags for Living-Virus Labeling and Imaging. J. Am. Chem. Soc. 2012, 134, 83888391,  DOI: 10.1021/ja302367s
  107. 107
    Liu, H.; Liu, Y.; Liu, S.; Pang, D. W.; Xiao, G. Clathrin-Mediated Endocytosis in Living Host Cells Visualized through Quantum Dot Labeling of Infectious Hematopoietic Necrosis virus. J. Virol. 2011, 85, 62526262,  DOI: 10.1128/JVI.00109-11
  108. 108
    Liu, S. L.; Zhang, Z. L.; Tian, Z. Q.; Zhao, H. S.; Liu, H.; Sun, E. Z.; Xiao, G. F.; Zhang, W.; Wang, H. Z.; Pang, D. W. Effectively and Efficiently Dissecting the Infection of Influenza Virus by Quantum-Dot-Based Single-Particle Tracking. ACS Nano 2012, 6, 141150,  DOI: 10.1021/nn2031353
  109. 109
    Luo, K.; Li, S.; Xie, M.; Wu, D.; Wang, W.; Chen, R.; Huang, L.; Huang, T.; Pang, D.; Xiao, G. Real-Time Visualization of Prion Transport in Single Live Cells Using Quantum Dots. Biochem. Biophys. Res. Commun. 2010, 394, 493497,  DOI: 10.1016/j.bbrc.2010.02.159
  110. 110
    Liu, S. L.; Zhang, L. J.; Wang, Z. G.; Zhang, Z. L.; Wu, Q. M.; Sun, E. Z.; Shi, Y. B.; Pang, D. W. Globally Visualizing the Microtubule-Dependent Transport Behaviors of Influenza Virus in Live Cells. Anal. Chem. 2014, 86, 39023908,  DOI: 10.1021/ac500640u
  111. 111
    Liu, S. L.; Wu, Q. M.; Zhang, L. J.; Wang, Z. G.; Sun, E. Z.; Zhang, Z. L.; Pang, D. W. Three-Dimensional Tracking of Rab5- and Rab7-Associated Infection Process of Influenza Virus. Small 2014, 10, 47464753,  DOI: 10.1002/smll.201400944
  112. 112
    Wang, Z. G.; Liu, S. L.; Zhang, Z. L.; Tian, Z. Q.; Tang, H. W.; Pang, D. W. Exploring Sialic Acid Receptors-Related Infection Behavior of Avian Influenza Virus in Human Bronchial Epithelial Cells by Single-Particle Tracking. Small 2014, 10, 27122720,  DOI: 10.1002/smll.201303532
  113. 113
    Qin, C.; Li, W.; Li, Q.; Yin, W.; Zhang, X.; Zhang, Z.; Zhang, X. E.; Cui, Z. Real-Time Dissection of Dynamic Uncoating of Individual Influenza Viruses. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 25772582,  DOI: 10.1073/pnas.1812632116
  114. 114
    Sun, E. Z.; Liu, A. A.; Zhang, Z. L.; Liu, S. L.; Tian, Z. Q.; Pang, D. W. Real-Time Dissection of Distinct Dynamin-Dependent Endocytic Routes of Influenza A Virus by Quantum Dot-Based Single-Virus Tracking. ACS Nano 2017, 11, 43954406,  DOI: 10.1021/acsnano.6b07853
  115. 115
    Wu, Q. M.; Liu, S. L.; Chen, G.; Zhang, W.; Sun, E. Z.; Xiao, G. F.; Zhang, Z. L.; Pang, D. W. Uncovering the Rab5-Independent Autophagic Trafficking of Influenza A Virus by Quantum-Dot-Based Single-Virus Tracking. Small 2018, 14, e1702841  DOI: 10.1002/smll.201702841
  116. 116
    Ma, Y.; Wang, M.; Li, W.; Zhang, Z.; Zhang, X.; Tan, T.; Zhang, X. E.; Cui, Z. Live Cell Imaging of Single Genomic Loci with Quantum Dot-Labeled TALEs. Nat. Commun. 2017, 8, 15318,  DOI: 10.1038/ncomms15318
  117. 117
    Li, Q.; Yin, W.; Li, W.; Zhang, Z.; Zhang, X.; Zhang, X. E.; Cui, Z. Encapsulating Quantum Dots within HIV-1 Virions through Site-Specific Decoration of the Matrix Protein Enables Single Virus Tracking in Live Primary Macrophages. Nano Lett. 2018, 18, 74577468,  DOI: 10.1021/acs.nanolett.8b02800
  118. 118
    Zhang, L. J.; Xia, L.; Liu, S. L.; Sun, E. Z.; Wu, Q. M.; Wen, L.; Zhang, Z. L.; Pang, D. W. A ″Driver Switchover″ Mechanism of Influenza Virus Transport from Microfilaments to Microtubules. ACS Nano 2018, 12, 474484,  DOI: 10.1021/acsnano.7b06926
  119. 119
    Muller, B.; Daecke, J.; Fackler, O. T.; Dittmar, M. T.; Zentgraf, H.; Krausslich, H. G. Construction and Characterization of a Fluorescently Labeled Infectious Human Immunodeficiency Virus Type 1 Derivative. J. Virol. 2004, 78, 1080310813,  DOI: 10.1128/JVI.78.19.10803-10813.2004
  120. 120
    Carlson, L. A.; Briggs, J. A. G.; Glass, B.; Riches, J. D.; Simon, M. N.; Johnson, M. C.; Muller, B.; Grunewald, K.; Krausslich, H. G. Three-Dimensional Analysis of Budding Sites and Released Virus Suggests a Revised Model for HIV-1 Morphogenesis. Cell Host Microbe 2008, 4, 592599,  DOI: 10.1016/j.chom.2008.10.013
  121. 121
    Sakin, V.; Paci, G.; Lemke, E. A.; Muller, B. Labeling of Virus Components for Advanced, Quantitative Imaging Analyses. FEBS Lett. 2016, 590, 18961914,  DOI: 10.1002/1873-3468.12131
  122. 122
    Goncalves, M. S. Fluorescent Labeling of Biomolecules with Organic Probes. Chem. Rev. 2009, 109, 190212,  DOI: 10.1021/cr0783840
  123. 123
    Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum Dots versus Organic Dyes as Fluorescent Labels. Nat. Methods 2008, 5, 763775,  DOI: 10.1038/nmeth.1248
  124. 124
    Miyawaki, A.; Sawano, A.; Kogure, T. Lighting Up Cells: Labelling Proteins with Fluorophores. Nat. Cell Biol. 2003, S1S7
  125. 125
    Sivaraman, D.; Biswas, P.; Cella, L. N.; Yates, M. V.; Chen, W. Detecting RNA Viruses in Living Mammalian Cells by Fluorescence Microscopy. Trends Biotechnol. 2011, 29, 307313,  DOI: 10.1016/j.tibtech.2011.02.006
  126. 126
    Wang, I. H.; Burckhardt, C. J.; Yakimovich, A.; Greber, U. F. Imaging, Tracking and Computational Analyses of Virus Entry and Egress with the Cytoskeleton. Viruses 2018, 10, 166,  DOI: 10.3390/v10040166
  127. 127
    Rao, J.; Dragulescu-Andrasi, A.; Yao, H. Fluorescence Imaging in Vivo: Recent Advances. Curr. Opin. Biotechnol. 2007, 18, 1725,  DOI: 10.1016/j.copbio.2007.01.003
  128. 128
    Lakadamyali, M.; Rust, M. J.; Zhuang, X. Ligands for Clathrin-Mediated Endocytosis Are Differentially Sorted into Distinct Populations of Early Endosomes. Cell 2006, 124, 9971009,  DOI: 10.1016/j.cell.2005.12.038
  129. 129
    Babcock, H. P.; Chen, C.; Zhuang, X. Using Single-Particle Tracking to Study Nuclear Trafficking of Viral Genes. Biophys. J. 2004, 87, 27492758,  DOI: 10.1529/biophysj.104.042234
  130. 130
    Vaughan, J. C.; Brandenburg, B.; Hogle, J. M.; Zhuang, X. Rapid Actin-Dependent Viral Motility in Live Cells. Biophys. J. 2009, 97, 16471656,  DOI: 10.1016/j.bpj.2009.07.011
  131. 131
    Brandenburg, B.; Lee, L. Y.; Lakadamyali, M.; Rust, M. J.; Zhuang, X.; Hogle, J. M. Imaging Poliovirus Entry in Live Cells. PLoS Biol. 2007, 5, e183  DOI: 10.1371/journal.pbio.0050183
  132. 132
    Xu, H.; Hao, X.; Wang, S.; Wang, Z.; Cai, M.; Jiang, J.; Qin, Q.; Zhang, M.; Wang, H. Real-Time Imaging of Rabies Virus Entry into Living Vero Cells. Sci. Rep. 2015, 5, 11753,  DOI: 10.1038/srep11753
  133. 133
    Vonderheit, A.; Helenius, A. Rab7 Associates with Early Endosomes to Mediate Sorting and Transport of Semliki Forest Virus to Late Endosomes. PLoS Biol. 2005, 3, e233  DOI: 10.1371/journal.pbio.0030233
  134. 134
    Johannsdottir, H. K.; Mancini, R.; Kartenbeck, J.; Amato, L.; Helenius, A. Host Cell Factors and Functions Involved in Vesicular Stomatitis Virus Entry. J. Virol. 2009, 83, 440453,  DOI: 10.1128/JVI.01864-08
  135. 135
    Engel, S.; Heger, T.; Mancini, R.; Herzog, F.; Kartenbeck, J.; Hayer, A.; Helenius, A. Role of Endosomes in Simian Virus 40 Entry and Infection. J. Virol. 2011, 85, 41984211,  DOI: 10.1128/JVI.02179-10
  136. 136
    Joo, K. I.; Fang, Y.; Liu, Y.; Xiao, L.; Gu, Z.; Tai, A.; Lee, C. L.; Tang, Y.; Wang, P. Enhanced Real-Time Monitoring of Adeno-Associated Virus Trafficking by Virus-Quantum Dot Conjugates. ACS Nano 2011, 5, 35233535,  DOI: 10.1021/nn102651p
  137. 137
    Schelhaas, M.; Ewers, H.; Rajamaki, M. L.; Day, P. M.; Schiller, J. T.; Helenius, A. Human Papillomavirus Type 16 Entry: Retrograde Cell Surface Transport along Actin-Rich Protrusions. PLoS Pathog. 2008, 4, e1000148  DOI: 10.1371/journal.ppat.1000148
  138. 138
    Martin-Acebes, M. A.; Vazquez-Calvo, A.; Gonzalez-Magaldi, M.; Sobrino, F. Foot-and-Mouth Disease Virus Particles Inactivated with Binary Ethylenimine Are Efficiently Internalized into Cultured Cells. Vaccine 2011, 29, 96559662,  DOI: 10.1016/j.vaccine.2011.10.031
  139. 139
    Ewers, H.; Smith, A. E.; Sbalzarini, I. F.; Lilie, H.; Koumoutsakos, P.; Helenius, A. Single-Particle Tracking of Murine Polyoma Virus-Like Particles on Live Cells and Artificial Membranes. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 1511015115,  DOI: 10.1073/pnas.0504407102
  140. 140
    Cureton, D. K.; Massol, R. H.; Whelan, S. P.; Kirchhausen, T. The Length of Vesicular Stomatitis Virus Particles Dictates a Need for Actin Assembly During Clathrin-Dependent Endocytosis. PLoS Pathog. 2010, 6, e1001127  DOI: 10.1371/journal.ppat.1001127
  141. 141
    Pelkmans, L.; Puntener, D.; Helenius, A. Local Actin Polymerization and Dynamin Recruitment in SV40-Induced Internalization of Caveolae. Science 2002, 296, 535539,  DOI: 10.1126/science.1069784
  142. 142
    Cureton, D. K.; Harbison, C. E.; Cocucci, E.; Parrish, C. R.; Kirchhausen, T. Limited Transferrin Receptor Clustering Allows Rapid Diffusion of Canine Parvovirus into Clathrin Endocytic Structures. J. Virol. 2012, 86, 53305340,  DOI: 10.1128/JVI.07194-11
  143. 143
    Ehrlich, M.; Boll, W.; Van Oijen, A.; Hariharan, R.; Chandran, K.; Nibert, M. L.; Kirchhausen, T. Endocytosis by Random Initiation and Stabilization of Clathrin-Coated Pits. Cell 2004, 118, 591605,  DOI: 10.1016/j.cell.2004.08.017
  144. 144
    Damm, E. M.; Pelkmans, L.; Kartenbeck, J.; Mezzacasa, A.; Kurzchalia, T.; Helenius, A. Clathrin- and Caveolin-1-Independent Endocytosis: Entry of Simian Virus 40 into Cells Devoid of Caveolae. J. Cell Biol. 2005, 168, 477488,  DOI: 10.1083/jcb.200407113
  145. 145
    Meier, R.; Franceschini, A.; Horvath, P.; Tetard, M.; Mancini, R.; Von Mering, C.; Helenius, A.; Lozach, P.-Y. Genome-Wide Small Interfering RNA Screens Reveal VAMP3 as a Novel Host Factor Required for Uukuniemi Virus Late Penetration. J. Virol. 2014, 88, 85658578,  DOI: 10.1128/JVI.00388-14
  146. 146
    Kalin, S.; Amstutz, B.; Gastaldelli, M.; Wolfrum, N.; Boucke, K.; Havenga, M.; DiGennaro, F.; Liska, N.; Hemmi, S.; Greber, U. F. Macropinocytotic Uptake and Infection of Human Epithelial Cells with Species B2 Adenovirus Type 35. J. Virol. 2010, 84, 53365350,  DOI: 10.1128/JVI.02494-09
  147. 147
    Mishra, A.; Behera, R. K.; Behera, P. K.; Mishra, B. K.; Behera, G. B. Cyanines During the 1990s: A Review. Chem. Rev. 2000, 100, 19732011,  DOI: 10.1021/cr990402t
  148. 148
    Kvach, M. V.; Ustinov, A. V.; Stepanova, I. A.; Malakhov, A. D.; Skorobogatyi, M. V.; Shmanai, V. V.; Korshun, V. A. A Convenient Synthesis of Cyanine Dyes: Reagents for the Labeling of Biomolecules. Eur. J. Org. Chem. 2008, 2008, 21072117,  DOI: 10.1002/ejoc.200701190
  149. 149
    Yang, X.; Shi, C.; Tong, R.; Qian, W.; Zhau, H. E.; Wang, R.; Zhu, G.; Cheng, J.; Yang, V. W.; Cheng, T. Near IR Heptamethine Cyanine Dye-Mediated Cancer Imaging. Clin. Cancer Res. 2010, 16, 28332844,  DOI: 10.1158/1078-0432.CCR-10-0059
  150. 150
    Brauchle, C.; Seisenberger, G.; Endress, T.; Ried, M. U.; Buning, H.; Hallek, M. Single Virus Tracing: Visualization of the Infection Pathway of a Virus into a Living Cell. ChemPhysChem 2002, 3, 299303,  DOI: 10.1002/1439-7641(20020315)3:3<299::AID-CPHC299>3.0.CO;2-R
  151. 151
    Berlier, J. E.; Rothe, A.; Buller, G.; Bradford, J.; Gray, D. R.; Filanoski, B. J.; Telford, W. G.; Yue, S.; Liu, J. X.; Cheung, C. Y. Quantitative Comparison of Long-Wavelength Alexa Fluor Dyes to Cy Dyes: Fluorescence of the Dyes and Their Bioconjugates. J. Histochem. Cytochem. 2003, 51, 16991712,  DOI: 10.1177/002215540305101214
  152. 152
    Mahmoudian, J.; Hadavi, R.; Jeddi-Tehrani, M.; Mahmoudi, A. R.; Bayat, A. A.; Shaban, E.; Vafakhah, M.; Darzi, M.; Tarahomi, M.; Ghods, R. Comparison of the Photobleaching and Photostability Traits of Alexa Fluor 568-and Fluorescein Isothiocyanate- Conjugated Antibody. Cell J. 2011, 13, 169172
  153. 153
    Hoekstra, D.; de Boer, T.; Klappe, K.; Wilschut, J. Fluorescence Method for Measuring the Kinetics of Fusion between Biological Membranes. Biochemistry 1984, 23, 56755681,  DOI: 10.1021/bi00319a002
  154. 154
    Floyd, D. L.; Ragains, J. R.; Skehel, J. J.; Harrison, S. C.; van Oijen, A. M. Single-Particle Kinetics of Influenza Virus Membrane Fusion. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 1538215387,  DOI: 10.1073/pnas.0807771105
  155. 155
    Jha, N. K.; Latinovic, O.; Martin, E.; Novitskiy, G.; Marin, M.; Miyauchi, K.; Naughton, J.; Young, J. A.; Melikyan, G. B. Imaging Single Retrovirus Entry through Alternative Receptor Isoforms and Intermediates of Virus-Endosome Fusion. PLoS Pathog. 2011, 7, e1001260  DOI: 10.1371/journal.ppat.1001260
  156. 156
    Hoornweg, T. E.; van Duijl-Richter, M. K. S.; Ayala Nunez, N. V.; Albulescu, I. C.; van Hemert, M. J.; Smit, J. M. Dynamics of Chikungunya Virus Cell Entry Unraveled by Single-Virus Tracking in Living Cells. J. Virol. 2016, 90, 47454756,  DOI: 10.1128/JVI.03184-15
  157. 157
    Li, Q.; Li, W.; Yin, W.; Guo, J.; Zhang, Z. P.; Zeng, D.; Zhang, X.; Wu, Y.; Zhang, X. E.; Cui, Z. Single-Particle Tracking of Human Immunodeficiency Virus Type 1 Productive Entry into Human Primary Macrophages. ACS Nano 2017, 11, 38903903,  DOI: 10.1021/acsnano.7b00275
  158. 158
    Nanbo, A.; Imai, M.; Watanabe, S.; Noda, T.; Takahashi, K.; Neumann, G.; Halfmann, P.; Kawaoka, Y. Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner. PLoS Pathog. 2010, 6, e1001121  DOI: 10.1371/journal.ppat.1001121
  159. 159
    Hao, X.; Shang, X.; Wu, J. Z.; Shan, Y. P.; Cai, M. J.; Jiang, J. G.; Huang, Z.; Tang, Z. Y.; Wang, H. D. Single-Particle Tracking of Hepatitis B Virus-Like Vesicle Entry into Cells. Small 2011, 7, 12121218,  DOI: 10.1002/smll.201002020
  160. 160
    Le Blanc, I.; Luyet, P. P.; Pons, V.; Ferguson, C.; Emans, N.; Petiot, A.; Mayran, N.; Demaurex, N.; Faure, J.; Sadoul, R. Endosome-to-Cytosol Transport of Viral Nucleocapsids. Nat. Cell Biol. 2005, 7, 653664,  DOI: 10.1038/ncb1269
  161. 161
    Lozach, P.-Y.; Kühbacher, A.; Meier, R.; Mancini, R.; Bitto, D.; Bouloy, M.; Helenius, A. DC-SIGN as a Receptor for Phleboviruses. Cell Host Microbe 2011, 10, 7588,  DOI: 10.1016/j.chom.2011.06.007
  162. 162
    Ayala-Nuñez, N. V.; Wilschut, J.; Smit, J. M. Monitoring Virus Entry into Living Cells Using DiD-Labeled Dengue Virus Particles. Methods 2011, 55, 137143,  DOI: 10.1016/j.ymeth.2011.07.009
  163. 163
    Crowther, D.; Melnick, J. L. The Incorporation of Neutral Red and Acridine Orange into Developing Poliovirus Particles Making Them Photosensitive. Virology 1961, 14, 1121,  DOI: 10.1016/0042-6822(61)90127-1
  164. 164
    Wilson, J. N.; Cooper, P. D. Aspects of the Growth of Poliovirus as Revealed by the Photodynamic Effects of Neutral Red and Acridine Orange. Virology 1963, 21, 135145,  DOI: 10.1016/0042-6822(63)90249-6
  165. 165
    Glynn, T. J.; Power, S.; Ryder, A. G.; Morrison, J. J. Time-Domain Measurement of Fluorescence Lifetime Variation with pH. Proc. SPIE-Int. Soc. Opt. Eng.; Society of Photo-optical Instrumentation Engineers: 2001.
  166. 166
    Kremser, L.; Okun, V. M.; Nicodemou, A.; Blaas, D.; Kenndler, E. Binding of Fluorescent Dye to Genomic RNA inside Intact Human Rhinovirus after Viral Capsid Penetration Investigated by Capillary Electrophoresis. Anal. Chem. 2004, 76, 882887,  DOI: 10.1021/ac034898x
  167. 167
    Kremser, L.; Petsch, M.; Blaas, D.; Kenndler, E. Labeling of Capsid Proteins and Genomic RNA of Human Rhinovirus with Two Different Fluorescent Dyes for Selective Detection by Capillary Electrophoresis. Anal. Chem. 2004, 76, 73607365,  DOI: 10.1021/ac048999m
  168. 168
    Jones, L. J.; Yue, S. T.; Cheung, C. Y.; Singer, V. L. RNA Quantitation by Fluorescence-Based Solution Assay: RiboGreen Reagent Characterization. Anal. Biochem. 1998, 265, 368374,  DOI: 10.1006/abio.1998.2914
  169. 169
    Lin, Y.-W.; Chiu, T.-C.; Chang, H.-T. Laser-Induced Fluorescence Technique for DNA and Proteins Separated by Capillary Electrophoresis. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2003, 793, 3748,  DOI: 10.1016/S1570-0232(03)00363-5
  170. 170
    Wen, L.; Lin, Y.; Zhang, Z. L.; Lu, W.; Lv, C.; Chen, Z. L.; Wang, H. Z.; Pang, D. W. Intracellular Self-Assembly Based Multi-Labeling of Key Viral Components: Envelope, Capsid and Nucleic Acids. Biomaterials 2016, 99, 2433,  DOI: 10.1016/j.biomaterials.2016.04.038
  171. 171
    Zhou, P.; Zheng, Z.; Lu, W.; Zhang, F.; Zhang, Z.; Pang, D.; Hu, B.; He, Z.; Wang, H. Multicolor Labeling of Living-Virus Particles in Live Cells. Angew. Chem., Int. Ed. 2012, 51, 670674,  DOI: 10.1002/anie.201105701
  172. 172
    Huang, L. L.; Zhou, P.; Wang, H. Z.; Zhang, R.; Hao, J.; Xie, H. Y.; He, Z. K. A New Stable and Reliable Method for Labeling Nucleic Acids of Fully Replicative Viruses. Chem. Commun. 2012, 48, 24242426,  DOI: 10.1039/c2cc17069h
  173. 173
    Shimomura, O.; Johnson, F. H.; Saiga, Y. Extraction, Purification and Properties of Aequorin, a Bioluminescent Protein from the Luminous Hydromedusan, Aequorea. J. Cell. Comp. Physiol. 1962, 59, 223239,  DOI: 10.1002/jcp.1030590302
  174. 174
    Chalfie, M. Green Fluorescent Protein as a Marker for Gene Expression. Trends Genet. 1994, 10, 151,  DOI: 10.1016/0168-9525(94)90088-4
  175. 175
    Lippincott-Schwartz, J.; Patterson, G. H. Development and Use of Fluorescent Protein Markers in Living Cells. Science 2003, 300, 8791,  DOI: 10.1126/science.1082520
  176. 176
    Day, R. N.; Davidson, M. W. The Fluorescent Protein Palette: Tools for Cellular Imaging. Chem. Soc. Rev. 2009, 38, 28872921,  DOI: 10.1039/b901966a
  177. 177
    Wiedenmann, J.; Oswald, F.; Nienhaus, G. U. Fluorescent Proteins for Live Cell Imaging: Opportunities, Limitations, and Challenges. IUBMB Life 2009, 61, 10291042,  DOI: 10.1002/iub.256
  178. 178
    Shaner, N. C.; Campbell, R. E.; Steinbach, P. A.; Giepmans, B. N.; Palmer, A. E.; Tsien, R. Y. Improved Monomeric Red, Orange and Yellow Fluorescent Proteins Derived from Discosoma sp. Red Fluorescent Protein. Nat. Biotechnol. 2004, 22, 15671572,  DOI: 10.1038/nbt1037
  179. 179
    Shkrob, M. A.; Yanushevich, Y. G.; Chudakov, D. M.; Gurskaya, N. G.; Labas, Y. A.; Poponov, S. Y.; Mudrik, N. N.; Lukyanov, S.; Lukyanov, K. A. Far-Red Fluorescent Proteins Evolved From a Blue Chromoprotein from Actinia Equina. Biochem. J. 2005, 392, 649654,  DOI: 10.1042/BJ20051314
  180. 180
    Nienhaus, K.; Nienhaus, G. U. Fluorescent Proteins for Live-Cell Imaging with Super-Resolution. Chem. Soc. Rev. 2014, 43, 10881106,  DOI: 10.1039/C3CS60171D
  181. 181
    Shcherbakova, D. M.; Verkhusha, V. V. Near-Infrared Fluorescent Proteins for Multicolor in Vivo Imaging. Nat. Methods 2013, 10, 751754,  DOI: 10.1038/nmeth.2521
  182. 182
    Shcherbakova, D. M.; Subach, O. M.; Verkhusha, V. V. Red Fluorescent Proteins: Advanced Imaging Applications and Future Design. Angew. Chem., Int. Ed. 2012, 51, 1072410738,  DOI: 10.1002/anie.201200408
  183. 183
    Tomosugi, W.; Matsuda, T.; Tani, T.; Nemoto, T.; Kotera, I.; Saito, K.; Horikawa, K.; Nagai, T. An Ultramarine Fluorescent Protein with Increased Photostability and pH Insensitivity. Nat. Methods 2009, 6, 351353,  DOI: 10.1038/nmeth.1317
  184. 184
    Ai, H. W.; Shaner, N. C.; Cheng, Z.; Tsien, R. Y.; Campbell, R. E. Exploration of New Chromophore Structures Leads to the Identification of Improved Blue Fluorescent Proteins. Biochemistry 2007, 46, 59045910,  DOI: 10.1021/bi700199g
  185. 185
    Subach, O. M.; Gundorov, I. S.; Yoshimura, M.; Subach, F. V.; Zhang, J.; Grüenwald, D.; Souslova, E. A.; Chudakov, D. M.; Verkhusha, V. V. Conversion of Red Fluorescent Protein into a Bright Blue Probe. Chem. Biol. 2008, 15, 11161124,  DOI: 10.1016/j.chembiol.2008.08.006
  186. 186
    Goedhart, J.; van Weeren, L.; Hink, M. A.; Vischer, N. O.; Jalink, K.; Gadella, T. W., Jr. Bright Cyan Fluorescent Protein Variants Identified by Fluorescence Lifetime Screening. Nat. Methods 2010, 7, 137139,  DOI: 10.1038/nmeth.1415
  187. 187
    Ai, H. W.; Henderson, J. N.; Remington, S. J.; Campbell, R. E. Directed Evolution of a Monomeric, Bright and Photostable Version of Clavularia Cyan Fluorescent Protein: Structural Characterization and Applications in Fluorescence Imaging. Biochem. J. 2006, 400, 531540,  DOI: 10.1042/BJ20060874
  188. 188
    Samarkina, O. N.; Popova, A. G.; Gvozdik, E. Y.; Chkalina, A. V.; Zvyagin, I. V.; Rylova, Y. V.; Rudenko, N. V.; Lusta, K. A.; Kelmanson, I. V.; Gorokhovatsky, A. Y. Universal and Rapid Method for Purification of GFP-Like Proteins by the Ethanol Extraction. Protein Expression Purif. 2009, 65, 108113,  DOI: 10.1016/j.pep.2008.11.008
  189. 189
    Ai, H. W.; Olenych, S. G.; Wong, P.; Davidson, M. W.; Campbell, R. E. Hue-Shifted Monomeric Variants of Clavularia Cyan Fluorescent Protein: Identification of the Molecular Determinants of Color and Applications in Fluorescence Imaging. BMC Biol. 2008, 6, 13,  DOI: 10.1186/1741-7007-6-13
  190. 190
    Shaner, N. C.; Lambert, G. G.; Chammas, A.; Ni, Y.; Cranfill, P. J.; Baird, M. A.; Sell, B. R.; Allen, J. R.; Day, R. N.; Israelsson, M. A Bright Monomeric Green Fluorescent Protein Derived from Branchiostoma Lanceolatum. Nat. Methods 2013, 10, 407409,  DOI: 10.1038/nmeth.2413
  191. 191
    Miyawaki, A.; Griesbeck, O.; Heim, R.; Tsien, R. Y. Dynamic and Quantitative Ca2+ Measurements Using Improved Cameleons. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 21352140,  DOI: 10.1073/pnas.96.5.2135
  192. 192
    Griesbeck, O.; Baird, G. S.; Campbell, R. E.; Zacharias, D. A.; Tsien, R. Y. Reducing the Environmental Sensitivity of Yellow Fluorescent Protein Mechanism and Applications. J. Biol. Chem. 2001, 276, 2918829194,  DOI: 10.1074/jbc.M102815200
  193. 193
    Sakaue-Sawano, A.; Kurokawa, H.; Morimura, T.; Hanyu, A.; Hama, H.; Osawa, H.; Kashiwagi, S.; Fukami, K.; Miyata, T.; Miyoshi, H. Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression. Cell 2008, 132, 487498,  DOI: 10.1016/j.cell.2007.12.033
  194. 194
    Merzlyak, E. M.; Goedhart, J.; Shcherbo, D.; Bulina, M. E.; Shcheglov, A. S.; Fradkov, A. F.; Gaintzeva, A.; Lukyanov, K. A.; Lukyanov, S.; Gadella, T. W. Bright Monomeric Red Fluorescent Protein with an Extended Fluorescence Lifetime. Nat. Methods 2007, 4, 555557,  DOI: 10.1038/nmeth1062
  195. 195
    Lam, A. J.; St-Pierre, F.; Gong, Y.; Marshall, J. D.; Cranfill, P. J.; Baird, M. A.; McKeown, M. R.; Wiedenmann, J.; Davidson, M. W.; Schnitzer, M. J. Improving FRET Dynamic Range with Bright Green and Red Fluorescent Proteins. Nat. Methods 2012, 9, 10051012,  DOI: 10.1038/nmeth.2171
  196. 196
    Shcherbo, D.; Murphy, C. S.; Ermakova, G. V.; Solovieva, E. A.; Chepurnykh, T. V.; Shcheglov, A. S.; Verkhusha, V. V.; Pletnev, V. Z.; Hazelwood, K. L.; Roche, P. M. Far-Red Fluorescent Tags for Protein Imaging in Living Tissues. Biochem. J. 2009, 418, 567574,  DOI: 10.1042/BJ20081949
  197. 197
    Lin, M. Z.; McKeown, M. R.; Ng, H. L.; Aguilera, T. A.; Shaner, N. C.; Campbell, R. E.; Adams, S. R.; Gross, L. A.; Ma, W.; Alber, T. Autofluorescent Proteins with Excitation in the Optical Window for Intravital Imaging in Mammals. Chem. Biol. 2009, 16, 11691179,  DOI: 10.1016/j.chembiol.2009.10.009
  198. 198
    Piatkevich, K. D.; Malashkevich, V. N.; Morozova, K. S.; Nemkovich, N. A.; Almo, S. C.; Verkhusha, V. V. Extended Stokes Shift in Fluorescent Proteins: Chromophore-Protein Interactions in a Near-Infrared TagRFP675 Variant. Sci. Rep. 2013, 3, 1847,  DOI: 10.1038/srep01847
  199. 199
    Sankaranarayanan, S.; De Angelis, D.; Rothman, J. E.; Ryan, T. A. The Use of pHluorins for Optical Measurements of Presynaptic Activity. Biophys. J. 2000, 79, 21992208,  DOI: 10.1016/S0006-3495(00)76468-X
  200. 200
    Shen, Y.; Rosendale, M.; Campbell, R. E.; Perrais, D. pHuji, A pH-Sensitive Red Fluorescent Protein for Imaging of Exo- and Endocytosis. J. Cell Biol. 2014, 207, 419432,  DOI: 10.1083/jcb.201404107
  201. 201
    Rodriguez, E. A.; Campbell, R. E.; Lin, J. Y.; Lin, M. Z.; Miyawaki, A.; Palmer, A. E.; Shu, X.; Zhang, J.; Tsien, R. Y. The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Trends Biochem. Sci. 2017, 42, 111129,  DOI: 10.1016/j.tibs.2016.09.010
  202. 202
    Shaner, N. C.; Steinbach, P. A.; Tsien, R. Y. A Guide to Choosing Fluorescent Proteins. Nat. Methods 2005, 2, 905909,  DOI: 10.1038/nmeth819
  203. 203
    Chudakov, D. M.; Matz, M. V.; Lukyanov, S.; Lukyanov, K. A. Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues. Physiol. Rev. 2010, 90, 11031163,  DOI: 10.1152/physrev.00038.2009
  204. 204
    Foo, Y. H.; Naredi-Rainer, N.; Lamb, D. C.; Ahmed, S.; Wohland, T. Factors Affecting the Quantification of Biomolecular Interactions by Fluorescence Cross-Correlation Spectroscopy. Biophys. J. 2012, 102, 11741183,  DOI: 10.1016/j.bpj.2012.01.040
  205. 205
    McDonald, D.; Wu, L.; Bohks, S. M.; KewalRamani, V. N.; Unutmaz, D.; Hope, T. J. Recruitment of HIV and Its Receptors to Dendritic Cell-T Cell Junctions. Science 2003, 300, 12951297,  DOI: 10.1126/science.1084238
  206. 206
    Zacharias, D. A.; Tsien, R. Y. Molecular Biology and Mutation of Green Fluorescent Protein. Methods Biochem. Anal. 2005, 47, 83120,  DOI: 10.1002/0471739499.ch5
  207. 207
    Klingen, Y.; Conzelmann, K. K.; Finke, S. Double-Labeled Rabies Virus: Live Tracking of Enveloped Virus Transport. J. Virol. 2008, 82, 237245,  DOI: 10.1128/JVI.01342-07
  208. 208
    Lehmann, M. J.; Sherer, N. M.; Marks, C. B.; Pypaert, M.; Mothes, W. Actin- and Myosin-Driven Movement of Viruses along Filopodia Precedes Their Entry into Cells. J. Cell Biol. 2005, 170, 317325,  DOI: 10.1083/jcb.200503059
  209. 209
    Sugimoto, K.; Uema, M.; Sagara, H.; Tanaka, M.; Sata, T.; Hashimoto, Y.; Kawaguchi, Y. Simultaneous Tracking of Capsid, Tegument, and Envelope Protein Localization in Living Cells Infected with Triply Fluorescent Herpes Simplex Virus 1. J. Virol. 2008, 82, 51985211,  DOI: 10.1128/JVI.02681-07
  210. 210
    Liesche, J.; Ziomkiewicz, I.; Schulz, A. Super-Resolution Imaging with Pontamine Fast Scarlet 4BS Enables Direct Visualization of Cellulose Orientation and Cell Connection Architecture in Onion Epidermis Cells. BMC Plant Biol. 2013, 13, 226,  DOI: 10.1186/1471-2229-13-226
  211. 211
    Melikyan, G. B.; Barnard, R. J.; Abrahamyan, L. G.; Mothes, W.; Young, J. A. Imaging Individual Retroviral Fusion Events: From Hemifusion to Pore Formation and Growth. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 87288733,  DOI: 10.1073/pnas.0501864102
  212. 212
    Dixit, R.; Tiwari, V.; Shukla, D. Herpes Simplex Virus Type 1 Induces Filopodia in Differentiated P19 Neural Cells to Facilitate Viral Spread. Neurosci. Lett. 2008, 440, 113118,  DOI: 10.1016/j.neulet.2008.05.031
  213. 213
    Adu-Gyamfi, E.; Digman, M. A.; Gratton, E.; Stahelin, R. V. Single-Particle Tracking Demonstrates That Actin Coordinates the Movement of the Ebola Virus Matrix Protein. Biophys. J. 2012, 103, L41143,  DOI: 10.1016/j.bpj.2012.09.026
  214. 214
    Miyauchi, K.; Marin, M.; Melikyan, G. B. Visualization of Retrovirus Uptake and Delivery into Acidic Endosomes. Biochem. J. 2011, 434, 559569,  DOI: 10.1042/BJ20101588
  215. 215
    Padilla-Parra, S.; Marin, M.; Kondo, N.; Melikyan, G. B. Pinpointing Retrovirus Entry Sites in Cells Expressing Alternatively Spliced Receptor Isoforms by Single Virus Imaging. Retrovirology 2014, 11, 47,  DOI: 10.1186/1742-4690-11-47
  216. 216
    Mercer, J.; Helenius, A. Vaccinia Virus Uses Macropinocytosis and Apoptotic Mimicry to Enter Host Cells. Science 2008, 320, 531535,  DOI: 10.1126/science.1155164
  217. 217
    Manicassamy, B.; Manicassamy, S.; Belicha-Villanueva, A.; Pisanelli, G.; Pulendran, B.; Garcia-Sastre, A. Analysis of in Vivo Dynamics of Influenza Virus Infection in Mice Using a GFP Reporter Virus. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 1153111536,  DOI: 10.1073/pnas.0914994107
  218. 218
    Bencina, M. Illumination of the Spatial Order of Intracellular pH by Genetically Encoded pH-Sensitive Sensors. Sensors 2013, 13, 1673616758,  DOI: 10.3390/s131216736
  219. 219
    Hogue, I. B.; Bosse, J. B.; Engel, E. A.; Scherer, J.; Hu, J. R.; Del Rio, T.; Enquist, L. W. Fluorescent Protein Approaches in Alpha Herpesvirus Research. Viruses 2015, 7, 59335961,  DOI: 10.3390/v7112915
  220. 220
    Jouvenet, N.; Bieniasz, P. D.; Simon, S. M. Imaging the Biogenesis of Individual HIV-1 Virions in Live Cells. Nature 2008, 454, 236240,  DOI: 10.1038/nature06998
  221. 221
    Hogue, I. B.; Bosse, J. B.; Hu, J. R.; Thiberge, S. Y.; Enquist, L. W. Cellular Mechanisms of Alpha Herpesvirus Eegress: Live Cell Fluorescence Microscopy of Pseudorabies Virus Exocytosis. PLoS Pathog. 2014, 10, e1004535  DOI: 10.1371/journal.ppat.1004535
  222. 222
    Adam, V.; Berardozzi, R.; Byrdin, M.; Bourgeois, D. Phototransformable Fluorescent Proteins: Future Challenges. Curr. Opin. Chem. Biol. 2014, 20, 92102,  DOI: 10.1016/j.cbpa.2014.05.016
  223. 223
    Chudakov, D. M.; Verkhusha, V. V.; Staroverov, D. B.; Souslova, E. A.; Lukyanov, S.; Lukyanov, K. A. Photoswitchable Cyan Fluorescent Protein for Protein Tracking. Nat. Biotechnol. 2004, 22, 14351439,  DOI: 10.1038/nbt1025
  224. 224
    Nemet, I.; Ropelewski, P.; Imanishi, Y. Applications of Phototransformable Fluorescent Proteins for Tracking the Dynamics of Cellular Components. Photochem. Photobiol. Sci. 2015, 14, 17871806,  DOI: 10.1039/C5PP00174A
  225. 225
    Ando, R.; Hama, H.; Yamamoto-Hino, M.; Mizuno, H.; Miyawaki, A. An Optical Marker Based on the UV-Induced Green-to-Red Photoconversion of a Fluorescent Protein. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 1265112656,  DOI: 10.1073/pnas.202320599
  226. 226
    Patterson, G. H.; Lippincott-Schwartz, J. A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells. Science 2002, 297, 18731877,  DOI: 10.1126/science.1074952
  227. 227
    Zhou, X. X.; Lin, M. Z. Photoswitchable Fluorescent Proteins: Ten Years of Colorful Chemistry and Exciting Applications. Curr. Opin. Chem. Biol. 2013, 17, 682690,  DOI: 10.1016/j.cbpa.2013.05.031
  228. 228
    Shroff, H.; Galbraith, C. G.; Galbraith, J. A.; White, H.; Gillette, J.; Olenych, S.; Davidson, M. W.; Betzig, E. Dual-Color Superresolution Imaging of Genetically Expressed Probes within Individual Adhesion Complexes. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 2030820313,  DOI: 10.1073/pnas.0710517105
  229. 229
    Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 2006, 313, 16421645,  DOI: 10.1126/science.1127344
  230. 230
    Fernandez-Suarez, M.; Ting, A. Y. Fluorescent Probes for Super-Resolution Imaging in Living Cells. Nat. Rev. Mol. Cell Biol. 2008, 9, 929943,  DOI: 10.1038/nrm2531
  231. 231
    Bourgeois, D.; Adam, V. Reversible Photoswitching in Fluorescent Proteins: A Mechanistic View. IUBMB Life 2012, 64, 482491,  DOI: 10.1002/iub.1023
  232. 232
    Muranyi, W.; Malkusch, S.; Muller, B.; Heilemann, M.; Krausslich, H. G. Super-Resolution Microscopy Reveals Specific Recruitment of HIV-1 Envelope Proteins to Viral Assembly Sites Dependent on the Envelope C-Terminal Tail. PLoS Pathog. 2013, 9, e1003198  DOI: 10.1371/journal.ppat.1003198
  233. 233
    Muller, B.; Heilemann, M. Shedding New Light on Viruses: Super-Resolution Microscopy for Studying Human Immunodeficiency Virus. Trends Microbiol. 2013, 21, 522533,  DOI: 10.1016/j.tim.2013.06.010
  234. 234
    Grove, J. Super-Resolution Microscopy: A Virus’ Eye View of the Cell. Viruses 2014, 6, 13651378,  DOI: 10.3390/v6031365
  235. 235
    Manley, S.; Gillette, J. M.; Patterson, G. H.; Shroff, H.; Hess, H. F.; Betzig, E.; Lippincott-Schwartz, J. High-Density Mapping of Single-Molecule Trajectories with Photoactivated Localization Microscopy. Nat. Methods 2008, 5, 155157,  DOI: 10.1038/nmeth.1176
  236. 236
    Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots. Nat. Biotechnol. 2004, 22, 969976,  DOI: 10.1038/nbt994
  237. 237
    Algar, W. R.; Susumu, K.; Delehanty, J. B.; Medintz, I. L. Semiconductor Quantum Dots in Bioanalysis: Crossing the Valley of Death. Anal. Chem. 2011, 83, 88268837,  DOI: 10.1021/ac201331r
  238. 238
    Wegner, K. D.; Hildebrandt, N. Quantum Dots: Bright and Versatile in Vitro and in Vivo Fluorescence Imaging Biosensors. Chem. Soc. Rev. 2015, 44, 47924834,  DOI: 10.1039/C4CS00532E
  239. 239
    Chen, G.; Zhu, J. Y.; Zhang, Z. L.; Zhang, W.; Ren, J. G.; Wu, M.; Hong, Z. Y.; Lv, C.; Pang, D. W.; Zhao, Y. F. Transformation of Cell-Derived Microparticles into Quantum-Dot-Labeled Nanovectors for Antitumor siRNA Delivery. Angew. Chem., Int. Ed. 2015, 54, 10361040,  DOI: 10.1002/anie.201410223
  240. 240
    Rosenthal, S. J.; Chang, J. C.; Kovtun, O.; McBride, J. R.; Tomlinson, I. D. Biocompatible Quantum Dots for Biological Applications. Chem. Biol. 2011, 18, 1024,  DOI: 10.1016/j.chembiol.2010.11.013
  241. 241
    Jethi, L.; Mack, T. G.; Kambhampati, P. Extending Semiconductor Nanocrystals from the Quantum Dot Regime to the Molecular Cluster Regime. J. Phys. Chem. C 2017, 121, 2610226107,  DOI: 10.1021/acs.jpcc.7b08439
  242. 242
    Zhou, J.; Liu, Y.; Tang, J.; Tang, W. Surface Ligands Engineering of Semiconductor Quantum Dots for Chemosensory and Biological Applications. Mater. Today 2017, 20, 360376,  DOI: 10.1016/j.mattod.2017.02.006
  243. 243
    Zhou, J.; Yang, Y.; Zhang, C. Y. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem. Rev. 2015, 115, 1166911717,  DOI: 10.1021/acs.chemrev.5b00049
  244. 244
    Zhang, M.; Yue, J.; Cui, R.; Ma, Z.; Wan, H.; Wang, F.; Zhu, S.; Zhou, Y.; Kuang, Y.; Zhong, Y. Bright Quantum Dots Emitting at Approximately 1,600 nm in the NIR-IIb Window for Deep Tissue Fluorescence Imaging. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 65906595,  DOI: 10.1073/pnas.1806153115
  245. 245
    Zhao, J. Y.; Chen, G.; Gu, Y. P.; Cui, R.; Zhang, Z. L.; Yu, Z. L.; Tang, B.; Zhao, Y. F.; Pang, D. W. Ultrasmall Magnetically Engineered Ag2Se Quantum Dots for Instant Efficient Labeling and Whole-Body High-Resolution Multimodal Real-Time Tracking of Cell-Derived Microvesicles. J. Am. Chem. Soc. 2016, 138, 18931903,  DOI: 10.1021/jacs.5b10340
  246. 246
    Gu, Y. P.; Cui, R.; Zhang, Z. L.; Xie, Z. X.; Pang, D. W. Ultrasmall Near-Infrared Ag2Se Quantum Dots with Tunable Fluorescence for in Vivo Imaging. J. Am. Chem. Soc. 2012, 134, 7982,  DOI: 10.1021/ja2089553
  247. 247
    Alivisatos, A. P.; Gu, W. W.; Larabell, C. Quantum Dots as Cellular Probes. Annu. Rev. Biomed. Eng. 2005, 7, 5576,  DOI: 10.1146/annurev.bioeng.7.060804.100432
  248. 248
    Gao, X.; Yang, L.; Petros, J. A.; Marshall, F. F.; Simons, J. W.; Nie, S. In Vivo Molecular and Cellular Imaging with Quantum Dots. Curr. Opin. Biotechnol. 2005, 16, 6372,  DOI: 10.1016/j.copbio.2004.11.003
  249. 249
    Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998, 281, 20132016,  DOI: 10.1126/science.281.5385.2013
  250. 250
    Smith, A. M.; Duan, H. W.; Mohs, A. M.; Nie, S. M. Bioconjugated Quantum Dots for in Vivo Molecular and Cellular Imaging. Adv. Drug Delivery Rev. 2008, 60, 12261240,  DOI: 10.1016/j.addr.2008.03.015
  251. 251
    Lidke, D. S.; Nagy, P.; Heintzmann, R.; Arndt-Jovin, D. J.; Post, J. N.; Grecco, H. E.; Jares-Erijman, E. A.; Jovin, T. M. Quantum Dot Ligands Provide New Insights into erbB/HER Receptor–Mediated Signal Transduction. Nat. Biotechnol. 2004, 22, 198203,  DOI: 10.1038/nbt929
  252. 252
    Srinivasan, C.; Lee, J.; Papadimitrakopoulos, F.; Silbart, L. K.; Zhao, M.; Burgess, D. J. Labeling and Intracellular Tracking of Functionally Active Plasmid DNA with Semiconductor Quantum Dots. Mol. Ther. 2006, 14, 192201,  DOI: 10.1016/j.ymthe.2006.03.010
  253. 253
    Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P. Immunofluorescent Labeling of Cancer Marker Her2 and Other Cellular Targets with Semiconductor Quantum Dots. Nat. Biotechnol. 2003, 21, 4146,  DOI: 10.1038/nbt764
  254. 254
    Chen, C.; Peng, J.; Xia, H.; Wu, Q.; Zeng, L.; Xu, H.; Tang, H.; Zhang, Z.; Zhu, X.; Pang, D. Quantum-Dot-Based Immunofluorescent Imaging of HER2 and ER Provides New Insights into Breast Cancer Heterogeneity. Nanotechnology 2010, 21, 095101  DOI: 10.1088/0957-4484/21/9/095101
  255. 255
    Chen, C.; Xia, H. S.; Gong, Y. P.; Peng, J.; Peng, C. W.; Hu, M. B.; Zhu, X. B.; Pang, D. W.; Sun, S. R.; Li, Y. The Quantitative Detection of Total HER2 Load by Quantum Dots and the Identification of a New Subtype of Breast Cancer with Different 5-Year Prognosis. Biomaterials 2010, 31, 88188825,  DOI: 10.1016/j.biomaterials.2010.07.091
  256. 256
    Chen, C.; Liu, S. L.; Cui, R.; Huang, B. H.; Tian, Z. Q.; Jiang, P.; Pang, D. W.; Zhang, Z. L. Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking. J. Phys. Chem. C 2008, 112, 1890418910,  DOI: 10.1021/jp807074t
  257. 257
    Gao, X.; Wang, T.; Wu, B.; Chen, J.; Chen, J.; Yue, Y.; Dai, N.; Chen, H.; Jiang, X. Quantum Dots for Tracking Cellular Transport of Lectin-Functionalized Nanoparticles. Biochem. Biophys. Res. Commun. 2008, 377, 3540,  DOI: 10.1016/j.bbrc.2008.09.077
  258. 258
    Rajan, S. S.; Liu, H. Y.; Vu, T. Q. Ligand-Bound Quantum Dot Probes for Studying the Molecular Scale Dynamics of Receptor Endocytic Trafficking in Live Cells. ACS Nano 2008, 2, 11531166,  DOI: 10.1021/nn700399e
  259. 259
    Murcia, M. J.; Minner, D. E.; Mustata, G. M.; Ritchie, K.; Naumann, C. A. Design of Quantum Dot-Conjugated Lipids for Long-Term, High-Speed Tracking Experiments on Cell Surfaces. J. Am. Chem. Soc. 2008, 130, 1505415062,  DOI: 10.1021/ja803325b
  260. 260
    Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing. Nat. Mater. 2005, 4, 435446,  DOI: 10.1038/nmat1390
  261. 261
    Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307, 538544,  DOI: 10.1126/science.1104274
  262. 262
    Bentolila, L. A.; Ebenstein, Y.; Weiss, S. Quantum Dots for in Vivo Small-Animal Imaging. J. Nucl. Med. 2009, 50, 493496,  DOI: 10.2967/jnumed.108.053561
  263. 263
    Zrazhevskiy, P.; Sena, M.; Gao, X. Designing Multifunctional Quantum Dots for Bioimaging, Detection, and Drug Delivery. Chem. Soc. Rev. 2010, 39, 43264354,  DOI: 10.1039/b915139g
  264. 264
    Ruan, G.; Agrawal, A.; Marcus, A. I.; Nie, S. Imaging and Tracking of Tat Peptide-Conjugated Quantum Dots in Living Cells: New Insights into Nanoparticle Uptake, Intracellular Transport, and Vesicle Shedding. J. Am. Chem. Soc. 2007, 129, 1475914766,  DOI: 10.1021/ja074936k
  265. 265
    Bruchez, M. P. Quantum Dots Find Their Stride in Single Molecule Tracking. Curr. Opin. Chem. Biol. 2011, 15, 775780,  DOI: 10.1016/j.cbpa.2011.10.011
  266. 266
    Tada, H.; Higuchi, H.; Wanatabe, T. M.; Ohuchi, N. In Vivo Real-Time Tracking of Single Quantum Dots Conjugated with Monoclonal Anti-HER2 Antibody in Tumors of Mice. Cancer Res. 2007, 67, 11381144,  DOI: 10.1158/0008-5472.CAN-06-1185
  267. 267
    Wells, N. P.; Lessard, G. A.; Werner, J. H. Confocal, Three-Dimensional Tracking of Individual Quantum Dots in High-Background Environments. Anal. Chem. 2008, 80, 98309834,  DOI: 10.1021/ac8021899
  268. 268
    Cui, Z. Q.; Ren, Q.; Wei, H. P.; Chen, Z.; Deng, J. Y.; Zhang, Z. P.; Zhang, X. E. Quantum Dot-Aptamer Nanoprobes for Recognizing and Labeling Influenza A Virus Particles. Nanoscale 2011, 3, 24542457,  DOI: 10.1039/c1nr10218d
  269. 269
    Saxton, M. J.; Jacobson, K. Single-Particle Tracking: Applications to Membrane Dynamics. Annu. Rev. Biophys. Biomol. Struct. 1997, 26, 373399,  DOI: 10.1146/annurev.biophys.26.1.373
  270. 270
    Kusumi, A.; Sako, Y.; Yamamoto, M. Confined Lateral Diffusion of Membrane Receptors as Studied by Single Particle Tracking (Nanovid Microscopy). Effects of Calcium-Induced Differentiation in Cultured Epithelial Cells. Biophys. J. 1993, 65, 20212040,  DOI: 10.1016/S0006-3495(93)81253-0
  271. 271
    Wan, X. Y.; Zheng, L. L.; Gao, P. F.; Yang, X. X.; Li, C. M.; Li, Y. F.; Huang, C. Z. Real-Time Light Scattering Tracking of Gold Nanoparticles- Bioconjugated Respiratory Syncytial Virus Infecting HEp-2 Cells. Sci. Rep. 2015, 4, 4529,  DOI: 10.1038/srep04529
  272. 272
    Marjomaki, V.; Lahtinen, T.; Martikainen, M.; Koivisto, J.; Malola, S.; Salorinne, K.; Pettersson, M.; Hakkinen, H. Site-Specific Targeting of Enterovirus Capsid by Functionalized Monodisperse Gold Nanoclusters. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 12771281,  DOI: 10.1073/pnas.1310973111
  273. 273
    Wan, X. K.; Xu, W. W.; Yuan, S. F.; Gao, Y.; Zeng, X. C.; Wang, Q. M. A Near-Infrared-Emissive Alkynyl-Protected Au24 Nanocluster. Angew. Chem., Int. Ed. 2015, 54, 96839686,  DOI: 10.1002/anie.201503893
  274. 274
    Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev. 2016, 116, 1034610413,  DOI: 10.1021/acs.chemrev.5b00703
  275. 275
    Zhang, L. B.; Wang, E. K. Metal Nanoclusters: New Fluorescent Probes for Sensors and Bioimaging. Nano Today 2014, 9, 132157,  DOI: 10.1016/j.nantod.2014.02.010
  276. 276
    Shang, L.; Dong, S. J.; Nienhaus, G. U. Ultra-Small Fluorescent Metal Nanoclusters: Synthesis and Biological Applications. Nano Today 2011, 6, 401418,  DOI: 10.1016/j.nantod.2011.06.004
  277. 277
    Draz, M. S.; Fang, B. A.; Li, L. J.; Chen, Z.; Wang, Y. J.; Xu, Y. H.; Yang, J.; Killeen, K.; Chen, F. F. Hybrid Nanocluster Plasmonic Resonator for Lmmunological Detection of Hepatitis B Virus. ACS Nano 2012, 6, 76347643,  DOI: 10.1021/nn3034056
  278. 278
    Shokri, E.; Hosseini, M.; Faridbod, F.; Rahaie, M. Rapid Pre-Symptomatic Recognition of Tristeza Viral RNA by a Novel Fluorescent Self-Dimerized DNA-Silver Nanocluster probe. RSC Adv. 2016, 6, 9943799443,  DOI: 10.1039/C6RA15199J
  279. 279
    Tao, Y.; Li, M.; Ren, J.; Qu, X. Metal Nanoclusters: Novel Probes for Diagnostic and Therapeutic Applications. Chem. Soc. Rev. 2015, 44, 86368663,  DOI: 10.1039/C5CS00607D
  280. 280
    Basle, E.; Joubert, N.; Pucheault, M. Protein Chemical Modification on Endogenous Amino Acids. Chem. Biol. 2010, 17, 213227,  DOI: 10.1016/j.chembiol.2010.02.008
  281. 281
    Hong, Z. Y.; Zhang, Z. L.; Tang, B.; Ao, J.; Wang, C.; Yu, C.; Pang, D. W. Equipping Inner Central Components of Influenza A Virus with Quantum Dots. Anal. Chem. 2018, 90, 1402014028,  DOI: 10.1021/acs.analchem.8b03995
  282. 282
    Huisgen, R. 1.3-Dipolare Cycloadditionen Rückschau und Ausblick. Angew. Chem. 1963, 75, 604637,  DOI: 10.1002/ange.19630751304
  283. 283
    Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem., Int. Ed. 2001, 40, 20042021,  DOI: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
  284. 284
    Nwe, K.; Brechbiel, M. W. Growing Applications of ″Click Chemistry″ for Bioconjugation in Contemporary Biomedical Research. Cancer Biother.Radiopharm. 2009, 24, 289302,  DOI: 10.1089/cbr.2008.0626
  285. 285
    Codelli, J. A.; Baskin, J. M.; Agard, N. J.; Bertozzi, C. R. Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry. J. Am. Chem. Soc. 2008, 130, 1148611493,  DOI: 10.1021/ja803086r
  286. 286
    Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R. Copper-Free Click Chemistry for Dynamic in Vivo Imaging. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 1679316797,  DOI: 10.1073/pnas.0707090104
  287. 287
    Hoyle, C. E.; Bowman, C. N. Thiol-Ene Click Chemistry. Angew. Chem., Int. Ed. 2010, 49, 15401573,  DOI: 10.1002/anie.200903924
  288. 288
    Nikic, I.; Plass, T.; Schraidt, O.; Szymanski, J.; Briggs, J. A.; Schultz, C.; Lemke, E. A. Minimal Tags for Rapid Dual-Color Live-Cell Labeling and Super-Resolution Microscopy. Angew. Chem., Int. Ed. 2014, 53, 22452249,  DOI: 10.1002/anie.201309847
  289. 289
    Salic, A.; Mitchison, T. J. A Chemical Method for Fast and Sensitive Detection of DNA Synthesis in Vivo. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 24152420,  DOI: 10.1073/pnas.0712168105
  290. 290
    Jao, C. Y.; Salic, A. Exploring RNA Transcription and Turnover in Vivo by Using Click Chemistry. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 1577915784,  DOI: 10.1073/pnas.0808480105
  291. 291
    Jewett, J. C.; Bertozzi, C. R. Cu-Free Click Cycloaddition Reactions in Chemical Biology. Chem. Soc. Rev. 2010, 39, 12721279,  DOI: 10.1039/b901970g
  292. 292
    Rubino, F. A.; Oum, Y. H.; Rajaram, L.; Chu, Y.; Carrico, I. S. Chemoselective Modification of Viral Surfaces via Bioorthogonal Click Chemistry. J. Visualized Exp. 2012, e4246  DOI: 10.3791/4246
  293. 293
    Oum, Y. H.; Desai, T. M.; Marin, M.; Melikyan, G. B. Click Labeling of Unnatural Sugars Metabolically Incorporated into Viral Envelope Glycoproteins Enables Visualization of Single Particle Fusion. J. Virol. Methods 2016, 233, 6271,  DOI: 10.1016/j.jviromet.2016.02.016
  294. 294
    Huang, L. L.; Lu, G. H.; Hao, J.; Wang, H. Z.; Yin, D. L.; Xie, H. Y. Enveloped Virus Labeling via Both Intrinsic Biosynthesis and Metabolic Incorporation of Phospholipids in Host Cells. Anal. Chem. 2013, 85, 52635270,  DOI: 10.1021/ac4008144
  295. 295
    Hou, W.; Li, Y.; Kang, W.; Wang, X.; Wu, X.; Wang, S.; Liu, F. Real-Time Analysis of Quantum Dot Labeled Single Porcine Epidemic Diarrhea Virus Moving along the Microtubules Using Single Particle Tracking. Sci. Rep. 2019, 9, 1307,  DOI: 10.1038/s41598-018-37789-9
  296. 296
    Lin, S.; Yan, H.; Li, L.; Yang, M.; Peng, B.; Chen, S.; Li, W.; Chen, P. R. Site-Specific Engineering of Chemical Functionalities on the Surface of Live Hepatitis D Virus. Angew. Chem., Int. Ed. 2013, 52, 1397013974,  DOI: 10.1002/anie.201305787
  297. 297
    Huang, L. L.; Liu, K.; Zhang, Q.; Xu, J.; Zhao, D.; Zhu, H.; Xie, H. Y. Integrating Two Efficient and Specific Bioorthogonal Ligation Reactions with Natural Metabolic Incorporation in One Cell for Virus Dual Labeling. Anal. Chem. 2017, 89, 1162011627,  DOI: 10.1021/acs.analchem.7b03043
  298. 298
    Wang, I. H.; Suomalainen, M.; Andriasyan, V.; Kilcher, S.; Mercer, J.; Neef, A.; Luedtke, N. W.; Greber, U. F. Tracking Viral Genomes in Host Cells at Single-Molecule Resolution. Cell Host Microbe 2013, 14, 468480,  DOI: 10.1016/j.chom.2013.09.004
  299. 299
    Green, N. M. Avidin and Streptavidin. Methods Enzymol; Elsevier: 1990; Vol. 184, pp 5167.
  300. 300
    Zhang, F.; Zheng, Z.; Liu, S. L.; Lu, W.; Zhang, Z.; Zhang, C.; Zhou, P.; Zhang, Y.; Long, G.; He, Z. Self-Biotinylation and Site-Specific Double Labeling of Baculovirus Using Quantum Dots for Single-Virus in-Situ Tracking. Biomaterials 2013, 34, 75067518,  DOI: 10.1016/j.biomaterials.2013.06.030
  301. 301
    Liu, J.; Xu, M.; Tang, B.; Hu, L.; Deng, F.; Wang, H.; Pang, D. W.; Hu, Z.; Wang, M.; Zhou, Y. Single-Particle Tracking Reveals the Sequential Entry Process of the Bunyavirus Severe Fever with Thrombocytopenia Syndrome Virus. Small 2019, 15, e1803788  DOI: 10.1002/smll.201803788
  302. 302
    Liu, J.; Yu, C.; Gui, J. F.; Pang, D. W.; Zhang, Q. Y. Real-Time Dissecting the Entry and Intracellular Dynamics of Single Reovirus Particle. Front. Microbiol. 2018, 9, 2797,  DOI: 10.3389/fmicb.2018.02797
  303. 303
    Dixit, S. K.; Goicochea, N. L.; Daniel, M. C.; Murali, A.; Bronstein, L.; De, M.; Stein, B.; Rotello, V. M.; Kao, C. C.; Dragnea, B. Quantum Dot Encapsulation in Viral Capsids. Nano Lett. 2006, 6, 19931999,  DOI: 10.1021/nl061165u
  304. 304
    Huang, B. H.; Lin, Y.; Zhang, Z. L.; Zhuan, F.; Liu, A. A.; Xie, M.; Tian, Z. Q.; Zhang, Z.; Wang, H.; Pang, D. W. Surface Labeling of Enveloped Viruses Assisted by Host Cells. ACS Chem. Biol. 2012, 7, 683688,  DOI: 10.1021/cb2001878
  305. 305
    You, J. O.; Liu, Y. S.; Liu, Y. C.; Joo, K. I.; Peng, C. A. Incorporation of Quantum Dots on Virus in Polycationic Solution. Int. J. Nanomedicine 2006, 1, 5964,  DOI: 10.2147/nano.2006.1.1.59
  306. 306
    Chen, Y. H.; Wang, C. H.; Chang, C. W.; Peng, C. A. In Situ Formation of Viruses Tagged with Quantum Dots. Integr. Biol. 2010, 2, 258264,  DOI: 10.1039/b926852a
  307. 307
    Li, F.; Zhang, Z. P.; Peng, J.; Cui, Z. Q.; Pang, D. W.; Li, K.; Wei, H. P.; Zhou, Y. F.; Wen, J. K.; Zhang, X. E. Imaging Viral Behavior in Mammalian Cells with Self-Assembled Capsid-Quantum-Dot Hybrid Particles. Small 2009, 5, 718726,  DOI: 10.1002/smll.200801303
  308. 308
    Johnson, H. E.; Haugh, J. M. Quantitative Analysis of Phosphoinositide 3-Kinase (PI3K) Signaling Using Live-Cell Total Internal Reflection Fluorescence (TIRF) Microscopy. Curr. Protoc. Cell Biol. 2013, 61, 14.14.114.14.24,  DOI: 10.1002/0471143030.cb1414s61
  309. 309
    Chen, I.; Ting, A. Y. Site-Specific Labeling of Proteins with Small Molecules in Live Cells. Curr. Opin. Biotechnol. 2005, 16, 3540,  DOI: 10.1016/j.copbio.2004.12.003
  310. 310
    Gong, Y. K.; Pan, L. F. Recent Advances in Bioorthogonal Reactions for Site-Specific Protein Labeling and Engineering. Tetrahedron Lett. 2015, 56, 21232132,  DOI: 10.1016/j.tetlet.2015.03.065
  311. 311
    Zhang, G.; Zheng, S. Q.; Liu, H. P.; Chen, P. R. Illuminating Biological Processes through Site-Specific Protein Labeling. Chem. Soc. Rev. 2015, 44, 34053417,  DOI: 10.1039/C4CS00393D
  312. 312
    Jing, C.; Cornish, V. W. Chemical Tags for Labeling Proteins inside Living Cells. Acc. Chem. Res. 2011, 44, 784792,  DOI: 10.1021/ar200099f
  313. 313
    Klein, T.; Loschberger, A.; Proppert, S.; Wolter, S.; van de Linde, S.; Sauer, M. Live-Cell dSTORM with SNAP-Tag Fusion Proteins. Nat. Methods 2011, 8, 79,  DOI: 10.1038/nmeth0111-7b
  314. 314
    Chen, Z.; Cornish, V. W.; Min, W. Chemical Tags: Inspiration for Advanced Imaging Techniques. Curr. Opin. Chem. Biol. 2013, 17, 637643,  DOI: 10.1016/j.cbpa.2013.05.018
  315. 315
    Wombacher, R.; Cornish, V. W. Chemical Tags: Applications in Live Cell Fluorescence Imaging. J. Biophotonics 2011, 4, 391402,  DOI: 10.1002/jbio.201100018
  316. 316
    Specht, E. A.; Braselmann, E.; Palmer, A. E. A Critical and Comparative Review of Fluorescent Tools for Live-Cell Imaging. Annu. Rev. Physiol. 2017, 79, 93117,  DOI: 10.1146/annurev-physiol-022516-034055
  317. 317
    Eckhardt, M.; Anders, M.; Muranyi, W.; Heilemann, M.; Krijnse-Locker, J.; Muller, B. A SNAP-Tagged Derivative of HIV-1--A Versatile Tool to Study Virus-Cell Interactions. PLoS One 2011, 6, e22007  DOI: 10.1371/journal.pone.0022007
  318. 318
    Hanne, J.; Gottfert, F.; Schimer, J.; Anders-Osswein, M.; Konvalinka, J.; Engelhardt, J.; Muller, B.; Hell, S. W.; Krausslich, H. G. Stimulated Emission Depletion Nanoscopy Reveals Time-Course of Human Immunodeficiency Virus Proteolytic Maturation. ACS Nano 2016, 10, 82158222,  DOI: 10.1021/acsnano.6b03850
  319. 319
    Sun, X.; Zhang, A.; Baker, B.; Sun, L.; Howard, A.; Buswell, J.; Maurel, D.; Masharina, A.; Johnsson, K.; Noren, C. J. Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging. ChemBioChem 2011, 12, 22172226,  DOI: 10.1002/cbic.201100173
  320. 320
    Keppler, A.; Pick, H.; Arrivoli, C.; Vogel, H.; Johnsson, K. Labeling of Fusion Proteins with Synthetic Fluorophores in Live Cells. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 99559959,  DOI: 10.1073/pnas.0401923101
  321. 321
    Lavis, L. D. Teaching Old Dyes New Tricks: Biological Probes Built from Fluoresceins and Rhodamines. Annu. Rev. Biochem. 2017, 86, 825843,  DOI: 10.1146/annurev-biochem-061516-044839
  322. 322
    Ross-Thriepland, D.; Mankouri, J.; Harris, M. Serine Phosphorylation of the Hepatitis C Virus NS5A Protein Controls the Establishment of Replication Complexes. J. Virol. 2015, 89, 31233135,  DOI: 10.1128/JVI.02995-14
  323. 323
    Gautier, A.; Juillerat, A.; Heinis, C.; Correa, I. R., Jr.; Kindermann, M.; Beaufils, F.; Johnsson, K. An Engineered Protein Tag for Multiprotein Labeling in Living Cells. Chem. Biol. 2008, 15, 128136,  DOI: 10.1016/j.chembiol.2008.01.007
  324. 324
    Liu, A. A.; Zhang, Z.; Sun, E. Z.; Zheng, Z.; Zhang, Z. L.; Hu, Q.; Wang, H.; Pang, D. W. Simultaneous Visualization of Parental and Progeny Viruses by a Capsid-Specific HaloTag Labeling Strategy. ACS Nano 2016, 10, 11471155,  DOI: 10.1021/acsnano.5b06438
  325. 325
    Los, G. V.; Encell, L. P.; McDougall, M. G.; Hartzell, D. D.; Karassina, N.; Zimprich, C.; Wood, M. G.; Learish, R.; Ohana, R. F.; Urh, M. HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem. Biol. 2008, 3, 373382,  DOI: 10.1021/cb800025k
  326. 326
    Chen, Z.; Jing, C.; Gallagher, S. S.; Sheetz, M. P.; Cornish, V. W. Second-Generation Covalent TMP-Tag for Live Cell Imaging. J. Am. Chem. Soc. 2012, 134, 1369213699,  DOI: 10.1021/ja303374p
  327. 327
    Gallagher, S. S.; Jing, C.; Peterka, D. S.; Konate, M.; Wombacher, R.; Kaufman, L. J.; Yuste, R.; Cornish, V. W. A Trimethoprim-Based Chemical Tag for Live Cell Two-Photon Imaging. ChemBioChem 2010, 11, 782784,  DOI: 10.1002/cbic.200900731
  328. 328
    Wombacher, R.; Heidbreder, M.; van de Linde, S.; Sheetz, M. P.; Heilemann, M.; Cornish, V. W.; Sauer, M. Live-Cell Super-Resolution Imaging with Trimethoprim Conjugates. Nat. Methods 2010, 7, 717719,  DOI: 10.1038/nmeth.1489
  329. 329
    Miller, L. W.; Cai, Y.; Sheetz, M. P.; Cornish, V. W. In Vivo Protein Labeling with Trimethoprim Conjugates: A Flexible Chemical Tag. Nat. Methods 2005, 2, 255257,  DOI: 10.1038/nmeth749
  330. 330
    Rudner, L.; Nydegger, S.; Coren, L. V.; Nagashima, K.; Thali, M.; Ott, D. E. Dynamic Fluorescent Imaging of Human Immunodeficiency Virus Type 1 Gag in Live Cells by Biarsenical Labeling. J. Virol. 2005, 79, 40554065,  DOI: 10.1128/JVI.79.7.4055-4065.2005
  331. 331
    Das, S. C.; Panda, D.; Nayak, D.; Pattnaik, A. K. Biarsenical Labeling of Vesicular Stomatitis Virus Encoding Tetracysteine-Tagged M Protein Allows Dynamic Imaging of M Protein and Virus Uncoating in Infected Cells. J. Virol. 2009, 83, 26112622,  DOI: 10.1128/JVI.01668-08
  332. 332
    Li, Y.; Lu, X.; Li, J.; Berube, N.; Giest, K. L.; Liu, Q.; Anderson, D. H.; Zhou, Y. Genetically Engineered, Biarsenically Labeled Influenza Virus Allows Visualization of Viral NS1 Protein in Living Cells. J. Virol. 2010, 84, 72047213,  DOI: 10.1128/JVI.00203-10
  333. 333
    Martin, B. R.; Giepmans, B. N.; Adams, S. R.; Tsien, R. Y. Mammalian Cell-Based Optimization of the Biarsenical-Binding Tetracysteine Motif for Improved Fluorescence and Affinity. Nat. Biotechnol. 2005, 23, 13081314,  DOI: 10.1038/nbt1136
  334. 334
    Adams, S. R.; Campbell, R. E.; Gross, L. A.; Martin, B. R.; Walkup, G. K.; Yao, Y.; Llopis, J.; Tsien, R. Y. New Biarsenical Ligands and Tetracysteine Motifs for Protein Labeling in Vitro and in Vivo: Synthesis and Biological Applications. J. Am. Chem. Soc. 2002, 124, 60636076,  DOI: 10.1021/ja017687n
  335. 335
    Zheng, L. L.; Li, C. M.; Zhen, S. J.; Li, Y. F.; Huang, C. Z. His-Tag Based in Situ Labelling of Progeny Viruses for Real-Time Single Virus Tracking in Living Cells. Nanoscale 2016, 8, 1863518639,  DOI: 10.1039/C6NR05806J
  336. 336
    Guignet, E. G.; Hovius, R.; Vogel, H. Reversible Site-Selective Labeling of Membrane Proteins in Live Cells. Nat. Biotechnol. 2004, 22, 440444,  DOI: 10.1038/nbt954
  337. 337
    Chen, I.; Howarth, M.; Lin, W.; Ting, A. Y. Site-Specific Labeling of Cell Surface Proteins with Biophysical Probes Using Biotin Ligase. Nat. Methods 2005, 2, 99104,  DOI: 10.1038/nmeth735
  338. 338
    Howarth, M.; Ting, A. Y. Imaging Proteins in Live Mammalian Cells with Biotin Ligase and Monovalent Streptavidin. Nat. Protoc. 2008, 3, 534545,  DOI: 10.1038/nprot.2008.20
  339. 339
    Uttamapinant, C.; White, K. A.; Baruah, H.; Thompson, S.; Fernandez-Suarez, M.; Puthenveetil, S.; Ting, A. Y. A Fluorophore Ligase for Site-Specific Protein Labeling inside Living Cells. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 1091410919,  DOI: 10.1073/pnas.0914067107
  340. 340
    Fernandez-Suarez, M.; Baruah, H.; Martinez-Hernandez, L.; Xie, K. T.; Baskin, J. M.; Bertozzi, C. R.; Ting, A. Y. Redirecting Lipoic Acid Ligase for Cell Surface Protein Labeling with Small-Molecule Probes. Nat. Biotechnol. 2007, 25, 14831487,  DOI: 10.1038/nbt1355
  341. 341
    Schumacher, D.; Helma, J.; Mann, F. A.; Pichler, G.; Natale, F.; Krause, E.; Cardoso, M. C.; Hackenberger, C. P.; Leonhardt, H. Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase. Angew. Chem., Int. Ed. 2015, 54, 1378713791,  DOI: 10.1002/anie.201505456
  342. 342
    Schumacher, D.; Lemke, O.; Helma, J.; Gerszonowicz, L.; Waller, V.; Stoschek, T.; Durkin, P. M.; Budisa, N.; Leonhardt, H.; Keller, B. G. Broad Substrate Tolerance of Tubulin Tyrosine Ligase Enables One-Step Site-Specific Enzymatic Protein Labeling. Chem. Sci. 2017, 8, 34713478,  DOI: 10.1039/C7SC00574A
  343. 343
    Zhou, Z.; Cironi, P.; Lin, A. J.; Xu, Y.; Hrvatin, S.; Golan, D. E.; Silver, P. A.; Walsh, C. T.; Yin, J. Genetically Encoded Short Peptide Tags for Orthogonal Protein Labeling by Sfp and AcpS Phosphopantetheinyl Transferases. ACS Chem. Biol. 2007, 2, 337346,  DOI: 10.1021/cb700054k
  344. 344
    Yin, J.; Straight, P. D.; McLoughlin, S. M.; Zhou, Z.; Lin, A. J.; Golan, D. E.; Kelleher, N. L.; Kolter, R.; Walsh, C. T. Genetically Encoded Short Peptide Tag for Versatile Protein Labeling by Sfp Phosphopantetheinyl Transferase. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 1581515820,  DOI: 10.1073/pnas.0507705102
  345. 345
    Crivat, G.; Taraska, J. W. Imaging Proteins inside Cells with Fluorescent Tags. Trends Biotechnol. 2012, 30, 816,  DOI: 10.1016/j.tibtech.2011.08.002
  346. 346
    Hoehnel, S.; Lutolf, M. P. Capturing Cell-Cell Interactions via SNAP-tag and CLIP-tag Technology. Bioconjugate Chem. 2015, 26, 16781686,  DOI: 10.1021/acs.bioconjchem.5b00268
  347. 347
    Liss, V.; Barlag, B.; Nietschke, M.; Hensel, M. Self-Labelling Enzymes as Universal Tags for Fluorescence Microscopy, Super-Resolution Microscopy and Rectron Microscopy. Sci. Rep. 2016, 5, 17740,  DOI: 10.1038/srep17740
  348. 348
    Jing, C.; Cornish, V. W. A Fluorogenic TMP-Tag for High Signal-to-Background Intracellular Live Cell Imaging. ACS Chem. Biol. 2013, 8, 17041712,  DOI: 10.1021/cb300657r
  349. 349
    Lai, Y. T.; Chang, Y. Y.; Hu, L.; Yang, Y.; Chao, A.; Du, Z. Y.; Tanner, J. A.; Chye, M. L.; Qian, C.; Ng, K. M. Rapid Labeling of Intracellular His-Tagged Proteins in Living Cells. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 29482953,  DOI: 10.1073/pnas.1419598112
  350. 350
    Stephanopoulos, N.; Francis, M. B. Choosing an Effective Protein Bioconjugation Strategy. Nat. Chem. Biol. 2011, 7, 876884,  DOI: 10.1038/nchembio.720
  351. 351
    Howarth, M.; Takao, K.; Hayashi, Y.; Ting, A. Y. Targeting Quantum Dots to Surface Proteins in Living Cells with Biotin Ligase. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 75837588,  DOI: 10.1073/pnas.0503125102
  352. 352
    Cohen, J. D.; Zou, P.; Ting, A. Y. Site-Specific Protein Modification Using Lipoic Acid Ligase and Bis-Aryl Hydrazone Formation. ChemBioChem 2012, 13, 888894,  DOI: 10.1002/cbic.201100764
  353. 353
    Lotze, J.; Reinhardt, U.; Seitz, O.; Beck-Sickinger, A. G. Peptide-Tags for Site-Specific Protein Labelling in Vitro and in Vivo. Mol. BioSyst. 2016, 12, 17311745,  DOI: 10.1039/C6MB00023A
  354. 354
    Sunbul, M.; Yen, M.; Zou, Y.; Yin, J. Enzyme Catalyzed Site-Specific Protein Labeling and Cell Imaging with Quantum Dots. Chem. Commun. 2008, 59275929,  DOI: 10.1039/b812162a
  355. 355
    Zhang, Y.; Ke, X.; Zheng, Z.; Zhang, C.; Zhang, Z.; Zhang, F.; Hu, Q.; He, Z.; Wang, H. Encapsulating Quantum Dots into Enveloped Virus in Living Cells for Tracking Virus Infection. ACS Nano 2013, 7, 38963904,  DOI: 10.1021/nn305189n
  356. 356
    Molenaar, C.; Marras, S. A.; Slats, J. C.; Truffert, J. C.; Lemaitre, M.; Raap, A. K.; Dirks, R. W.; Tanke, H. J. Linear 2’ O-Methyl RNA Probes for the Visualization of RNA in Living Cells. Nucleic Acids Res. 2001, 29, E899,  DOI: 10.1093/nar/29.17.e89
  357. 357
    Ma, Y.; Mao, G.; Huang, W.; Wu, G.; Yin, W.; Ji, X.; Deng, Z.; Cai, Z.; Zhang, X. E.; He, Z. Quantum Dot Nanobeacons for Single RNA Labeling and Imaging. J. Am. Chem. Soc. 2019, 141, 1345413458,  DOI: 10.1021/jacs.9b04659
  358. 358
    Ortega-Arroyo, J.; Kukura, P. Interferometric Scattering Microscopy (iSCAT): New Frontiers in Ultrafast and Ultrasensitive Optical Microscopy. Phys. Chem. Chem. Phys. 2012, 14, 1562515636,  DOI: 10.1039/c2cp41013c
  359. 359
    Kukura, P.; Ewers, H.; Muller, C.; Renn, A.; Helenius, A.; Sandoghdar, V. High-Speed Nanoscopic Tracking of the Position and Orientation of a Single Virus. Nat. Methods 2009, 6, 923927,  DOI: 10.1038/nmeth.1395
  360. 360
    Renz, M. Fluorescence Microscopy-A Historical and Technical Perspective. Cytometry, Part A 2013, 83, 767779,  DOI: 10.1002/cyto.a.22295
  361. 361
    Lorenz, K. S.; Salama, P.; Dunn, K. W.; Delp, E. J. Digital Correction of Motion Artefacts in Microscopy Image Sequences Collected from Living Animals Using Rigid and Nonrigid Registration. J. Microsc. 2012, 245, 148160,  DOI: 10.1111/j.1365-2818.2011.03557.x
  362. 362
    Combs, C. A.; Shroff, H. Fluorescence Microscopy: A Concise Guide to Current Imaging Methods. Curr. Protoc. Neurosci. 2017, 79, 2.1.12.1.25,  DOI: 10.1002/cpns.29
  363. 363
    Masters, B. R. Fluorescence Microscopy: from Principles to Biological Applications. J. Biomed. Opt. 2014, 19, 049901  DOI: 10.1117/1.JBO.19.4.049901
  364. 364
    Ma, Y. Y.; Wang, X.; Liu, H.; Wei, L.; Xiao, L. H. Recent Advances in Optical Microscopic Methods for Single-Particle Tracking in Biological Samples. Anal. Bioanal. Chem. 2019, 411, 44454463,  DOI: 10.1007/s00216-019-01638-z
  365. 365
    Deschout, H.; Cella Zanacchi, F.; Mlodzianoski, M.; Diaspro, A.; Bewersdorf, J.; Hess, S. T.; Braeckmans, K. Precisely and Accurately Localizing Single Emitters in Fluorescence Microscopy. Nat. Methods 2014, 11, 253266,  DOI: 10.1038/nmeth.2843
  366. 366
    Lichtman, J. W.; Conchello, J. A. Fluorescence Microscopy. Nat. Methods 2005, 2, 910919,  DOI: 10.1038/nmeth817
  367. 367
    Beier, H. T.; Ibey, B. L. Experimental Comparison of the High-Speed Imaging Performance of an EM-CCD and sCMOS Camera in a Dynamic Live-Cell Imaging Test Case. PLoS One 2014, 9, e84614  DOI: 10.1371/journal.pone.0084614
  368. 368
    Long, F.; Zeng, S.; Huang, Z. L. Localization-Based Super-Resolution Microscopy with an sCMOS Camera Part II: Experimental Methodology for Comparing sCMOS with EMCCD Cameras. Opt. Express 2012, 20, 1774117759,  DOI: 10.1364/OE.20.017741
  369. 369
    Fullerton, S. A Guide to Choosing and Using Scientific Imaging Cameras. Laser Focus World 2014, 50, 3740
  370. 370
    Ivanchenko, S.; Godinez, W. J.; Lampe, M.; Krausslich, H. G.; Eils, R.; Rohr, K.; Brauchle, C.; Muller, B.; Lamb, D. C. Dynamics of HIV-1 Assembly and Release. PLoS Pathog. 2009, 5, e1000652  DOI: 10.1371/journal.ppat.1000652
  371. 371
    Axelrod, D. Cell-Substrate Contacts Illuminated by Total Internal Reflection Fluorescence. J. Cell Biol. 1981, 89, 141145,  DOI: 10.1083/jcb.89.1.141
  372. 372
    Axelrod, D. Total Internal Reflection Fluorescence Microscopy in Cell Biology. Traffic 2001, 2, 764774,  DOI: 10.1034/j.1600-0854.2001.21104.x
  373. 373
    Reichert, W. M.; Truskey, G. A. Total Internal Reflection Fluorescence (TIRF) Microscopy. I. Modelling Cell Contact Region Fluorescence. J. Cell Sci. 1990, 96, 219230
  374. 374
    Johnson, C. Spectroscopy and Dynamics of Single Molecules: Methods and Applications; Elsevier: 2019.
  375. 375
    Tokunaga, M.; Kitamura, K.; Saito, K.; Iwane, A. H.; Yanagida, T. Single Molecule Imaging of Fluorophores and Enzymatic Reactions Achieved by Objective-Type Total Internal Reflection Fluorescence Microscopy. Biochem. Biophys. Res. Commun. 1997, 235, 4753,  DOI: 10.1006/bbrc.1997.6732
  376. 376
    Parhamifar, L.; Moghimi, S. M. Total Internal Reflection Fluorescence (TIRF) Microscopy for Real-Time Imaging of Nanoparticle-Cell Plasma Membrane Interaction. Methods Mol. Biol. 2012, 906, 473482,  DOI: 10.1007/978-1-61779-953-2_38
  377. 377
    Fish, K. N. Total Internal Reflection Fluorescence (TIRF) Microscopy. Curr. Protoc. Cytom. 2009, 12, 1218,  DOI: 10.1002/0471142956.cy1218s50
  378. 378
    Mattheyses, A. L.; Simon, S. M.; Rappoport, J. Z. Imaging with Total Internal Reflection Fluorescence Microscopy for the Cell Biologist. J. Cell Sci. 2010, 123, 36213628,  DOI: 10.1242/jcs.056218
  379. 379
    Johnson, D. S.; Jaiswal, J. K.; Simon, S. Total Internal Reflection Fluorescence (TIRF) Microscopy Illuminator for Improved Imaging of Cell Surface Events. Curr. Protoc. Cytom. 2012, 12, 1229,  DOI: 10.1002/0471142956.cy1229s61
  380. 380
    Ewers, H.; Schelhaas, M. Analysis of Virus Entry and Cellular Membrane Dynamics by Single Particle Tracking. Methods Enzymol. 2012, 506, 6380,  DOI: 10.1016/B978-0-12-391856-7.00028-7
  381. 381
    Tokunaga, M.; Imamoto, N.; Sakata-Sogawa, K. Highly Inclined Thin Illumination Enables Clear Single-Molecule Imaging in Cells. Nat. Methods 2008, 5, 159161,  DOI: 10.1038/nmeth1171
  382. 382
    Schmidt, F. I.; Kuhn, P.; Robinson, T.; Mercer, J.; Dittrich, P. S. Single-Virus Fusion Experiments Reveal Proton Influx into Vaccinia Virions and Hemifusion Lag Times. Biophys. J. 2013, 105, 420431,  DOI: 10.1016/j.bpj.2013.06.016
  383. 383
    Naredi-Rainer, N.; Prescher, J.; Hartschuh, A.; Lamb, D. C. Confocal Microscopy. Fluorescence Microscopy 2013, 1075, 175213,  DOI: 10.1002/9783527671595.ch5
  384. 384
    Minsky, M. Memoir on Inventing the Confocal Scanning Microscope. Scanning 1988, 10, 128138,  DOI: 10.1002/sca.4950100403
  385. 385
    Graf, R.; Rietdorf, J.; Zimmermann, T. Live Cell Spinning Disk Microscopy. Adv. Biochem. Eng./Biotechnol. 2005, 95, 5775,  DOI: 10.1007/b102210
  386. 386
    Egger, M. D.; Petran, M. New Reflected-Light Microscope for Viewing Unstained Brain and Ganglion Cells. Science 1967, 157, 305307,  DOI: 10.1126/science.157.3786.305
  387. 387
    Andersson, S. B. Tracking a Single Fluorescent Molecule with a Confocal Microscope. Appl. Phys. B: Lasers Opt. 2005, 80, 809816,  DOI: 10.1007/s00340-005-1801-x
  388. 388
    Han, J. J.; Kiss, C.; Bradbury, A. R. M.; Werner, J. H. Time-Resolved, Confocal Single-Molecule Tracking of Individual Organic Dyes and Fluorescent Proteins in Three Dimensions. ACS Nano 2012, 6, 89228932,  DOI: 10.1021/nn302912j
  389. 389
    Krzic, U.; Gunther, S.; Saunders, T. E.; Streichan, S. J.; Hufnagel, L. Multiview Light-Sheet Microscope for Rapid in toto Imaging. Nat. Methods 2012, 9, 730733,  DOI: 10.1038/nmeth.2064
  390. 390
    Vettenburg, T.; Dalgarno, H. I. C.; Nylk, J.; Coll-Llado, C.; Ferrier, D. E. K.; Cizmar, T.; Gunn-Moore, F. J.; Dholakia, K. Light-Sheet Microscopy Using An Airy Beam. Nat. Methods 2014, 11, 541544,  DOI: 10.1038/nmeth.2922
  391. 391
    Pitrone, P. G.; Schindelin, J.; Stuyvenberg, L.; Preibisch, S.; Weber, M.; Eliceiri, K. W.; Huisken, J.; Tomancak, P. OpenSPIM: An Open-Access Light-Sheet Microscopy Platform. Nat. Methods 2013, 10, 598599,  DOI: 10.1038/nmeth.2507
  392. 392
    Li, Y.; Hu, Y.; Cang, H. Light Sheet Microscopy for Tracking Single Molecules on the Apical Surface of Living Cells. J. Phys. Chem. B 2013, 117, 1550315511,  DOI: 10.1021/jp405380g
  393. 393
    Keller, P. J.; Schmidt, A. D.; Wittbrodt, J.; Stelzer, E. H. Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy. Science 2008, 322, 10651069,  DOI: 10.1126/science.1162493
  394. 394
    Ritter, J. G.; Veith, R.; Veenendaal, A.; Siebrasse, J. P.; Kubitscheck, U. Light Sheet Microscopy for Single Molecule Tracking in Living Tissue. PLoS One 2010, 5, e11639  DOI: 10.1371/journal.pone.0011639
  395. 395
    Wan, Y.; McDole, K.; Keller, P. J. Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annu. Rev. Cell Dev. Biol. 2019, 35, 655681,  DOI: 10.1146/annurev-cellbio-100818-125311
  396. 396
    Hillman, E. M. C.; Voleti, V.; Li, W.; Yu, H. Light-Sheet Microscopy in Neuroscience. Annu. Rev. Neurosci. 2019, 42, 295313,  DOI: 10.1146/annurev-neuro-070918-050357
  397. 397
    Stelzer, E. H. K. Light-Sheet Fluorescence Microscopy for Quantitative Biology. Nat. Methods 2015, 12, 2326,  DOI: 10.1038/nmeth.3219
  398. 398
    Bosse, J. B.; Hogue, I. B.; Feric, M.; Thiberge, S. Y.; Sodeik, B.; Brangwynne, C. P.; Enquist, L. W. Remodeling Nuclear Architecture Allows Efficient Transport of Herpesvirus Capsids by Diffusion. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E5725E5733,  DOI: 10.1073/pnas.1513876112
  399. 399
    Hoyer, P.; de Medeiros, G.; Balazs, B.; Norlin, N.; Besir, C.; Hanne, J.; Krausslich, H. G.; Engelhardt, J.; Sahl, S. J.; Hell, S. W. Breaking the Diffraction Limit of Light-Sheet Fluorescence Microscopy by RESOLFT. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 34423446,  DOI: 10.1073/pnas.1522292113
  400. 400
    Rust, M. J.; Bates, M.; Zhuang, X. Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM). Nat. Methods 2006, 3, 793795,  DOI: 10.1038/nmeth929
  401. 401
    Malkusch, S.; Muranyi, W.; Muller, B.; Krausslich, H. G.; Heilemann, M. Single-Molecule Coordinate-Based Analysis of the Morphology of HIV-1 Assembly Sites with Near-Molecular Spatial Resolution. Histochem. Cell Biol. 2013, 139, 173179,  DOI: 10.1007/s00418-012-1014-4
  402. 402
    Lehmann, M.; Rocha, S.; Mangeat, B.; Blanchet, F.; Uji, I. H.; Hofkens, J.; Piguet, V. Quantitative Multicolor Super-Resolution Microscopy Reveals Tetherin HIV-1 Interaction. PLoS Pathog. 2011, 7, e1002456  DOI: 10.1371/journal.ppat.1002456
  403. 403
    Inamdar, K.; Floderer, C.; Favard, C.; Muriaux, D. Monitoring HIV-1 Assembly in Living Cells: Insights from Dynamic and Single Molecule Microscopy. Viruses 2019, 11, 72,  DOI: 10.3390/v11010072
  404. 404
    Bleck, M.; Itano, M. S.; Johnson, D. S.; Thomas, V. K.; North, A. J.; Bieniasz, P. D.; Simon, S. M. Temporal and Spatial Organization of ESCRT Protein Recruitment During HIV-1 Budding. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1221112216,  DOI: 10.1073/pnas.1321655111
  405. 405
    Prescher, J.; Baumgartel, V.; Ivanchenko, S.; Torrano, A. A.; Brauchle, C.; Muller, B.; Lamb, D. C. Super-Resolution Imaging of ESCRT-Proteins at HIV-1 Assembly Sites. PLoS Pathog. 2015, 11, e1004677  DOI: 10.1371/journal.ppat.1004677
  406. 406
    Shao, L.; Kner, P.; Rego, E. H.; Gustafsson, M. G. Super-Resolution 3D Microscopy of Live Whole Cells Using Structured Illumination. Nat. Methods 2011, 8, 10441046,  DOI: 10.1038/nmeth.1734
  407. 407
    Jones, S. A.; Shim, S. H.; He, J.; Zhuang, X. Fast, Three-Dimensional Super-Resolution Imaging of Live Cells. Nat. Methods 2011, 8, 499508,  DOI: 10.1038/nmeth.1605
  408. 408
    Nair, D.; Hosy, E.; Petersen, J. D.; Constals, A.; Giannone, G.; Choquet, D.; Sibarita, J. B. Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dynamically Organized in Nanodomains Regulated by PSD95. J. Neurosci. 2013, 33, 1320413224,  DOI: 10.1523/JNEUROSCI.2381-12.2013
  409. 409
    Izeddin, I.; Recamier, V.; Bosanac, L.; Cisse, I. I.; Boudarene, L.; Dugast-Darzacq, C.; Proux, F.; Benichou, O.; Voituriez, R.; Bensaude, O. Single-Molecule Tracking in Live Cells Reveals Distinct Target-Search Strategies of Transcription Factors in the Nucleus. eLife 2014, 3, e02230  DOI: 10.7554/eLife.02230
  410. 410
    Yang, L.; Dun, A. R.; Martin, K. J.; Qiu, Z.; Dunn, A.; Lord, G. J.; Lu, W.; Duncan, R. R.; Rickman, C. Secretory Vesicles Are Preferentially Targeted to Areas of Low Molecular SNARE Density. PLoS One 2012, 7, e49514  DOI: 10.1371/journal.pone.0049514
  411. 411
    Juette, M. F.; Gould, T. J.; Lessard, M. D.; Mlodzianoski, M. J.; Nagpure, B. S.; Bennett, B. T.; Hess, S. T.; Bewersdorf, J. Three-Dimensional Sub-100 nm Resolution Fluorescence Microscopy of Thick Samples. Nat. Methods 2008, 5, 527529,  DOI: 10.1038/nmeth.1211
  412. 412
    Pavani, S. R.; Thompson, M. A.; Biteen, J. S.; Lord, S. J.; Liu, N.; Twieg, R. J.; Piestun, R.; Moerner, W. E. Three-Dimensional, Single-Molecule Fluorescence Imaging Beyond the Diffraction Limit by Using a Double-Helix Point Spread Function. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 29952999,  DOI: 10.1073/pnas.0900245106
  413. 413
    Thompson, M. A.; Lew, M. D.; Badieirostami, M.; Moerner, W. E. Localizing and Tracking Single Nanoscale Emitters in Three Dimensions with High Spatiotemporal Resolution Using a Double-Helix Point Spread Function. Nano Lett. 2010, 10, 211218,  DOI: 10.1021/nl903295p
  414. 414
    Yu, B.; Yu, J.; Li, W.; Cao, B.; Li, H.; Chen, D.; Niu, H. Nanoscale Three-Dimensional Single Particle Tracking by Light-Sheet-Based Double-Helix Point Spread Function Microscopy. Appl. Opt. 2016, 55, 449453,  DOI: 10.1364/AO.55.000449
  415. 415
    Holtzer, L.; Meckel, T.; Schmidt, T. Nanometric Three-Dimensional Tracking of Individual Quantum Dots in Cells. Appl. Phys. Lett. 2007, 90, 053902  DOI: 10.1063/1.2437066
  416. 416
    Huang, B.; Wang, W.; Bates, M.; Zhuang, X. Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy. Science 2008, 319, 810813,  DOI: 10.1126/science.1153529
  417. 417
    Lange, S.; Katayama, Y.; Schmid, M.; Burkacky, O.; Brauchle, C.; Lamb, D. C.; Jansen, R. P. Simultaneous Transport of Different Localized mRNA Species Revealed by Live-Cell Imaging. Traffic 2008, 9, 12561267,  DOI: 10.1111/j.1600-0854.2008.00763.x
  418. 418
    Wells, N. P.; Lessard, G. A.; Goodwin, P. M.; Phipps, M. E.; Cutler, P. J.; Lidke, D. S.; Wilson, B. S.; Werner, J. H. Time-Resolved Three-Dimensional Molecular Tracking in Live Cells. Nano Lett. 2010, 10, 47324737,  DOI: 10.1021/nl103247v
  419. 419
    Cang, H.; Xu, C. S.; Montiel, D.; Yang, H. Guiding a Confocal Microscope by Single Fluorescent Nanoparticles. Opt. Lett. 2007, 32, 27292731,  DOI: 10.1364/OL.32.002729
  420. 420
    Balzarotti, F.; Eilers, Y.; Gwosch, K. C.; Gynna, A. H.; Westphal, V.; Stefani, F. D.; Elf, J.; Hell, S. W. Nanometer Resolution Imaging and Tracking of Fluorescent Molecules with Minimal Photon Fluxes. Science 2017, 355, 606612,  DOI: 10.1126/science.aak9913
  421. 421
    Enderlein, J. Tracking of Fluorescent Molecules Diffusing within Membranes. Appl. Phys. B: Lasers Opt. 2000, 71, 773777,  DOI: 10.1007/s003400000409
  422. 422
    Kis-Petikova, K.; Gratton, E. Distance Measurement by Circular Scanning of the Excitation Beam in the Two-Photon Microscope. Microsc. Res. Tech. 2004, 63, 3449,  DOI: 10.1002/jemt.10417
  423. 423
    Lessard, G. A.; Goodwin, P. M.; Werner, J. H. Three-Dimensional Tracking of Individual Quantum Dots. Appl. Phys. Lett. 2007, 91, 224106,  DOI: 10.1063/1.2819074
  424. 424
    Verdeny-Vilanova, I.; Wehnekamp, F.; Mohan, N.; Alvarez, A. S.; Borbely, J. S.; Otterstrom, J. J.; Lamb, D. C.; Lakadamyali, M. 3D Motion of Vesicles along Microtubules Helps Them to Circumvent Obstacles in Cells. J. Cell Sci. 2017, 130, 19041916,  DOI: 10.1242/jcs.201178
  425. 425
    Wehnekamp, F.; Plucinska, G.; Thong, R.; Misgeld, T.; Lamb, D. C. Nanoresolution Real-Time 3D Orbital Tracking for Studying Mitochondrial Trafficking in Vertebrate Axons in Vivo. eLife 2019, 8, e46059  DOI: 10.7554/eLife.46059
  426. 426
    Katayama, Y.; Burkacky, O.; Meyer, M.; Brauchle, C.; Gratton, E.; Lamb, D. C. Real-Time Nanomicroscopy via Three-Dimensional Single-Particle Tracking. ChemPhysChem 2009, 10, 24582464,  DOI: 10.1002/cphc.200900436
  427. 427
    Hellriegel, C.; Gratton, E. Real-Time Multi-Parameter Spectroscopy and Localization in Three-Dimensional Single-Particle Tracking. J. R. Soc., Interface 2009, 6, S3S14,  DOI: 10.1098/rsif.2008.0313.focus
  428. 428
    Liu, Z.; Lavis, L. D.; Betzig, E. Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level. Mol. Cell 2015, 58, 644659,  DOI: 10.1016/j.molcel.2015.02.033
  429. 429
    Saxton, M. J. Single-Particle Tracking: Connecting the Dots. Nat. Methods 2008, 5, 671672,  DOI: 10.1038/nmeth0808-671
  430. 430
    Carter, B. C.; Shubeita, G. T.; Gross, S. P. Tracking Single Particles: A User-Friendly Quantitative Evaluation. Phys. Biol. 2005, 2, 6072,  DOI: 10.1088/1478-3967/2/1/008
  431. 431
    Thompson, R. E.; Larson, D. R.; Webb, W. W. Precise Nanometer Localization Analysis for Individual Fluorescent Probes. Biophys. J. 2002, 82, 27752783,  DOI: 10.1016/S0006-3495(02)75618-X
  432. 432
    Small, A.; Stahlheber, S. Fluorophore Localization Algorithms for Super-Resolution Microscopy. Nat. Methods 2014, 11, 267279,  DOI: 10.1038/nmeth.2844
  433. 433
    Ernst, D.; Kohler, J. How the Number of Fitting Points for the Slope of the Mean-Square Displacement Influences the Experimentally Determined Particle Size Distribution from Single-Particle Tracking. Phys. Chem. Chem. Phys. 2013, 15, 34293432,  DOI: 10.1039/c3cp44391d
  434. 434
    Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: 2013.
  435. 435
    Liu, S. L.; Li, J.; Zhang, Z. L.; Wang, Z. G.; Tian, Z. Q.; Wang, G. P.; Pang, D. W. Fast and High-Accuracy Localization for Three-Dimensional Single-Particle Tracking. Sci. Rep. 2013, 3, 2462,  DOI: 10.1038/srep02462
  436. 436
    Qu, X. H.; Wu, D.; Mets, L.; Scherer, N. F. Nanometer-Localized Multiple Single-Molecule Fluorescence Microscopy. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 1129811303,  DOI: 10.1073/pnas.0402155101
  437. 437
    Hess, S. T.; Girirajan, T. P.; Mason, M. D. Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy. Biophys. J. 2006, 91, 42584272,  DOI: 10.1529/biophysj.106.091116
  438. 438
    Parthasarathy, R. Rapid, Accurate Particle Tracking by Calculation of Radial Symmetry Centers. Nat. Methods 2012, 9, 724726,  DOI: 10.1038/nmeth.2071
  439. 439
    Sage, D.; Neumann, F. R.; Hediger, F.; Gasser, S. M.; Unser, M. Automatic Tracking of Individual Fluorescence Particles: Application to the Study of Chromosome Dynamics. IEEE Trans. Image Process. 2005, 14, 13721383,  DOI: 10.1109/TIP.2005.852787
  440. 440
    Godinez, W. J.; Lampe, M.; Worz, S.; Muller, B.; Eils, R.; Rohr, K. Deterministic and Probabilistic Approaches for Tracking Virus Particles in Time-Lapse Fluorescence Microscopy Image Sequences. Med. Image Anal. 2009, 13, 325342,  DOI: 10.1016/j.media.2008.12.004
  441. 441
    Chenouard, N.; Smal, I.; de Chaumont, F.; Maska, M.; Sbalzarini, I. F.; Gong, Y.; Cardinale, J.; Carthel, C.; Coraluppi, S.; Winter, M. Objective Comparison of Particle Tracking Methods. Nat. Methods 2014, 11, 281289,  DOI: 10.1038/nmeth.2808
  442. 442
    Reid, D. An Algorithm for Tracking Multiple Targets. IEEE Trans. Autom. Control 1979, 24, 843854,  DOI: 10.1109/TAC.1979.1102177
  443. 443
    Veenman, C. J.; Reinders, M. J.; Backer, E. Resolving Motion Correspondence for Densely Moving Points. IEEE T. Pattern Anal. 2001, 23, 5472,  DOI: 10.1109/34.899946
  444. 444
    Jiang, S.; Zhou, X.; Kirchhausen, T.; Wong, S. T. Tracking Molecular Particles in Live Cells Using Fuzzy Rule-Based System. Cytometry, Part A 2007, 71, 576584,  DOI: 10.1002/cyto.a.20411
  445. 445
    Shafique, K.; Shah, M. A Noniterative Greedy Algorithm for Multiframe Point Correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 5165,  DOI: 10.1109/TPAMI.2005.1
  446. 446
    Jaqaman, K.; Loerke, D.; Mettlen, M.; Kuwata, H.; Grinstein, S.; Schmid, S. L.; Danuser, G. Robust Single-Particle Tracking in Live-Cell Time-Lapse Sequences. Nat. Methods 2008, 5, 695702,  DOI: 10.1038/nmeth.1237
  447. 447
    Saxton, M. J. Single-Particle Tracking: The Distribution of Diffusion Coefficients. Biophys. J. 1997, 72, 17441753,  DOI: 10.1016/S0006-3495(97)78820-9
  448. 448
    Dahan, M. From Analog to Digital: Exploring Cell Dynamics with Single Quantum Dots. Histochem. Cell Biol. 2006, 125, 451456,  DOI: 10.1007/s00418-005-0105-x
  449. 449
    Dupont, A.; Gorelashvili, M.; Schuller, V.; Wehnekamp, F.; Arcizet, D.; Katayama, Y.; Lamb, D. C.; Heinrich, D. Three-Dimensional Single-Particle Tracking in Live Cells: News from the Third Dimension. New J. Phys. 2013, 15, 075008  DOI: 10.1088/1367-2630/15/7/075008
  450. 450
    Bannai, H.; Lévi, S.; Schweizer, C.; Dahan, M.; Triller, A. Imaging the Lateral Diffusion of Membrane Molecules with Quantum Dots. Nat. Protoc. 2006, 1, 26282634,  DOI: 10.1038/nprot.2006.429
  451. 451
    Saxton, M. J. Single-Particle Tracking: Effects of Corrals. Biophys. J. 1995, 69, 389398,  DOI: 10.1016/S0006-3495(95)79911-8
  452. 452
    Rock, R. S. Myosin VI Is a Processive Motor with a Large Step Size. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 1365513659,  DOI: 10.1073/pnas.191512398
  453. 453
    Ma, S.; Chisholm, R. L. Cytoplasmic Dynein-Associated Structures Move Bidirectionally in Vivo. J. Cell Sci. 2002, 115, 14531460
  454. 454
    Sieczkarski, S. B.; Whittaker, G. R. Dissecting Virus Entry via Endocytosis. J. Gen. Virol. 2002, 83, 15351545,  DOI: 10.1099/0022-1317-83-7-1535
  455. 455
    Boulant, S.; Stanifer, M.; Lozach, P. Y. Dynamics of Virus-Receptor Interactions in Virus Binding, Signaling, and Endocytosis. Viruses 2015, 7, 27942815,  DOI: 10.3390/v7062747
  456. 456
    Mudhakir, D.; Harashima, H. Learning from the Viral Journey: How to Enter Cells and How to Overcome Intracellular Barriers to Reach the Nucleus. AAPS J. 2009, 11, 6577,  DOI: 10.1208/s12248-009-9080-9
  457. 457
    Damm, E. M.; Pelkmans, L. Systems Biology of Virus Entry in Mammalian Cells. Cell. Microbiol. 2006, 8, 12191227,  DOI: 10.1111/j.1462-5822.2006.00745.x
  458. 458
    Chang, K.; Baginski, J.; Hassan, S. F.; Volin, M.; Shukla, D.; Tiwari, V. Filopodia and Vruses: An Analysis of Membrane Processes in Entry Mechanisms. Front. Microbiol. 2016, 7, 300,  DOI: 10.3389/fmicb.2016.00300
  459. 459
    Shinya, K.; Ebina, M.; Yamada, S.; Ono, M.; Kasai, N.; Kawaoka, Y. Avian Flu: Influenza Virus Receptors in the Human Airway. Nature 2006, 440, 435436,  DOI: 10.1038/440435a
  460. 460
    Ibricevic, A.; Pekosz, A.; Walter, M. J.; Newby, C.; Battaile, J. T.; Brown, E. G.; Holtzman, M. J.; Brody, S. L. Influenza Virus Receptor Specificity and Cell Tropism in Mouse and Human Airway Epithelial Cells. J. Virol. 2006, 80, 74697480,  DOI: 10.1128/JVI.02677-05
  461. 461
    Lakadamyali, M.; Rust, M. J.; Zhuang, X. Endocytosis of Influenza Viruses. Microbes Infect. 2004, 6, 929936,  DOI: 10.1016/j.micinf.2004.05.002
  462. 462
    Mercer, J.; Schelhaas, M.; Helenius, A. Virus Entry by Endocytosis. Annu. Rev. Biochem. 2010, 79, 803833,  DOI: 10.1146/annurev-biochem-060208-104626
  463. 463
    Nisole, S.; Saib, A. Early Steps of Retrovirus Replicative Cycle. Retrovirology 2004, 1, 9,  DOI: 10.1186/1742-4690-1-9
  464. 464
    Spear, P. G.; Eisenberg, R. J.; Cohen, G. H. Three Classes of Cell Surface Receptors for Alphaherpesvirus Entry. Virology 2000, 275, 18,  DOI: 10.1006/viro.2000.0529
  465. 465
    Bailey, C. J.; Crystal, R. G.; Leopold, P. L. Association of Adenovirus with the Microtubule Organizing Center. J. Virol. 2003, 77, 1327513287,  DOI: 10.1128/JVI.77.24.13275-13287.2003
  466. 466
    Kielian, M.; Rey, F. A. Virus Membrane-Fusion Proteins: More Than One Way to Make a Hairpin. Nat. Rev. Microbiol. 2006, 4, 6776,  DOI: 10.1038/nrmicro1326
  467. 467
    Dupont, A.; Stirnnagel, K.; Lindemann, D.; Lamb, D. C. Tracking Image Correlation: Combining Single-Particle Tracking and Image Correlation. Biophys. J. 2013, 104, 23732382,  DOI: 10.1016/j.bpj.2013.04.005
  468. 468
    Alenquer, M.; Vale-Costa, S.; Etibor, T. A.; Ferreira, F.; Sousa, A. L.; Amorim, M. J. Influenza A Virus Ribonucleoproteins Form Liquid Organelles at Endoplasmic Reticulum Exit Sites. Nat. Commun. 2019, 10, 1629,  DOI: 10.1038/s41467-019-09549-4
  469. 469
    Jo, S.; Kawaguchi, A.; Takizawa, N.; Morikawa, Y.; Momose, F.; Nagata, K. Involvement of Vesicular Trafficking System in Membrane Targeting of the Progeny Influenza Virus Genome. Microbes Infect. 2010, 12, 10791084,  DOI: 10.1016/j.micinf.2010.06.011
  470. 470
    Avilov, S. V.; Moisy, D.; Naffakh, N.; Cusack, S. Influenza A Virus Progeny vRNP Trafficking in Live Infected Cells Studied with the Virus-Encoded Fluorescently Tagged PB2 Protein. Vaccine 2012, 30, 74117417,  DOI: 10.1016/j.vaccine.2012.09.077
  471. 471
    Amorim, M. J.; Bruce, E. A.; Read, E. K. C.; Foeglein, A.; Mahen, R.; Stuart, A. D.; Digard, P. A Rab11-and Microtubule-Dependent Mechanism for Cytoplasmic Transport of Influenza A Virus Viral RNA. J. Virol. 2011, 85, 41434156,  DOI: 10.1128/JVI.02606-10
  472. 472
    Hendrix, J.; Baumgartel, V.; Schrimpf, W.; Ivanchenko, S.; Digman, M. A.; Gratton, E.; Krausslich, H. G.; Muller, B.; Lamb, D. C. Live-Cell Observation of Cytosolic HIV-1 Assembly onset Reveals RNA-Interacting Gag Oligomers. J. Cell Biol. 2015, 210, 629646,  DOI: 10.1083/jcb.201504006
  473. 473
    Jose, J.; Tang, J.; Taylor, A. B.; Baker, T. S.; Kuhn, R. J. Fluorescent Protein-Tagged Sindbis Virus E2 Glycoprotein Allows Single Particle Analysis of Virus Budding from Live Cells. Viruses 2015, 7, 61826199,  DOI: 10.3390/v7122926
  474. 474
    Baumgartel, V.; Muller, B.; Lamb, D. C. Quantitative Live-Cell Imaging of Human Immunodeficiency Virus (HIV-1) Assembly. Viruses 2012, 4, 777799,  DOI: 10.3390/v4050777
  475. 475
    Perlman, M.; Resh, M. D. Identification of an Intracellular Trafficking and Assembly Pathway for HIV-1 Gag. Traffic 2006, 7, 731745,  DOI: 10.1111/j.1398-9219.2006.00428.x
  476. 476
    Gunzenhauser, J.; Olivier, N.; Pengo, T.; Manley, S. Quantitative Super-Resolution Imaging Reveals Protein Stoichiometry and Nanoscale Morphology of Assembling HIV-Gag Virions. Nano Lett. 2012, 12, 47054710,  DOI: 10.1021/nl3021076
  477. 477
    Fogarty, K. H.; Chen, Y.; Grigsby, I. F.; Macdonald, P. J.; Smith, E. M.; Johnson, J. L.; Rawson, J. M.; Mansky, L. M.; Mueller, J. D. Characterization of Cytoplasmic Gag-Gag Interactions by Dual-Color z-Scan Fluorescence Fluctuation Spectroscopy. Biophys. J. 2011, 100, 15871595,  DOI: 10.1016/j.bpj.2011.02.008
  478. 478
    Chen, Y.; Wu, B.; Musier-Forsyth, K.; Mansky, L. M.; Mueller, J. D. Fluorescence Fluctuation Spectroscopy on Viral-Like Particles Reveals Variable Gag Stoichiometry. Biophys. J. 2009, 96, 19611969,  DOI: 10.1016/j.bpj.2008.10.067
  479. 479
    Sardo, L.; Hatch, S. C.; Chen, J.; Nikolaitchik, O.; Burdick, R. C.; Chen, D.; Westlake, C. J.; Lockett, S.; Pathak, V. K.; Hu, W. S. Dynamics of HIV-1 RNA Near the Plasma Membrane during Virus Assembly. J. Virol. 2015, 89, 1083210840,  DOI: 10.1128/JVI.01146-15
  480. 480
    Rahman, S. A.; Koch, P.; Weichsel, J.; Godinez, W. J.; Schwarz, U.; Rohr, K.; Lamb, D. C.; Krausslich, H. G.; Muller, B. Investigating the Role of F-Actin in Human Immunodeficiency Virus Assembly by Live-Cell Microscopy. J. Virol. 2014, 88, 79047914,  DOI: 10.1128/JVI.00431-14
  481. 481
    Baumgartel, V.; Ivanchenko, S.; Dupont, A.; Sergeev, M.; Wiseman, P. W.; Krausslich, H. G.; Brauchle, C.; Muller, B.; Lamb, D. C. Live-Cell Visualization of Dynamics of HIV Budding Site Interactions with an ESCRT Component. Nat. Cell Biol. 2011, 13, 469474,  DOI: 10.1038/ncb2215
  482. 482
    Dimitrov, D. S.; Willey, R. L.; Sato, H.; Chang, L. J.; Blumenthal, R.; Martin, M. A. Quantitation of Human Immunodeficiency Virus Type 1 Infection Kinetics. J. Virol. 1993, 67, 21822190,  DOI: 10.1128/JVI.67.4.2182-2190.1993
  483. 483
    Johnson, D. C.; Huber, M. T. Directed Egress of Animal Viruses Promotes Cell-to-Cell Spread. J. Virol. 2002, 76, 18,  DOI: 10.1128/JVI.76.1.1-8.2002
  484. 484
    Sattentau, Q. Avoiding the Void: Cell-to-Cell Spread of Human Viruses. Nat. Rev. Microbiol. 2008, 6, 815826,  DOI: 10.1038/nrmicro1972
  485. 485
    Sherer, N. M.; Lehmann, M. J.; Jimenez-Soto, L. F.; Horensavitz, C.; Pypaert, M.; Mothes, W. Retroviruses Can Establish Filopodial Bridges for Efficient Cell-to-Cell Transmission. Nat. Cell Biol. 2007, 9, 310315,  DOI: 10.1038/ncb1544
  486. 486
    Mothes, W.; Sherer, N. M.; Jin, J.; Zhong, P. Virus Cell-to-Cell Transmission. J. Virol. 2010, 84, 83608368,  DOI: 10.1128/JVI.00443-10
  487. 487
    Eugenin, E. A.; Gaskill, P. J.; Berman, J. W. Tunneling Nanotubes (TNT) Are Induced by HIV-Infection of Macrophages: A Potential Mechanism for Intercellular HIV Trafficking. Cell. Immunol. 2009, 254, 142148,  DOI: 10.1016/j.cellimm.2008.08.005
  488. 488
    Gousset, K.; Schiff, E.; Langevin, C.; Marijanovic, Z.; Caputo, A.; Browman, D. T.; Chenouard, N.; de Chaumont, F.; Martino, A.; Enninga, J. Prions Hijack Tunnelling Nanotubes for Intercellular Spread. Nat. Cell Biol. 2009, 11, 328336,  DOI: 10.1038/ncb1841
  489. 489
    Sowinski, S.; Jolly, C.; Berninghausen, O.; Purbhoo, M. A.; Chauveau, A.; Köhler, K.; Oddos, S.; Eissmann, P.; Brodsky, F. M.; Hopkins, C. Membrane Nanotubes Physically Connect T Cells over Long Distances Presenting a Novel Route for HIV-1 Transmission. Nat. Cell Biol. 2008, 10, 211219,  DOI: 10.1038/ncb1682
  490. 490
    Kumar, A.; Kim, J. H.; Ranjan, P.; Metcalfe, M. G.; Cao, W.; Mishina, M.; Gangappa, S.; Guo, Z.; Boyden, E. S.; Zaki, S. Influenza Virus Exploits Tunneling Nanotubes for Cell-to-Cell Spread. Sci. Rep. 2017, 7, 40360,  DOI: 10.1038/srep40360
  491. 491
    Nzounza, P.; Chazal, M.; Guedj, C.; Schmitt, A.; Masse, J. M.; Randriamampita, C.; Pique, C.; Ramirez, B. C. The Scaffolding Protein Dlg1 Is a Negative Regulator of Cell-Free Virus Infectivity but Not of Cell-to-Cell HIV-1 Transmission in T Cells. PLoS One 2012, 7, e30130  DOI: 10.1371/journal.pone.0030130
  492. 492
    Igakura, T.; Stinchcombe, J. C.; Goon, P. K.; Taylor, G. P.; Weber, J. N.; Griffiths, G. M.; Tanaka, Y.; Osame, M.; Bangham, C. R. Spread of HTLV-I between Lymphocytes by Virus-Induced Polarization of the Cytoskeleton. Science 2003, 299, 17131716,  DOI: 10.1126/science.1080115
  493. 493
    Barnard, A. L.; Igakura, T.; Tanaka, Y.; Taylor, G. P.; Bangham, C. R. Engagement of Specific T-Cell Surface Molecules Regulates Cytoskeletal Polarization in HTLV-1–Infected Lymphocytes. Blood 2005, 106, 988995,  DOI: 10.1182/blood-2004-07-2850
  494. 494
    Johnson, D. C.; Webb, M.; Wisner, T. W.; Brunetti, C. Herpes Simplex Virus gE/gI Sorts Nascent Virions to Epithelial Cell Junctions, Promoting Virus Spread. J. Virol. 2001, 75, 821833,  DOI: 10.1128/JVI.75.2.821-833.2001
  495. 495
    Rustom, A.; Saffrich, R.; Markovic, I.; Walther, P.; Gerdes, H. H. Nanotubular Highways for Intercellular Organelle Transport. Science 2004, 303, 10071010,  DOI: 10.1126/science.1093133
  496. 496
    Davis, D. M.; Sowinski, S. Membrane Nanotubes: Dynamic Long-Distance Connections between Animal Cells. Nat. Rev. Mol. Cell Biol. 2008, 9, 431436,  DOI: 10.1038/nrm2399
  497. 497
    Efros, A. L.; Nesbitt, D. J. Origin and Control of Blinking in Quantum Dots. Nat. Nanotechnol. 2016, 11, 661671,  DOI: 10.1038/nnano.2016.140
  498. 498
    Marchuk, K.; Guo, Y.; Sun, W.; Vela, J.; Fang, N. High-Precision Tracking with Non-Blinking Quantum Dots Resolves Nanoscale Vertical Displacement. J. Am. Chem. Soc. 2012, 134, 61086111,  DOI: 10.1021/ja301332t
  499. 499
    Keller, A. M.; Ghosh, Y.; DeVore, M. S.; Phipps, M. E.; Stewart, M. H.; Wilson, B. S.; Lidke, D. S.; Hollingsworth, J. A.; Werner, J. H. 3-Dimensional Tracking of Non-blinking ’Giant’ Quantum Dots in Live Cells. Adv. Funct. Mater. 2014, 24, 47964803,  DOI: 10.1002/adfm.201400349
  500. 500
    Patterson, G.; Davidson, M.; Manley, S.; Lippincott-Schwartz, J. Superresolution Imaging Using Single-Molecule Localization. Annu. Rev. Phys. Chem. 2010, 61, 345367,  DOI: 10.1146/annurev.physchem.012809.103444
  501. 501
    Lee, A.; Tsekouras, K.; Calderon, C.; Bustamante, C.; Presse, S. Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis. Chem. Rev. 2017, 117, 72767330,  DOI: 10.1021/acs.chemrev.6b00729
  502. 502
    Huang, B.; Bates, M.; Zhuang, X. Super-Resolution Fluorescence Microscopy. Annu. Rev. Biochem. 2009, 78, 9931016,  DOI: 10.1146/annurev.biochem.77.061906.092014
  503. 503
    Pan, W.; Dong, Z.; Li, F.; Meng, W.; Feng, L.; Niu, X.; Li, C.; Luo, Q.; Li, Z.; Sun, C. Visualizing Influenza Virus Infection in Living Mice. Nat. Commun. 2013, 4, 2369,  DOI: 10.1038/ncomms3369
  504. 504
    Pan, H.; Zhang, P.; Gao, D.; Zhang, Y.; Li, P.; Liu, L.; Wang, C.; Wang, H.; Ma, Y.; Cai, L. Noninvasive Visualization of Respiratory Viral Infection Using Bioorthogonal Conjugated Near-Infrared-Emitting Quantum Dots. ACS Nano 2014, 8, 54685477,  DOI: 10.1021/nn501028b
  505. 505
    Zong, W.; Wu, R.; Li, M.; Hu, Y.; Li, Y.; Li, J.; Rong, H.; Wu, H.; Xu, Y.; Lu, Y. Fast High-Resolution Miniature Two-Photon Microscopy for Brain Imaging in Freely Behaving Mice. Nat. Methods 2017, 14, 713719,  DOI: 10.1038/nmeth.4305
  506. 506
    Wang, K.; Sun, W.; Richie, C. T.; Harvey, B. K.; Betzig, E.; Ji, N. Direct Wavefront Sensing for High-Resolution in Vivo Imaging in Scattering Tissue. Nat. Commun. 2015, 6, 7276,  DOI: 10.1038/ncomms8276
  507. 507
    Hong, G.; Antaris, A. L.; Dai, H. Near-Infrared Fluorophores for Biomedical Imaging. Nat. Biomed. Eng. 2017, 1, 0010  DOI: 10.1038/s41551-016-0010
  508. 508
    Ding, F.; Zhan, Y. B.; Lu, X. J.; Sun, Y. Recent Advances in Near-Infrared II Fluorophores for Multifunctional Biomedical Imaging. Chem. Sci. 2018, 9, 43704380,  DOI: 10.1039/C8SC01153B
  509. 509
    Smith, A. M.; Mancini, M. C.; Nie, S. Bioimaging: Second Window for in Vivo Imaging. Nat. Nanotechnol. 2009, 4, 710,  DOI: 10.1038/nnano.2009.326
  510. 510
    Zhang, J. J.; Lin, Y.; Zhou, H.; He, H.; Ma, J. J.; Luo, M. Y.; Zhang, Z. L.; Pang, D. W. Cell Membrane-Camouflaged NIR II Fluorescent Ag2Te Quantum Dots-Based Nanobioprobes for Enhanced in Vivo Homotypic Tumor Imaging. Adv. Healthcare Mater. 2019, 8, e1900341  DOI: 10.1002/adhm.201900341
  511. 511
    Hong, G.; Robinson, J. T.; Zhang, Y.; Diao, S.; Antaris, A. L.; Wang, Q.; Dai, H. In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near-Infrared Region. Angew. Chem., Int. Ed. 2012, 51, 98189821,  DOI: 10.1002/anie.201206059
  512. 512
    Jiang, P.; Zhu, C. N.; Zhang, Z. L.; Tian, Z. Q.; Pang, D. W. Water-Soluble Ag2S Quantum Dots for Near-Infrared Fluorescence Imaging in Vivo. Biomaterials 2012, 33, 51305135,  DOI: 10.1016/j.biomaterials.2012.03.059

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 160 publications.

  1. Jing Li, Jiao Hu, An-An Liu, Cui Liu, Dai-Wen Pang. Quantum Dots for Chemical Metrology. Analytical Chemistry 2025, 97 (13) , 6891-6910. https://doi.org/10.1021/acs.analchem.4c06794
  2. Yusuke Sato, Yusaku Hatanaka, Yoshitaka Sato, Kota Matsumoto, Shion Osana, Ryoichi Nagatomi, Seiichi Nishizawa. Viral Membrane-Targeting Amphipathic Helical Peptide-Based Fluorogenic Probes for the Analysis of Infectious Titers of Enveloped Viruses. Analytical Chemistry 2025, 97 (10) , 5480-5487. https://doi.org/10.1021/acs.analchem.4c04852
  3. Meng-Die Zhu, Xue-Hui Shi, Hui-Ping Wen, Li-Ming Chen, Dan-Dan Fu, Lei Du, Jing Li, Qian-Qian Wan, Zhi-Gang Wang, Chuanming Yu, Dai-Wen Pang, Shu-Lin Liu. Rapid Deployment of Antiviral Drugs Using Single-Virus Tracking and Machine Learning. ACS Nano 2024, 18 (52) , 35256-35268. https://doi.org/10.1021/acsnano.4c10136
  4. Nathan J. Brooks, Chih-Chen Liu, Yan-Hsien Chen, Chia-Lung Hsieh. Point Spread Function Engineering for Spiral Phase Interferometric Scattering Microscopy Enables Robust 3D Single-Particle Tracking and Characterization. ACS Photonics 2024, 11 (12) , 5239-5250. https://doi.org/10.1021/acsphotonics.4c01481
  5. Nicolas Mateos, Enric Gutierrez-Martinez, Jessica Angulo-Capel, Irene Carlon-Andres, Sergi Padilla-Parra, Maria F. Garcia-Parajo, Juan A. Torreno-Pina. Early Steps of Individual Multireceptor Viral Interactions Dissected by High-Density, Multicolor Quantum Dot Mapping in Living Cells. ACS Nano 2024, 18 (42) , 28881-28893. https://doi.org/10.1021/acsnano.4c09085
  6. Dan-Dan Fu, Li-Juan Zhang, Bo Tang, Lei Du, Jing Li, Jian Ao, Zhi-Ling Zhang, Zhi-Gang Wang, Shu-Lin Liu, Dai-Wen Pang. Quantitatively Dissecting Triple Roles of Dynactin in Dynein-Driven Transport of Influenza Virus by Quantum Dot-Based Single-Virus Tracking. ACS Nano 2024, 18 (37) , 25893-25905. https://doi.org/10.1021/acsnano.4c10564
  7. Lei Du, Yi-Ning Hou, Dan-Dan Fu, Jing Li, Jian Ao, Ai-Xin Ma, Qian-Qian Wan, Zhi-Gang Wang, Shu-Lin Liu, Li-Juan Zhang, Dai-Wen Pang. Revealing Different Pathways for Influenza A Virus To Reach Microtubules after Endocytosis by Quantum Dot-Based Single-Virus Tracking. ACS Nano 2024, 18 (34) , 23090-23103. https://doi.org/10.1021/acsnano.4c05261
  8. Shannan-Leigh Macleod, Elana H. Super, Lauren J. Batt, Eleanor Yates, Samuel T. Jones. Plate-Based High-Throughput Fluorescence Assay for Assessing Enveloped Virus Integrity. Biomacromolecules 2024, 25 (8) , 4925-4933. https://doi.org/10.1021/acs.biomac.4c00358
  9. Leping Lin, An-An Liu, Wei Zhao, Yin Yang, Dong-Liang Zhu, Bo-Ran Dong, Fei Ding, Di Ning, Xiaobo Zhu, Dingbin Liu, Dai-Wen Pang. Multihierarchical Regulation To Achieve Quantum Dot Nanospheres with a Photoluminescence Quantum Yield Close to 100%. Journal of the American Chemical Society 2024, 146 (31) , 21348-21356. https://doi.org/10.1021/jacs.4c03308
  10. Yuxin Lin, Jack Exell, Haoting Lin, Chen Zhang, Kevin D. Welsher. Hour-Long, Kilohertz Sampling Rate Three-Dimensional Single-Virus Tracking in Live Cells Enabled by StayGold Fluorescent Protein Fusions. The Journal of Physical Chemistry B 2024, 128 (23) , 5590-5600. https://doi.org/10.1021/acs.jpcb.4c01710
  11. Yibin Zhu, Lei Ji, Chenying Li, Chunhuan Zhang, Jiatao Zhang. Fluorescence Enhancement of CdS:Ag Quantum Dots Co-Assembled with Au Nanoparticles in a Hollow Nanosphere Form. Langmuir 2024, 40 (22) , 11642-11649. https://doi.org/10.1021/acs.langmuir.4c00918
  12. Zhi-Gang Wang, Yusi Hu, Hao-Yang Liu, Hai-Yan Wen, Bao-Ping Qi, Shu-Lin Liu. Electrochemiluminescence-Based Single-Particle Tracking of the Biomolecules Moving along Intercellular Membrane Nanotubes between Live Cells. Analytical Chemistry 2024, 96 (18) , 7231-7239. https://doi.org/10.1021/acs.analchem.4c00805
  13. Ai-Xin Ma, Cong Yu, Ming-Yu Zhang, Jian Ao, Hao-Yang Liu, Meng-Qian Zhang, Qian-Qian Sun, Dan-Dan Fu, Lei Du, Jing Li, Shu-Lin Liu, Zhi-Gang Wang, Dai-Wen Pang. One-Step Dual-Color Labeling of Viral Envelope and Intraviral Genome with Quantum Dots Harnessing Virus Infection. Nano Letters 2024, 24 (8) , 2544-2552. https://doi.org/10.1021/acs.nanolett.3c04600
  14. Jian Ao, Ai-Xin Ma, Jing Li, Chun-Yu Wang, Dan-Dan Fu, Lei Du, Cong Yu, Shu-Lin Liu, Zhi-Gang Wang, Dai-Wen Pang. Real-Time Dissection of the Exosome Pathway for Influenza Virus Infection. ACS Nano 2024, 18 (5) , 4507-4519. https://doi.org/10.1021/acsnano.3c11309
  15. Yan Zhang, Ning Xu, Chunyu Yan, Xuelian Zhou, Qinglong Qiao, Lu Miao, Zhaochao Xu. Live-Cell Imaging to Resolve Salt-Induced Liquid–Liquid Phase Separation of FUS Protein by Dye Self-Labeling. Chemical & Biomedical Imaging 2024, 2 (1) , 70-80. https://doi.org/10.1021/cbmi.3c00094
  16. Marvin Jungblut, Simone Backes, Marcel Streit, Georg Gasteiger, Sören Doose, Markus Sauer, Gerti Beliu. Re-Engineered Pseudoviruses for Precise and Robust 3D Mapping of Viral Infection. ACS Nano 2023, 17 (21) , 21822-21828. https://doi.org/10.1021/acsnano.3c07767
  17. Yi-Fan Tian, Yu-Peng Zhang, Qiu-Mei Wu, Dai-Wen Pang, Shu-Lin Liu, Zhi-Gang Wang. Real-Time Imaging of Single Viral mRNA Translation in Live Cells Using CRISPR/dCas13. Analytical Chemistry 2023, 95 (44) , 16298-16304. https://doi.org/10.1021/acs.analchem.3c03365
  18. Florian Semmer, Marie-Charlotte Emperauger, Colin Lopez, Christine Bogicevic, François Treussart, Karen Perronet, François Marquier. 3D Real-Time Two-Photon Microscopy Device for Single-Particle Holographic Tracking (3D-Red Shot). ACS Photonics 2023, 10 (9) , 3426-3434. https://doi.org/10.1021/acsphotonics.3c00949
  19. Lulu Huang, Xiuhai Mao, Jie Li, Qian Li, Jianlei Shen, Mengmeng Liu, Chunhai Fan, Yang Tian. Nanoparticle Spikes Enhance Cellular Uptake via Regulating Myosin IIA Recruitment. ACS Nano 2023, 17 (10) , 9155-9166. https://doi.org/10.1021/acsnano.2c12660
  20. Weiqing Yang, Zhihong Wei, Yan Nie, Yuxi Tian. Optical Detection and Imaging of Nonfluorescent Matter at the Single-Molecule/Particle Level. The Journal of Physical Chemistry Letters 2022, 13 (41) , 9618-9631. https://doi.org/10.1021/acs.jpclett.2c02228
  21. José A. Epstein, Guy Z. Ramon. Connecting the Non-Brownian Dots: Increasing Near-Neighbor Particle-Tracking Efficiency by Coordinate System Manipulation. Langmuir 2022, 38 (35) , 10729-10735. https://doi.org/10.1021/acs.langmuir.2c00584
  22. Meng-Qian Zhang, Zhi-Gang Wang, Dan-Dan Fu, Ju-Mei Zhang, Hao-Yang Liu, Shu-Lin Liu, Dai-Wen Pang. Quantum Dots Tracking Endocytosis and Transport of Proteins Displayed by Mammalian Cells. Analytical Chemistry 2022, 94 (21) , 7567-7575. https://doi.org/10.1021/acs.analchem.2c00411
  23. Zhi-Gang Wang, Shu-Lin Liu, Dai-Wen Pang. Quantum Dots: A Promising Fluorescent Label for Probing Virus Trafficking. Accounts of Chemical Research 2021, 54 (14) , 2991-3002. https://doi.org/10.1021/acs.accounts.1c00276
  24. Li Xia, Li-Juan Zhang, Hong-Wu Tang, Dai-Wen Pang. Revealing Microtubule-Dependent Slow-Directed Motility by Single-Particle Tracking. Analytical Chemistry 2021, 93 (12) , 5211-5217. https://doi.org/10.1021/acs.analchem.0c05377
  25. Meng-Ni Bao, Li-Juan Zhang, Bo Tang, Dan-Dan Fu, Jing Li, Lei Du, Yi-Ning Hou, Zhi-Ling Zhang, Hong-Wu Tang, Dai-Wen Pang. Influenza A Viruses Enter Host Cells via Extracellular Ca2+ Influx-Involved Clathrin-Mediated Endocytosis. ACS Applied Bio Materials 2021, 4 (3) , 2044-2051. https://doi.org/10.1021/acsabm.0c00968
  26. Zhi-Gang Wang, Lei Wang, Don C. Lamb, Hua-Jie Chen, Yusi Hu, Hong-Peng Wang, Dai-Wen Pang, Shu-Lin Liu. Real-Time Dissecting the Dynamics of Drug Transportation in the Live Brain. Nano Letters 2021, 21 (1) , 642-650. https://doi.org/10.1021/acs.nanolett.0c04216
  27. Ji Liu, Zongqiang Cui. Fluorescent Labeling of Proteins of Interest in Live Cells: Beyond Fluorescent Proteins. Bioconjugate Chemistry 2020, 31 (6) , 1587-1595. https://doi.org/10.1021/acs.bioconjchem.0c00181
  28. Aditya Bansal, Shalini Sharma, Manasa Kethamreddy, Mukesh K. Pandey. PET imaging of AAV9 and AAVBR1 trafficking in normal mice. Scientific Reports 2025, 15 (1) https://doi.org/10.1038/s41598-025-86815-0
  29. Mingzhi Li, Li Pan, Caoyuan Ma, Hongxia Wu, Guangtao Xiang, Lian-Feng Li, Tao Wang, Rui Luo, Yongfeng Li, Di Liu, Huanjie Zhai, Moon Assad, Xin Song, Yanjin Wang, Franck Gallardo, Hua-Ji Qiu, Yuan Sun. Tracking of single virus: Dual fluorescent labeling of pseudorabies virus for observing entry and replication in the N2a cells. Veterinary Microbiology 2025, 304 , 110503. https://doi.org/10.1016/j.vetmic.2025.110503
  30. Anjana Singh, Yasheshwar, Naveen K. Kaushik, Deepak Kala, Rupak Nagraik, Shagun Gupta, Ankur Kaushal, Yashika Walia, Sunny Dhir, Md Salik Noorani. Conventional and cutting-edge advances in plant virus detection: emerging trends and techniques. 3 Biotech 2025, 15 (4) https://doi.org/10.1007/s13205-025-04253-1
  31. An-An Liu, Ran Cui, Xia Zong, Jianhong Jia, Yusi Hu, Jing-Ya Zhao, Dai-Wen Pang. Live-cell synthesis of biocompatible quantum dots. Nature Protocols 2025, 120 https://doi.org/10.1038/s41596-024-01133-5
  32. Yiqing Lu, Parinaz Jabbari, Anton Mukhamedshin, Andrei V. Zvyagin. Fluorescence lifetime imaging in drug delivery research. Advanced Drug Delivery Reviews 2025, 218 , 115521. https://doi.org/10.1016/j.addr.2025.115521
  33. Hana M. Dobrovolny. How do viruses get around? A review of mathematical modeling of in-host viral transmission. Virology 2025, 604 , 110444. https://doi.org/10.1016/j.virol.2025.110444
  34. Shujun Liu, Wenfeng Xu, Pengfei Jin, Li-Li Huang. Real-time monitoring of virus infection dynamics in established infection models for mechanism analysis. Chinese Chemical Letters 2025, 33 , 111076. https://doi.org/10.1016/j.cclet.2025.111076
  35. Fayu Yang, Saba Aliyari, Zixiang Zhu, Haixue Zheng, Genhong Cheng, Shilei Zhang. CRISPR-Cas: a game-changer in vaccine development and the fight against viral infections. Trends in Microbiology 2025, 22 https://doi.org/10.1016/j.tim.2025.02.006
  36. Prashant Hitaishi, Akash Anandrao Parab, Rohit Verma, Parul Khurana, Sheenam Thatai. Spectroscopic Analysis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2). Coronaviruses 2025, 6 (2) https://doi.org/10.2174/0126667975284619240222051806
  37. Ping Ping Hu, Lin Ling Zheng, Lei Zhan, Cheng Zhi Huang. Imaging of Viral Genomic RNA Replication with Nanoprobes. 2025, 145-153. https://doi.org/10.1007/978-1-0716-4248-1_12
  38. Asuka Nanbo, Miako Sakaguchi, Wakako Furuyama. Visualizing the Internalization of Marburg Viruslike Particles into Living Cells. 2025, 75-90. https://doi.org/10.1007/978-1-0716-4256-6_6
  39. Jiaxin Liu, Liqun Wang, Xinyue Zhang, Shaowen Wang, Qiwei Qin. Nervous necrosis virus induced vacuolization is a Rab5- and actin-dependent process. Virulence 2024, 15 (1) https://doi.org/10.1080/21505594.2023.2301244
  40. Yi-Ning Hou, Li-Juan Zhang, Lei Du, Dan-Dan Fu, Jing Li, Liu Liu, Peng-Fei Xu, Ya-Wen Zheng, Dai-Wen Pang, Hong-Wu Tang. Analyzing the factors affecting virus invasion by quantitative single-particle analysis. Virulence 2024, 15 (1) https://doi.org/10.1080/21505594.2024.2367671
  41. Cong Yu, Hua-Jie Chen, Hao-Yang Liu, Di Ning, Lei Wang, Xue-Hui Shi, Zhi-Gang Wang, Dai-Wen Pang, Shu-Lin Liu. Dual-lock-and-key virus-mimicking nanoprobes for ultra-high accurate and sensitive imaging of viral infections in vivo. Nano Today 2024, 59 , 102527. https://doi.org/10.1016/j.nantod.2024.102527
  42. Enbo Zhu, Yan‐Ruide Li, Samuel Margolis, Jing Wang, Kaidong Wang, Yaran Zhang, Shaolei Wang, Jongchan Park, Charlie Zheng, Lili Yang, Alison Chu, Yuhua Zhang, Liang Gao, Tzung K. Hsiai. Frontiers in artificial intelligence‐directed light‐sheet microscopy for uncovering biological phenomena and multiorgan imaging. VIEW 2024, 5 (5) https://doi.org/10.1002/VIW.20230087
  43. Theodhora Ziu, Ezgi Sambur, Zsolt Ruzsics, Hartmut Hengel, Reingard Grabherr, Siegfried Höfinger, Hanna Harant. In Vitro Profiling of the Antiviral Peptide TAT-I24. International Journal of Molecular Sciences 2024, 25 (19) , 10463. https://doi.org/10.3390/ijms251910463
  44. Sobhana A. Sripada, Mahshid Hosseini, Srivatsan Ramesh, Junhyeong Wang, Kimberly Ritola, Stefano Menegatti, Michael A. Daniele. Advances and opportunities in process analytical technologies for viral vector manufacturing. Biotechnology Advances 2024, 74 , 108391. https://doi.org/10.1016/j.biotechadv.2024.108391
  45. Kaito Takanami, Daisuke Taniguchi, Masafumi Kuroda, Sawako Enoki, Yasushi Okada, Yoshiyuki Kabashima. Detection of diffusion anisotropy from an individual short particle trajectory. Physical Review Research 2024, 6 (3) https://doi.org/10.1103/PhysRevResearch.6.033272
  46. Jiarong Cai, Wei Zhao, Wenhui Yan, Xinyu Wang, Yuning Zhang, Dai-Wen Pang. Circularly polarized luminescence inorganic quantum dots: synthesis strategies and luminescence mechanism. SCIENTIA SINICA Chimica 2024, 54 (8) , 1165-1177. https://doi.org/10.1360/SSC-2024-0050
  47. Razvan Bocu. Dynamic Monitoring of Time-Dependent Evolution of Biomolecules Using Quantum Dots-Based Biosensors Assemblies. Biosensors 2024, 14 (8) , 380. https://doi.org/10.3390/bios14080380
  48. Yu-Peng Zhang, Jin-Wei Bu, Ru-Xin Shu, Shu-Lin Liu. Advances in rapid point-of-care virus testing. The Analyst 2024, 149 (9) , 2507-2525. https://doi.org/10.1039/D4AN00238E
  49. Judith A. Müller, Nathalie Schäffler, Thomas Kellerer, Gerlinde Schwake, Thomas S. Ligon, Joachim O. Rädler. Kinetics of RNA-LNP delivery and protein expression. European Journal of Pharmaceutics and Biopharmaceutics 2024, 197 , 114222. https://doi.org/10.1016/j.ejpb.2024.114222
  50. Yu Gu, Pierre‐Yves Lozach. Illuminating bunyavirus entry into host cells with fluorescence. Molecular Microbiology 2024, 121 (4) , 671-678. https://doi.org/10.1111/mmi.15165
  51. Xiao Luo, Jie Zhang, Handong Tan, Jiahao Jiang, Junda Li, Weijia Wen. Real-Time 3D Tracking of Multi-Particle in the Wide-Field Illumination Based on Deep Learning. Sensors 2024, 24 (8) , 2583. https://doi.org/10.3390/s24082583
  52. Cornelia Holler, Richard William Taylor, Alexandra Schambony, Leonhard Möckl, Vahid Sandoghdar. A paintbrush for delivery of nanoparticles and molecules to live cells with precise spatiotemporal control. Nature Methods 2024, 21 (3) , 512-520. https://doi.org/10.1038/s41592-024-02177-x
  53. YingQi LIANG, GuoBin MAO, JunBiao DAI, YingXin MA. Single virus tracking. SCIENTIA SINICA Vitae 2024, 54 (3) , 396-408. https://doi.org/10.1360/SSV-2023-0070
  54. Hao-Yang Liu, Yusi Hu, Cong Yu, Zhi-Gang Wang, Shu-Lin Liu, Dai-Wen Pang. Quantitative single-virus tracking for revealing the dynamics of SARS-CoV-2 fusion with plasma membrane. Science Bulletin 2024, 69 (4) , 502-511. https://doi.org/10.1016/j.scib.2023.11.020
  55. B. Megala Devi, Samyuktha Guruprasath, Pooraniammal Balu, Anirudha Chattopadhyay, Siva Sudha Thilagar, Kanaga Vijayan Dhanabalan, Manoj Choudhary, Swarnalatha Moparthi, A. Abdul Kader Jailani. Dissecting Diagnostic and Management Strategies for Plant Viral Diseases: What Next?. Agriculture 2024, 14 (2) , 284. https://doi.org/10.3390/agriculture14020284
  56. Lulu Jin, Zhengwei Mao. Living virus‐based nanohybrids for biomedical applications. WIREs Nanomedicine and Nanobiotechnology 2024, 16 (1) https://doi.org/10.1002/wnan.1923
  57. Yu Gu, Jana Koch, Céline Garnier, Alexandra Erny, Pierre-Yves Lozach. Making Rift Valley Fever Viral Particles Fluorescent. 2024, 165-188. https://doi.org/10.1007/978-1-0716-3926-9_12
  58. Yongge Li, Kheder Suleiman, Yong Xu. Anomalous diffusion, non-Gaussianity, nonergodicity, and confinement in stochastic-scaled Brownian motion with diffusing diffusivity dynamics. Physical Review E 2024, 109 (1) https://doi.org/10.1103/PhysRevE.109.014139
  59. Iestyn Pope, Hugh Tanner, Francesco Masia, Lukas Payne, Kenton Paul Arkill, Judith Mantell, Wolfgang Langbein, Paola Borri, Paul Verkade. Correlative light-electron microscopy using small gold nanoparticles as single probes. Light: Science & Applications 2023, 12 (1) https://doi.org/10.1038/s41377-023-01115-4
  60. Long Chen, Chao He. Single probes and resonant four-wave-mixing enabling novel correlative light electron microscopy workflow. Light: Science & Applications 2023, 12 (1) https://doi.org/10.1038/s41377-023-01154-x
  61. Hiroto Furukawa, Yuuna Kimura, Hiroshi Inaba, Kazunori Matsuura. A supramolecular system mimicking the infection process of an enveloped virus through membrane fusion. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-47347-7
  62. Jian-Fei Lu, Sheng Luo, Hao Tang, Jia-Hui Liang, Yi-Fan Zhao, Yang Hu, Guan-Jun Yang, Jiong Chen, . Micropterus salmoides rhabdovirus enters cells via clathrin-mediated endocytosis pathway in a pH-, dynamin-, microtubule-, rab5-, and rab7-dependent manner. Journal of Virology 2023, 97 (10) https://doi.org/10.1128/jvi.00714-23
  63. S. V. Von Gratowski, V.V. Koledov, S. Balashov. Towards Micro Nanorobotic Platform for Single Virusonics. 2023, 1-6. https://doi.org/10.1109/MARSS58567.2023.10294116
  64. Xianbin Ma, Mingchuan Mao, Jiaqi He, Chao Liang, Hai-Yan Xie. Nanoprobe-based molecular imaging for tumor stratification. Chemical Society Reviews 2023, 52 (18) , 6447-6496. https://doi.org/10.1039/D3CS00063J
  65. Anthony Petkidis, Vardan Andriasyan, Urs F. Greber. Machine learning for cross-scale microscopy of viruses. Cell Reports Methods 2023, 3 (9) , 100557. https://doi.org/10.1016/j.crmeth.2023.100557
  66. A.A. El-Barbary, I.F.M. AL-Dosari. New insights into electronic and adsorption energies of metallofullerenes C19M. Results in Materials 2023, 19 , 100428. https://doi.org/10.1016/j.rinma.2023.100428
  67. Ming-Yu Zhang, An-An Liu, Luyang Jiao, Shuhan Zhang, Lin-Han Jiang, Xianglei Kong, Dai-Wen Pang. Capture of small clusters by ligand–solvent interaction. The Journal of Chemical Physics 2023, 159 (6) https://doi.org/10.1063/5.0155373
  68. Ju-Mei Zhang, Zhi-Gang Wang, Lei Du, Dan-Dan Fu, Meng-Qian Zhang, Jing Li, Shu-Lin Liu, Dai-Wen Pang. Quantitative analysis of the effects of vimentin intermediate filaments on the early stages of influenza A virus infection. New Journal of Chemistry 2023, 47 (30) , 14344-14354. https://doi.org/10.1039/D3NJ00952A
  69. Jonas Skeivalas, Eimuntas Paršeliūnas, Audrius Paršeliūnas, Dominykas Šlikas. Analysis of Results of Digital Electroencephalography and Digital Vectors of Coronavirus Images upon Applying the Theory of Covariance Functions. Symmetry 2023, 15 (7) , 1330. https://doi.org/10.3390/sym15071330
  70. Anthony Petkidis, Vardan Andriasyan, Urs F Greber. Label-free microscopy for virus infections. Microscopy 2023, 72 (3) , 204-212. https://doi.org/10.1093/jmicro/dfad024
  71. Di Liu, Li Pan, Huanjie Zhai, Hua-Ji Qiu, Yuan Sun. Virus tracking technologies and their applications in viral life cycle: research advances and future perspectives. Frontiers in Immunology 2023, 14 https://doi.org/10.3389/fimmu.2023.1204730
  72. Lei Wang, Zhi-Gang Wang, Di Ning, Yusi Hu, Shu-Lin Liu, Dai-Wen Pang. Real-time monitoring of biomolecular dynamics on cell membranes by quantum dot-based multicolor electrochemiluminescence. Nano Today 2023, 50 , 101855. https://doi.org/10.1016/j.nantod.2023.101855
  73. Suparna Paul, Subhajit Mukherjee, Priyabrata Banerjee. Recent advancement in nanomaterial-encapsulated drug delivery vehicles for combating cancer, COVID-19, and HIV-like chronic diseases. Materials Advances 2023, 4 (9) , 2042-2061. https://doi.org/10.1039/D2MA01075E
  74. Yongchao Du, Yaxi Li, Yunliang Liu, Naiyun Liu, Yuanyuan Cheng, Qiuzhong Shi, Xiang Liu, Zhimin Tao, Yumeng Guo, Jianguo Zhang, Najmeh Askaria, Haitao Li. Stalk-derived carbon dots as nanosensors for Fe3+ ions detection and biological cell imaging. Frontiers in Bioengineering and Biotechnology 2023, 11 https://doi.org/10.3389/fbioe.2023.1187632
  75. Ana Ortiz-Perez, Cristina Izquierdo-Lozano, Rens Meijers, Francesca Grisoni, Lorenzo Albertazzi. Identification of fluorescently-barcoded nanoparticles using machine learning. Nanoscale Advances 2023, 5 (8) , 2307-2317. https://doi.org/10.1039/D2NA00648K
  76. Lu Miao, Chunyu Yan, Yingzhu Chen, Wei Zhou, Xuelian Zhou, Qinglong Qiao, Zhaochao Xu. SIM imaging resolves endocytosis of SARS-CoV-2 spike RBD in living cells. Cell Chemical Biology 2023, 30 (3) , 248-260.e4. https://doi.org/10.1016/j.chembiol.2023.02.001
  77. Yingying Cao, Seungah Lee, Kyungsoo Kim, Jong-Young Kwak, Seong Ho Kang. Real-time six-dimensional spatiotemporal tracking of single anisotropic nanoparticles in live cells by integrated multifunctional light-sheet nanoscopy. Microchimica Acta 2023, 190 (2) https://doi.org/10.1007/s00604-023-05633-1
  78. Hao-Yang Liu, Zhi-Gang Wang, Shu-Lin Liu, Dai-Wen Pang. Single-virus tracking with quantum dots in live cells. Nature Protocols 2023, 18 (2) , 458-489. https://doi.org/10.1038/s41596-022-00775-7
  79. Alexander P. Demchenko. Detection of Harmful Microbes. 2023, 453-491. https://doi.org/10.1007/978-3-031-19089-6_13
  80. Xiaowei Zhang, Wei Li, Zongqiang Cui. Single-Particle Tracking of Virus Entry in Live Cells. 2023, 153-168. https://doi.org/10.1007/978-3-031-40086-5_5
  81. Xianxun Sun, Zongqiang Cui. Microbiological Nanotechnology. 2023, 525-553. https://doi.org/10.1007/978-981-16-8984-0_16
  82. 余永建 Yu Yongjian, 王越 Wang Yue, 李寰 Li Huan, 周文超 Zhou Wenchao, 舒风风 Shu Fengfeng, 高明 Gao Ming, 吴一辉 Wu Yihui. 融合通道层注意力机制的UNet的衍射极限荧光点检测和定位. Laser & Optoelectronics Progress 2023, 60 (14) , 1412004. https://doi.org/10.3788/LOP230718
  83. Fatemeh Sabzian‐Molaei, Seyedrafi Hosseini, Azam Bolhassani, Vahid Eskandari, Saeed Norouzi, Amin Hadi. Antiviral Effect of Saffron Compounds on the GP120 of HIV‐1: an In Silico Study. ChemistrySelect 2022, 7 (47) https://doi.org/10.1002/slct.202203471
  84. Shaun M. Christie, Takuya Tada, Yandong Yin, Amit Bhardwaj, Nathaniel R. Landau, Eli Rothenberg. Single-virus tracking reveals variant SARS-CoV-2 spike proteins induce ACE2-independent membrane interactions. Science Advances 2022, 8 (49) https://doi.org/10.1126/sciadv.abo3977
  85. Courtney Johnson, Jack Exell, Yuxin Lin, Jonathan Aguilar, Kevin D. Welsher. Capturing the start point of the virus–cell interaction with high-speed 3D single-virus tracking. Nature Methods 2022, 19 (12) , 1642-1652. https://doi.org/10.1038/s41592-022-01672-3
  86. Nicolas Moreno, Daniela Moreno-Chaparro, Florencio Balboa Usabiaga, Marco Ellero. Hydrodynamics of spike proteins dictate a transport-affinity competition for SARS-CoV-2 and other enveloped viruses. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-14884-6
  87. Xianbin Ma, Meng‐Jie Zhang, Jingting Wang, Tian Zhang, Peng Xue, Yuejun Kang, Zhi‐Jun Sun, Zhigang Xu. Emerging Biomaterials Imaging Antitumor Immune Response. Advanced Materials 2022, 34 (42) https://doi.org/10.1002/adma.202204034
  88. Danni Li, Liyan Xiong, Guixia Pan, Tingfang Wang, Rou Li, Lizhi Zhu, Qianqian Tong, Qinqin Yang, Ye Peng, Changjing Zuo, Cong Wang, Xiao Li. Molecular imaging on ACE2‐dependent transocular infection of coronavirus. Journal of Medical Virology 2022, 94 (10) , 4878-4889. https://doi.org/10.1002/jmv.27958
  89. Geetanjali Negi, Anurag Sharma, Manorama Dey, Garvita Dhanawat, Nagma Parveen. Membrane attachment and fusion of HIV-1, influenza A, and SARS-CoV-2: resolving the mechanisms with biophysical methods. Biophysical Reviews 2022, 14 (5) , 1109-1140. https://doi.org/10.1007/s12551-022-00999-7
  90. Muqsit Pirzada, Zeynep Altintas. Nanomaterials for virus sensing and tracking. Chemical Society Reviews 2022, 51 (14) , 5805-5841. https://doi.org/10.1039/D1CS01150B
  91. Bertus van Heerden, Nicholas A. Vickers, Tjaart P. J. Krüger, Sean B. Andersson. Real‐Time Feedback‐Driven Single‐Particle Tracking: A Survey and Perspective. Small 2022, 18 (29) https://doi.org/10.1002/smll.202107024
  92. Deepti Mittal, Syed Azmal Ali. Use of Nanomaterials for Diagnosis and Treatment: The Advancement of Next-Generation Antiviral Therapy. Microbial Drug Resistance 2022, 28 (6) , 670-697. https://doi.org/10.1089/mdr.2021.0281
  93. Hamza Abu Owida, Jamal I. Al-Nabulsi, Nidal M. Turab, Nawal Louzi, . Nanotechnology Role Development for COVID-19 Pandemic Management. Journal of Nanotechnology 2022, 2022 , 1-12. https://doi.org/10.1155/2022/1872933
  94. Jung Min Kim, Young-Mi Kang. Optical Fluorescence Imaging of Native Proteins Using a Fluorescent Probe with a Cell-Membrane-Permeable Carboxyl Group. International Journal of Molecular Sciences 2022, 23 (10) , 5841. https://doi.org/10.3390/ijms23105841
  95. Shimin Li, Dianbing Wang, Abbas Ghulam, Xia Li, Min Li, Qin Li, Yingxin Ma, Lei Wang, Hangshen Wu, Zongqiang Cui, Xian-En Zhang, . Tracking the Replication-Competent Zika Virus with Tetracysteine-Tagged Capsid Protein in Living Cells. Journal of Virology 2022, 96 (7) https://doi.org/10.1128/jvi.01846-21
  96. Junfang Liu, Minhong Su, Xin Chen, Zhongli Li, Zekui Fang, Li Yi. Lipid-mediated biosynthetic labeling strategy for in vivo dynamic tracing of avian influenza virus infection. Journal of Biomaterials Applications 2022, 36 (9) , 1689-1699. https://doi.org/10.1177/08853282211063298
  97. Fan Yang, Huiting Lu, Xiangdan Meng, Haifeng Dong, Xueji Zhang. Shedding Light on DNA‐Based Nanoprobes for Live‐Cell MicroRNA Imaging. Small 2022, 18 (10) https://doi.org/10.1002/smll.202106281
  98. Anuradha Ramoji, Susanne Pahlow, Aikaterini Pistiki, Jan Rueger, Tanveer Ahmed Shaik, Haodong Shen, Christina Wichmann, Christoph Krafft, Juergen Popp. Understanding viruses and viral infections by biophotonic methods. Translational Biophotonics 2022, 4 (1-2) https://doi.org/10.1002/tbio.202100008
  99. Gihan S. Gunaratne, Jonathan S. Marchant. The ins and outs of virus trafficking through acidic Ca2+ stores. Cell Calcium 2022, 102 , 102528. https://doi.org/10.1016/j.ceca.2022.102528
  100. Jing-Ya Zhao, Zhi-Gang Wang, Hui Hu, Zhi-Ling Zhang, Bo Tang, Meng-Yao Luo, Ling-Ling Yang, Baoshan Wang, Dai-Wen Pang. How different are the surfaces of semiconductor Ag2Se quantum dots with various sizes?. Science Bulletin 2022, 67 (6) , 619-625. https://doi.org/10.1016/j.scib.2021.12.004
Load all citations

Chemical Reviews

Cite this: Chem. Rev. 2020, 120, 3, 1936–1979
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.chemrev.9b00692
Published January 17, 2020
Copyright © 2020 American Chemical Society

Article Views

27k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Timeline of the key developments of the single-virus tracking technique.

    Figure 2

    Figure 2. Comparison of the size scales of fluorescent labels and the spatial resolutions of biological imaging techniques.

    Figure 3

    Figure 3. Uptake of Cy5-labeled adeno-associated virus (AAV) by a live HeLa cell. (a) Representative trajectories of AAV particles in cells at different stages of the infection. (b) Zoom in of trajectory 2 showing several membrane interactions of the AAV at the cell surface. (c) Mean number of consecutive cell interactions derived for viruses that did not dock. (d–e) Distribution of adsorption times for (d) 137 nondocking and (e) 42 membrane penetrating trajectories. Adapted with permission from ref (69). Copyright 2001 The American Association for the Advancement of Science.

    Figure 4

    Figure 4. Clathrin structures capture vesicular stomatitis viruses (VSVs) and defective interfering particles (DI-T) with similar kinetics. (a) Schematic of the clathrin-dependent virus internalization pathway. (b) VSVs and DI-T particles captured by clathrin structures in the same cell. BSC1 cells stably expressing s2-eGFP (green) were inoculated with Alexa Fluor 647-labeled DI-T (blue, blue arrowheads) and Alexa Fluor 568-labeled VSV (red, red arrowheads). Adapted with permission from ref (140). Copyright 2010 Public Library of Science.

    Figure 5

    Figure 5. Tracking the transport and fusion of individual influenza viruses. (a) Trajectory of a DiD-labeled virus inside a cell. (b) Time trajectories of the velocity (black) and the DiD fluorescence intensity (blue) of a virus. (c–e) Histogram of the viral velocity in each stage. (Inset) Shown is the measured average mean square displacement (⟨Δr2⟩) vs time (Δt) for a virus. Adapted with permission from ref (68). Copyright 2003 National Academy of Sciences, U.S.A.

    Figure 6

    Figure 6. Characterization of near-infrared FPs. (a–c) Normalized excitation (a), emission (b), and full absorption spectra of different iRFPs. (d) Schematic representation of directed molecular evolution that led to iRFPs with distinct spectral properties. (e) Brightness of HeLa cells transiently transfected with iRFPs, normalized to the value for iRFP713-expressing cells. Adapted with permission from ref (181). Copyright 2013 Springer Nature.

    Figure 7

    Figure 7. Generation of recombinant influenza viruses carrying a GFP reporter. (a) Schematic representation of the NS segment of WT PR8 virus and NS1-GFP virus. (b) A549 cells were infected with recombinant PR8 virus carrying NS1-GFP. At 10 h postinfection, cells were fixed and stained for NP. NP staining is shown in red and NS1-GFP is shown in green. (c) Fluorescent micrographs of NS1-GFP virus plaques taken at 20× magnification. Adapted with permission from ref (217). Copyright 2010 National Academy of Sciences, U.S.A.

    Figure 8

    Figure 8. Single ASLV-A entry into acidic endosomes and virus-endosome fusion. (a) Schematic diagram illustrating virus labeling and how the endosomal pH drops and subsequent ASLV-A fusion is visualized. (b) ASLV-A (yellow) fusion with TVA950 cells transiently expressing mKO-Rab5 (blue). Pseudoviruses were labeled with EcpH-ICAM (green) and Gag-mKate2 (red). The right top image panels show consecutive snapshots of the boxed region showing the virus prior to internalization (left), immediately after entry into acidic Rab5-positive endosomes (middle), and after fusion with early endosomes (right). The graph in panel (c) shows the fluorescence intensities of mKO-Rab5 and the viral EcpH-ICAM (green) and Gag-mKate2 (red) signals as a function of time. Adapted with permission from ref (215). Copyright 2014 BioMed Central Ltd.

    Figure 9

    Figure 9. Use of PtFPs for investigating focal adhesions. (a) Protocol for dual-label super resolution imaging by PALM. (b) Dual-color PALM super resolution image overlay of paxillin (green) and zyxin (red). (c) Diffraction-limited, summed molecule, dual-color TIRF image. (d) DIC image. Adapted with permission from ref (228). Copyright 2007 National Academy of Sciences, U.S.A.

    Figure 10

    Figure 10. Properties of QDs. (a) Schematic drawing of a core–shell QD and fluorescent images of QDs of different sizes under UV light. (b) Absorption (left) and emission (right) spectra of CdSe/ZnS QDs. All QD samples and data were obtained in the group of Pang.

    Figure 11

    Figure 11. Gold nanocluster labeling of enteroviruses. (a) Synthesis of the maleimide functionalized Au102(pMBA)44 clusters and their site-specific conjugation to enteroviruses. (b–c) TEM images of CVB3 viruses treated with functionalized gold clusters. (c) Control TEM image with conventional negative staining of a virus sample incubated with nonfunctionalized clusters. Adapted with permission from ref (272). Copyright 2014 National Academy of Sciences, U.S.A.

    Figure 12

    Figure 12. Labeling strategies and labeling sites for fluorescent labels in SVT.

    Figure 13

    Figure 13. Cross-linking reactions for conjugating fluorescent labels to viruses.

    Figure 14

    Figure 14. Covalent attachment of QDs to AAV and characterization of the QD-AAV conjugates. (a) QD-AAV networks are generated by an amide bond formation between the carboxylic source on QDs and the primary amines from lysine residues on the AAV capsid via carbodiimide chemistry. (b) Transmission electron microscope (TEM) images of (left) unconjugated QD525, (middle) AAV only, and (right) QD525-labeled AAV. Adapted with permission from ref (136). Copyright 2011 American Chemical Society.

    Figure 15

    Figure 15. Engineering the hepatitis D virus (HDV) assembly process for site-specific incorporation of unnatural amino acids (UAAs) into its surface envelope proteins. (a) Two-step procedure for the assembly of intact HDV carrying site-specifically incorporated UAA-recognized non-natural amino acids in human hepatocytes Huh-7 cells. (b) Structures of five Pyl analogues used in this study: PenK (Ne-pent-4-ynyloxycarbonyl-l-lysine), ACPK (Ne-((1R,2R)-2-azido-cyclopentyl oxy-carbonyl)-l-lysine), BCN (bicyclo[6.1.0]non-4-yn-9-ylmethanol), DiZPK (3-(3-methyl-3H-diazirine-3-yl)-propaminocarbonyl-Ne-l-lysine), and ONBK (o-nitrobenzyloxy carbonyl-Ne-lysine). Adapted with permission from ref (296). Copyright 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

    Figure 16

    Figure 16. Schematic of a two-step labeling strategy of labeling virus with QDs via the biotin–streptavidin interaction. Adapted with permission from ref (108). Copyright 2012 American Chemical Society.

    Figure 17

    Figure 17. A schematic diagram for the generation of Halo tag-labeled pseudorabies viruses. Adapted with permission from ref (324). Copyright 2016 American Chemical Society.

    Figure 18

    Figure 18. Scheme of the general strategy for in situ virus labeling during progeny virus assembly. The labeling procedure includes (1) infection of the host cells with the virus, (2) after 2 days’ cultivation, the proteins on the host cell surface were conjugated with polypeptides containing his-tags and carboxyl groups, (3) progeny viruses assemble and are released from the cell surface, incorporating the his-tags in the process, and (4) the progeny viruses are further tagged with Ni2+-NTA modified QDs. Adapted with permission from ref (335). Copyright 2016 The Royal Society of Chemistry.

    Figure 19

    Figure 19. Labeling the HIV-1 proviral loci. Within the cytosol of a live cell, the TALEs fused with a short LplA acceptor peptide (LAP) are decorated with trans-cyclooctene and subsequently labeled with tetrazine-conjugated red QDs via Diels–Alder cycloaddition chemistry. The TALEs fused with an AP tag are biotinylated and labeled with streptavidin-conjugated green QDs. The two QD-TALEs bind to the target HIV-1 proviral DNA sequences, and their fluorescence colocalization demonstrates a single-copy HIV-1 provirus loci in the human chromosomes. Adapted with permission from ref (116). Copyright 2017 Springer Nature.

    Figure 20

    Figure 20. Working principle of encapsulating SA-QDs into HIV-based lentivirus in living cells. Adapted with permission from ref (355). Copyright 2013 American Chemical Society.

    Figure 21

    Figure 21. Schematic drawing of an objective-based TIRF and a prism-based TIRF.

    Figure 22

    Figure 22. Live cell imaging of individual HIV-1 assembly sites. HeLa cell transfected with a mixture of pCHIV and pCHIVeGFP imaged at 25 h post transfection (a) in WF and (b) in TIRF mode. The scale bar represents 5 μm. Adapted with permission from ref (370). Copyright 2009 Public Library of Science.

    Figure 23

    Figure 23. Schematic drawing of (a) a laser scanning confocal microscope and (b) a spinning disk confocal microscope.

    Figure 24

    Figure 24. SPT-PALM imaging of VSVG in COS7cells. (left) PALM image of VSVG tagged with EosFP. (middle) All SPT-PALM trajectories of localized VSVG molecules. (right) Diffusion map of individual EosFP-VSVG molecules in the cell. Adapted with permission from ref (235). Copyright 2008 Springer Nature.

    Figure 25

    Figure 25. 3D orbital tracking. (a) Light microscopy transmission image of a zebrafish embryo and a zoom in on the tail with a typical Rohon–Beard neuron labeled by a membrane-targeted fluorescent protein (shown in yellow). (scale bar, 200 μm). (b) Schematic of the custom-built 3D real-time orbital tracking microscope consisting of a laser scanning confocal modality for tracking and a wide-field modality for simultaneous environmental observation. (c) (Upper image) Confocal reconstruction of a sensory neuron where both the membrane and the individual mitochondria are fluorescently labeled (scale bar, 100 μm). (Lower Image) Photoactivation of a single PA-GFP-labeled axonal mitochondrion (in yellow) (scale bar, 5 mm). (d) Schematic representation of the 3D orbital tracking approach. Different particle locations are indicated through spheres of varying color. Depending on the location of the particle, the phase and modulation of the signal vary. (e) Trajectory of an anterograde moving mitochondrion (100 Hz, 20,000 data points). (f) Autocorrelation carpet (top) of the angle between consecutive orbits and segregation of the trajectory into regions of directed transport (green) and stationary phases (red). Adapted with permission from ref (425). Copyright 2019 ELife Sciences Publications.

    Figure 26

    Figure 26. Schematic representation of single-virus tracking. (a) Time-series of images acquired using fluorescence microscopy. The optical spatial resolution is about 250 nm in the lateral direction and about 500 nm in the axial direction, although the localization of the particle can be determined with much higher precision. (b) Steps in SVT analysis. From the collected images, the location of the different particles is first determined, and then the same particle needs to be linked through the different frames. Once the trajectories have been determined, various analyses can be performed such as a mean-squared-displacement analysis.

    Figure 27

    Figure 27. Detection of the accurate position of particles with subdiffraction resolution. (a) Image generated by sampling the point spread function (PSF) of wide-field microscopy on a 3D grid with a lattice size of 20 nm. (b) 3D CCD image simulated from the PSF image (a) with a signal-to-noise ratio of 20. The blue crosses indicate the true center of the 3D particle. (c) 3D scatter plots of the errors illustrating the error ranges of the centroid (green), Gaussian fitting (blue), and radial symmetry algorithm (red), respectively. Adapted with permission from ref (435). Copyright 2013 Springer Nature.

    Figure 28

    Figure 28. CD36 receptor aggregation activity depending on motion type. (a) Epifluorescence image of a macrophage where CD36 has been immunolabeled using a primary Fab fragment followed by a Cy3-conjugated secondary Fab fragment. (b) CD36 tracks in a control macrophage. (c and d) CD36 tracks in (c) a blebbistatin-treated and (d) a nocodazole-treated macrophage. Scale bars, 1 μm. (e) Bar plot showing the fraction of particles undergoing linear motion. (f) x coordinate, y coordinate, and amplitude of two sample trajectories as a function of time where merging events (green ovals), splitting events (purple ovals), and closed gaps (orange ovals) have been highlighted. Adapted with permission from ref (446). Copyright 2008 Springer Nature.

    Figure 29

    Figure 29. Virus cell surfing along filopodia. (a) Individual murine leukemia virus (MLV) labeled with YFP (red) surfing along the filopodium of a HEK 293 cell transduced with mCAT-1-CFP (green). The time in the upper righthand corner is given in seconds, and the motion from two particles is summarized as white arrows in the right-most panel. (b) Image summarizing the overall movement of selected particles on filopodia of a single HEK 293 cell. (c) Thirty-one frames from a recorded movie superimposed to show the transport and photobleaching of MLVs during the SVT experiment (moving particles are highlighted in white). (d) To quantify virus cell surfing, the motility of 85 individual MLV particles was plotted over time where time point 0 represents the moment the virus attaches to a filopodium. Adapted with permission from ref (208). Copyright 2005 The Rockefeller University Press.

    Figure 30

    Figure 30. Real-time imaging of clathrin-dependent CPV internalization. (a) Example of clathrin-dependent CPV endocytosis. Left panels, CRFK σ2-eGFP cells (green, AP-2) were inoculated with fluorescent capsids (red) and imaged as before. Right panel, diffusion path of the capsid shown at left. A color-coded line trace of the capsid diffusion path is overlaid onto the t = 51-s image. (b) Plot of the background-corrected AP-2 (green) and capsid (red) fluorescence intensities with respect to time for the event in panel a. For frames prior to pit initiation, the AP-2 fluorescence intensity was quantified at the eventual site of pit initiation. (c) Efficiency of clathrin-dependent CPV entry. (d) Examples of CPV dissociation from the cell surface. Time-lapse images showing the attachment (downward-facing arrows) of two capsids (red; no. 1, no. 2) and subsequent capsid dissociation (upward-facing arrows). (e) Residence time of CPV capsids that dissociated from CRFK cells. Adapted with permission from ref (142). Copyright 2012 American Society for Microbiology.

    Figure 31

    Figure 31. Identification of HIV-1 fusion sites by single-virus imaging. (a) Schematic presentation of redistribution of viral lipid and content markers upon fusion with a plasma membrane (left) and with an endosome (right). Viruses colabeled with membrane (red) and content (green) markers are pseudocolored yellow. (b and c) Partial fusion of JRFL with the plasma membrane of TZM-bl cells. The time from the beginning of imaging is shown. The two-dimensional projection of the particle’s trajectory (cyan) is overlaid on the last image. Changes in fluorescence intensities (in arbitrary units) of membrane (red) and content (green) markers, as well as the instantaneous velocity (blue trace) of the particle, are shown. Adapted with permission from ref (83). Copyright 2009 Elsevier.

    Figure 32

    Figure 32. Fusion of PFV. (a) Bright field image of a cell overlaid with the trajectory of a dual-color PFV virus during fusion at or near the plasma membrane. The dual-color signal is shown in yellow and the single-labeled capsid in green. (b) Tracking image correlation (TrIC) analysis of the fusion event observed in panel (a). (upper panel) The fluorescence intensity of the Gag-eGFP signal (green) and mCherry-Env (red) signal, (second panel) instantaneous velocity, (third panel) cross-correlation amplitude (blue) and randomized cross-correlation signal (black), and (lower panel) relative distance between the Gag-eGFP and mCherry-Env signals plotted as a function of time. (c) 3D relative trajectory of the Env-labeled envelop with respect to the Gag-capsid showing movement in the order of hundreds of nanometers between the two labels before the completion of the fusion process. Adapted with permission from ref (467). Copyright 2013 Elsevier.

    Figure 33

    Figure 33. Real-time imaging of vRNP of influenza A viruses (IAV) release from a Rab7-positive endosome. (a) A fluorescence movie of a cell containing QD625-labeled influenza viruses (red) and Rab7-ECFP labeled endosomes (cyan) was recorded and SVT was performed. (b) Trajectories of the QD-labeled influenza virus colocalizing with the fluorescently labeled endosome from panel a. (c) Fluorescence image of an infected cell treated with NH4Cl. (d) Trajectories of the QD625 and ECFP fluorescent signals in NH4Cl-treated cells. (e) Model for IAV uncoating and vRNP dynamics. An IAV virion enters the host cell via endocytosis. Individual vRNPs finally undergo a three-stage active transport process to arrive at the cell nucleus and display two diffusion patterns within the nucleus. Adapted with permission from ref (113). Copyright 2019 National Academy of Sciences, U.S.A.

    Figure 34

    Figure 34. Recruitment of VPS4A to HIV assembly sites. (a) Wide-field image and time projections (5,926 s) from a TIRFM image series exemplifying frequent colocalization of eGFP-VPS4A bursts (green) with nascent HIV particles (magenta). (b) TIRFM images of the assembly and release of a HIV particle (top panel, arrows) and the corresponding eGFP-VPS4A channel (bottom panel, arrows). (c) Number of VPS4A bursts detected within 528 s (200 frames) in the presence of the indicated HIV derivatives (left) and number of HIV budding sites detected (right). (d) Wide-field image and time-projected TIRFM image of cells coexpressing eGFP-VPS4A (green) and the nonbudding HIV late minus mutant (magenta). All scale bars, 800 nm. Adapted with permission from ref (481). Copyright 2011 Springer Nature.

    Figure 35

    Figure 35. Membrane nanotubes present a novel route for HIV-1 to spread between T cells. (a) Membrane nanotubes were formed after intercellular contact between an infected Jurkat T cell (red) and an uninfected Jurkat T cell. (b) The frequency of membrane nanotubes formed between uninfected and infected Jurkat T cells or between two populations of uninfected Jurkat T cells. (c) Time-lapse imaging of Gag-GFP (green), expressed in the context of the fully infectious virus, along a membrane nanotube connecting infected with uninfected Jurkat T cells (red). (d) The arrow indicates Gag-GFP within the cytoplasm of the initially uninfected T cell. (e) The position of Gag-GFP is plotted against time showing generally directed movement from uninfected to infected cells. Adapted with permission from ref (489). Copyright 2008 Springer Nature.

  • References


    This article references 512 other publications.

    1. 1
      Smith, A. E.; Helenius, A. How Viruses Enter Animal Cells. Science 2004, 304, 237242,  DOI: 10.1126/science.1094823
    2. 2
      Greber, U. F.; Way, M. A Superhighway to Virus Infection. Cell 2006, 124, 741754,  DOI: 10.1016/j.cell.2006.02.018
    3. 3
      Marsh, M.; Helenius, A. Virus Entry: Open Sesame. Cell 2006, 124, 729740,  DOI: 10.1016/j.cell.2006.02.007
    4. 4
      Gruenberg, J. Viruses and Endosome Membrane Dynamics. Curr. Opin. Cell Biol. 2009, 21, 582588,  DOI: 10.1016/j.ceb.2009.03.008
    5. 5
      Sun, E.; He, J.; Zhuang, X. Live Cell Imaging of Viral Entry. Curr. Opin. Virol. 2013, 3, 3443,  DOI: 10.1016/j.coviro.2013.01.005
    6. 6
      Pelkmans, L.; Helenius, A. Insider Information: What Viruses Tell Us about Endocytosis. Curr. Opin. Cell Biol. 2003, 15, 414422,  DOI: 10.1016/S0955-0674(03)00081-4
    7. 7
      Conner, S. D.; Schmid, S. L. Regulated Portals of Entry into the Cell. Nature 2003, 422, 3744,  DOI: 10.1038/nature01451
    8. 8
      Horan, P. K.; Melnicoff, M. J.; Jensen, B. D.; Slezak, S. E. Fluorescent Cell Labeling for in Vivo and in Vitro Cell Tracking. Methods Cell Biol. 1990, 33, 469490,  DOI: 10.1016/S0091-679X(08)60547-6
    9. 9
      Giepmans, B. N. G. The Fluorescent Toolbox for Assessing Protein Location and Function. Science 2006, 312, 217224,  DOI: 10.1126/science.1124618
    10. 10
      Alcor, D.; Gouzer, G.; Triller, A. Single-Particle Tracking Methods for the Study of Membrane Receptors Dynamics. Eur. J. Neurosci. 2009, 30, 987997,  DOI: 10.1111/j.1460-9568.2009.06927.x
    11. 11
      Cang, H.; Shan Xu, C.; Yang, H. Progress in Single-Molecule Tracking Spectroscopy. Chem. Phys. Lett. 2008, 457, 285291,  DOI: 10.1016/j.cplett.2008.03.098
    12. 12
      Levi, V.; Gratton, E. Exploring Dynamics in Living Cells by Tracking Single Particles. Cell Biochem. Biophys. 2007, 48, 115,  DOI: 10.1007/s12013-007-0010-0
    13. 13
      Shen, H.; Tauzin, L. J.; Baiyasi, R.; Wang, W.; Moringo, N.; Shuang, B.; Landes, C. F. Single Particle Tracking: From Theory to Biophysical Applications. Chem. Rev. 2017, 117, 73317376,  DOI: 10.1021/acs.chemrev.6b00815
    14. 14
      Xia, T.; Li, N.; Fang, X. H. Single-Molecule Fluorescence Imaging in Living Cells. Annu. Rev. Phys. Chem. 2013, 64, 459480,  DOI: 10.1146/annurev-physchem-040412-110127
    15. 15
      Manzo, C.; Garcia-Parajo, M. F. A Review of Progress in Single Particle Tracking: from Methods to Biophysical Insights. Rep. Prog. Phys. 2015, 78, 124601,  DOI: 10.1088/0034-4885/78/12/124601
    16. 16
      Miller, H.; Zhou, Z.; Shepherd, J.; Wollman, A. J. M.; Leake, M. C. Single-Molecule Techniques in Biophysics: A Review of the Progress in Methods and Applications. Rep. Prog. Phys. 2018, 81, 024601  DOI: 10.1088/1361-6633/aa8a02
    17. 17
      Wieser, S.; Schutz, G. J. Tracking Single Molecules in the Live Cell Plasma Membrane-Do’s and Don’t’s. Methods 2008, 46, 131140,  DOI: 10.1016/j.ymeth.2008.06.010
    18. 18
      Kusumi, A.; Tsunoyama, T. A.; Hirosawa, K. M.; Kasai, R. S.; Fujiwara, T. K. Tracking Single Molecules at Work in Living Cells. Nat. Chem. Biol. 2014, 10, 524532,  DOI: 10.1038/nchembio.1558
    19. 19
      Kusumi, A.; Shirai, Y. M.; Koyama-Honda, I.; Suzuki, K. G. N.; Fujiwara, T. K. Hierarchical Organization of the Plasma Membrane: Investigations by Single-Molecule Tracking vs. Fluorescence Correlation Spectroscopy. FEBS Lett. 2010, 584, 18141823,  DOI: 10.1016/j.febslet.2010.02.047
    20. 20
      Kusumi, A.; Fujiwara, T. K.; Chadda, R.; Xie, M.; Tsunoyama, T. A.; Kalay, Z.; Kasai, R. S.; Suzuki, K. G. Dynamic Organizing Principles of the Plasma Membrane That Regulate Signal Transduction: Commemorating the Fortieth Anniversary of Singer and Nicolson’s Fluid-Mosaic Model. Annu. Rev. Cell Dev. Biol. 2012, 28, 215250,  DOI: 10.1146/annurev-cellbio-100809-151736
    21. 21
      Suzuki, K. G.; Kasai, R. S.; Hirosawa, K. M.; Nemoto, Y. L.; Ishibashi, M.; Miwa, Y.; Fujiwara, T. K.; Kusumi, A. Transient GPI-Anchored Protein Homodimers Are Units for Raft Organization and Function. Nat. Chem. Biol. 2012, 8, 774783,  DOI: 10.1038/nchembio.1028
    22. 22
      Zhang, W.; Jiang, Y.; Wang, Q.; Ma, X.; Xiao, Z.; Zuo, W.; Fang, X.; Chen, Y. G. Single-Molecule Imaging Reveals Transforming Growth Factor-Induced Type II Receptor Dimerization. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 1567915683,  DOI: 10.1073/pnas.0908279106
    23. 23
      Kasai, R. S.; Kusumi, A. Single-Molecule Imaging Revealed Dynamic GPCR Dimerization. Curr. Opin. Cell Biol. 2014, 27, 7886,  DOI: 10.1016/j.ceb.2013.11.008
    24. 24
      Courty, S.; Luccardini, C.; Bellaiche, Y.; Cappello, G.; Dahan, M. Tracking Individual Kinesin Motors in Living Cells Using Single Quantum-Dot Imaging. Nano Lett. 2006, 6, 14911495,  DOI: 10.1021/nl060921t
    25. 25
      Nishikawa, S.; Arimoto, I.; Ikezaki, K.; Sugawa, M.; Ueno, H.; Komori, T.; Iwane, A. H.; Yanagida, T. Switch between Large Hand-over-Hand and Small Inchworm-Like Steps in Myosin VI. Cell 2010, 142, 879888,  DOI: 10.1016/j.cell.2010.08.033
    26. 26
      Pierobon, P.; Achouri, S.; Courty, S.; Dunn, A. R.; Spudich, J. A.; Dahan, M.; Cappello, G. Velocity, Processivity, and Individual Steps of Single Myosin V Molecules in Live Cells. Biophys. J. 2009, 96, 42684275,  DOI: 10.1016/j.bpj.2009.02.045
    27. 27
      Liu, S. L.; Wang, Z. G.; Hu, Y.; Xin, Y.; Singaram, I.; Gorai, S.; Zhou, X.; Shim, Y.; Min, J. H.; Gong, L. W. Quantitative Lipid Imaging Reveals a New Signaling Function of Phosphatidylinositol-3,4-Bisphophate: Isoform- and Site-Specific Activation of Akt. Mol. Cell 2018, 71, 10921104, e5  DOI: 10.1016/j.molcel.2018.07.035
    28. 28
      Sheng, R.; Chen, Y.; Yung Gee, H.; Stec, E.; Melowic, H. R.; Blatner, N. R.; Tun, M. P.; Kim, Y.; Kallberg, M.; Fujiwara, T. K. Cholesterol Modulates Cell Signaling and Protein Networking by Specifically Interacting with PDZ Domain-Containing Scaffold Proteins. Nat. Commun. 2012, 3, 1249,  DOI: 10.1038/ncomms2221
    29. 29
      Komura, N.; Suzuki, K. G.; Ando, H.; Konishi, M.; Koikeda, M.; Imamura, A.; Chadda, R.; Fujiwara, T. K.; Tsuboi, H.; Sheng, R. Raft-Based Interactions of Gangliosides with a GPI-Anchored Receptor. Nat. Chem. Biol. 2016, 12, 402410,  DOI: 10.1038/nchembio.2059
    30. 30
      Liu, S. L.; Wang, Z. G.; Zhang, Z. L.; Pang, D. W. Tracking Single Viruses Infecting Their Host Cells Using Quantum Dots. Chem. Soc. Rev. 2016, 45, 12111224,  DOI: 10.1039/C5CS00657K
    31. 31
      Brandenburg, B.; Zhuang, X. Virus Trafficking–Learning from Single-Virus Tracking. Nat. Rev. Microbiol. 2007, 5, 197208,  DOI: 10.1038/nrmicro1615
    32. 32
      Huang, L. L.; Xie, H. Y. Progress on the Labeling and Single-Particle Tracking Technologies of Viruses. Analyst 2014, 139, 33363346,  DOI: 10.1039/C4AN00038B
    33. 33
      Parveen, N.; Borrenberghs, D.; Rocha, S.; Hendrix, J. Single Viruses on the Fluorescence Microscope: Imaging Molecular Mobility, Interactions and Structure Sheds New Light on Viral Replication. Viruses 2018, 10, 250,  DOI: 10.3390/v10050250
    34. 34
      Axelrod, D.; Koppel, D. E.; Schlessinger, J.; Elson, E.; Webb, W. W. Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics. Biophys. J. 1976, 16, 10551069,  DOI: 10.1016/S0006-3495(76)85755-4
    35. 35
      Simons, K.; Gerl, M. J. Revitalizing Membrane Rafts: New Tools and Insights. Nat. Rev. Mol. Cell Biol. 2010, 11, 688699,  DOI: 10.1038/nrm2977
    36. 36
      Magde, D.; Elson, E.; Webb, W. W. Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy. Phys. Rev. Lett. 1972, 29, 705708,  DOI: 10.1103/PhysRevLett.29.705
    37. 37
      Hess, S. T.; Huang, S.; Heikal, A. A.; Webb, W. W. Biological and Chemical Applications of Fluorescence Correlation Spectroscopy: A Review. Biochemistry 2002, 41, 697705,  DOI: 10.1021/bi0118512
    38. 38
      Haustein, E.; Schwille, P. Ultrasensitive Investigations of Biological Systems by Fluorescence Correlation Spectroscopy. Methods 2003, 29, 153166,  DOI: 10.1016/S1046-2023(02)00306-7
    39. 39
      Berg, H. C. How to Track Bacteria. Rev. Sci. Instrum. 1971, 42, 868871,  DOI: 10.1063/1.1685246
    40. 40
      Berg, H. C.; Brown, D. A. Chemotaxis in Escherichia Coli Analysed by Three-Dimensional Tracking. Nature 1972, 239, 500504,  DOI: 10.1038/239500a0
    41. 41
      Barak, L. S.; Webb, W. W. Diffusion of Low Density Lipoprotein-Receptor Complex on Human Fibroblasts. J. Cell Biol. 1982, 95, 846852,  DOI: 10.1083/jcb.95.3.846
    42. 42
      De Brabander, M.; Geuens, G.; Nuydens, R.; Moeremans, M.; De Mey, J. Probing Microtubule-Dependent Intracellular Motility with Nanometre Particle Video Ultramicroscopy (Nanovid Ultramicroscopy). Cytobios 1985, 43, 273283
    43. 43
      Lee, G. M.; Ishihara, A.; Jacobson, K. A. Direct Observation of Brownian Motion of Lipids in a Membrane. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 62746278,  DOI: 10.1073/pnas.88.14.6274
    44. 44
      Gelles, J.; Schnapp, B. J.; Sheetz, M. P. Tracking Kinesin-Driven Movements with Nanometre-Scale Precision. Nature 1988, 331, 450453,  DOI: 10.1038/331450a0
    45. 45
      Geerts, H.; de Brabander, M.; Nuydens, R. Nanovid Microscopy. Nature 1991, 351, 765766,  DOI: 10.1038/351765a0
    46. 46
      Geerts, H.; De Brabander, M.; Nuydens, R.; Geuens, S.; Moeremans, M.; De Mey, J.; Hollenbeck, P. Nanovid Tracking: A New Automatic Method for the Study of Mobility in Living Cells Based on Colloidal Gold and Video Microscopy. Biophys. J. 1987, 52, 775782,  DOI: 10.1016/S0006-3495(87)83271-X
    47. 47
      Inoué, S. Imaging of Unresolved Objects, Superresolution, and Precision of Distance Measurement with Video Microscopy. Methods Cell Biol. 1989, 30, 85112,  DOI: 10.1016/S0091-679X(08)60976-0
    48. 48
      Saxton, M. J. Single-Particle Tracking: Models of Directed Transport. Biophys. J. 1994, 67, 21102019,  DOI: 10.1016/S0006-3495(94)80694-0
    49. 49
      Kao, H. P.; Verkman, A. S. Tracking of Single Fluorescent Particles in 3 Dimensions-Use of Cylindrical Optics to Encode Particle Position. Biophys. J. 1994, 67, 12911300,  DOI: 10.1016/S0006-3495(94)80601-0
    50. 50
      Patwardhan, A. Subpixel Position Measurement Using 1D, 2D and 3D Centroid Algorithms with Emphasis on Applications in Confocal Microscopy. J. Microsc. 1997, 186, 246257,  DOI: 10.1046/j.1365-2818.1997.1970761.x
    51. 51
      Peters, I. M.; van Kooyk, Y.; van Vliet, S. J.; de Grooth, B. G.; Figdor, C. G.; Greve, J. 3D Single-Particle Tracking and Optical Trap Measurements on Adhesion Proteins. Cytometry 1999, 36, 189194,  DOI: 10.1002/(SICI)1097-0320(19990701)36:3<189::AID-CYTO7>3.0.CO;2-3
    52. 52
      Bacher, C. P.; Reichenzeller, M.; Athale, C.; Herrmann, H.; Eils, R. 4-D Single Particle Tracking of Synthetic and Proteinaceous Microspheres Reveals Preferential Movement of Nuclear Particles Along Chromatin-Poor Tracks. BMC Cell Biol. 2004, 5, 45,  DOI: 10.1186/1471-2121-5-45
    53. 53
      Genovesio, A.; Liedl, T.; Emiliani, V.; Parak, W. J.; Coppey-Moisan, M.; Olivo-Marin, J. C. Multiple Particle Tracking in 3-D+T Microscopy: Method and Application to the Tracking of Endocytosed Quantum Dots. IEEE Trans. Image Process. 2006, 15, 10621070,  DOI: 10.1109/TIP.2006.872323
    54. 54
      Ram, S.; Kim, D.; Ward, E. S.; Ober, R. J. Fast 3D Single Molecule Tracking with Multifocal Plane Microscopy in Polarized Epithelia Reveals a Novel Cellular Process of Intercellular Transfer. Biophys. J. 2013, 104, 535a,  DOI: 10.1016/j.bpj.2012.11.2962
    55. 55
      Ram, S.; Kim, D.; Ober, R. J.; Ward, E. S. 3D Single Molecule Tracking with Multifocal Plane Microscopy Reveals Rapid Intercellular Transferrin Transport at Epithelial Cell Barriers. Biophys. J. 2012, 103, 15941603,  DOI: 10.1016/j.bpj.2012.08.054
    56. 56
      Ram, S.; Prabhat, P.; Chao, J.; Ward, E. S.; Ober, R. J. High Accuracy 3D Quantum Dot Tracking with Multifocal Plane Microscopy for the Study of Fast Intracellular Dynamics in Live Cells. Biophys. J. 2008, 95, 60256043,  DOI: 10.1529/biophysj.108.140392
    57. 57
      Levi, V.; Ruan, Q.; Kis-Petikova, K.; Gratton, E. Scanning FCS, a Novel Method for Three-Dimensional Particle Tracking. Biochem. Soc. Trans. 2003, 31, 9971000,  DOI: 10.1042/bst0310997
    58. 58
      Dupont, A.; Lamb, D. C. Nanoscale Three-Dimensional Single Particle Tracking. Nanoscale 2011, 3, 45324541,  DOI: 10.1039/c1nr10989h
    59. 59
      Ruthardt, N.; Lamb, D. C.; Brauchle, C. Single-Particle Tracking as a Quantitative Microscopy-Based Approach to Unravel Cell Entry Mechanisms of Viruses and Pharmaceutical Nanoparticles. Mol. Ther. 2011, 19, 11991211,  DOI: 10.1038/mt.2011.102
    60. 60
      Hou, S.; Johnson, C.; Welsher, K. Real-Time 3D Single Particle Tracking: Towards Active Feedback Single Molecule Spectroscopy in Live Cells. Molecules 2019, 24, 2826,  DOI: 10.3390/molecules24152826
    61. 61
      Montiel, D.; Yang, H. Real-Time Three-Dimensional Single-Particle Tracking Spectroscopy for Complex Systems. Laser Photonics Rev. 2010, 4, 374385,  DOI: 10.1002/lpor.200910012
    62. 62
      Walsh, E. E.; Hruska, J. Monoclonal Antibodies to Respiratory Syncytial Virus Proteins: Identification of the Fusion Protein. J. Virol. 1983, 47, 171177,  DOI: 10.1128/JVI.47.1.171-177.1983
    63. 63
      Matlin, K. S.; Reggio, H.; Helenius, A.; Simons, K. Infectious Entry Pathway of Influenza Virus in a Canine Kidney Cell Line. J. Cell Biol. 1981, 91, 601613,  DOI: 10.1083/jcb.91.3.601
    64. 64
      Bächi, T. Direct Observation of the Budding and Fusion of an Enveloped Virus by Video Microscopy of Viable Cells. J. Cell Biol. 1988, 107, 16891695,  DOI: 10.1083/jcb.107.5.1689
    65. 65
      Lowy, R. J.; Sarkar, D. P.; Chen, Y.; Blumenthal, R. Observation of Single Influenza Virus-Cell Fusion and Measurement by Fluorescence Video Microscopy. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 18501854,  DOI: 10.1073/pnas.87.5.1850
    66. 66
      Georgi, A.; Mottola-Hartshorn, C.; Warner, A.; Fields, B.; Chen, L. B. Detection of Individual Fluorescently Labeled Reovirions in Living Cells. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 65796583,  DOI: 10.1073/pnas.87.17.6579
    67. 67
      Pelkmans, L.; Kartenbeck, J.; Helenius, A. Caveolar Endocytosis of Simian Virus 40 Reveals a New Two-Step Vesicular-Transport Pathway to the ER. Nat. Cell Biol. 2001, 3, 473483,  DOI: 10.1038/35074539
    68. 68
      Lakadamyali, M.; Rust, M. J.; Babcock, H. P.; Zhuang, X. Visualizing Infection of Individual Influenza Viruses. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 92809285,  DOI: 10.1073/pnas.0832269100
    69. 69
      Seisenberger, G.; Ried, M. U.; Endress, T.; Buning, H.; Hallek, M.; Brauchle, C. Real-Time Single-Molecule Imaging of the Infection Pathway of an Adeno-Associated Virus. Science 2001, 294, 19291932,  DOI: 10.1126/science.1064103
    70. 70
      Suomalainen, M.; Nakano, M. Y.; Keller, S.; Boucke, K.; Stidwill, R. P.; Greber, U. F. Microtubule-Dependent Plus- and Minus End-Directed Motilities Are Competing Processes for Nuclear Targeting of Adenovirus. J. Cell Biol. 1999, 144, 657672,  DOI: 10.1083/jcb.144.4.657
    71. 71
      Coller, K. E.; Berger, K. L.; Heaton, N. S.; Cooper, J. D.; Yoon, R.; Randall, G. RNA Interference and Single Particle Tracking Analysis of Hepatitis C Virus Endocytosis. PLoS Pathog. 2009, 5, e1000702  DOI: 10.1371/journal.ppat.1000702
    72. 72
      Rust, M. J.; Lakadamyali, M.; Zhang, F.; Zhuang, X. Assembly of Endocytic Machinery around Individual Influenza Viruses During Viral Entry. Nat. Struct. Mol. Biol. 2004, 11, 567573,  DOI: 10.1038/nsmb769
    73. 73
      van der Schaar, H. M.; Rust, M. J.; Waarts, B. L.; van der Ende-Metselaar, H.; Kuhn, R. J.; Wilschut, J.; Zhuang, X.; Smit, J. M. Characterization of the Early Events in Dengue Virus Cell Entry by Biochemical Assays and Single-Virus Tracking. J. Virol. 2007, 81, 1201912028,  DOI: 10.1128/JVI.00300-07
    74. 74
      Chen, C.; Zhuang, X. Epsin 1 Is a Cargo-Specific Adaptor for the Clathrin-Mediated Endocytosis of the Influenza Virus. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 1179011795,  DOI: 10.1073/pnas.0803711105
    75. 75
      van der Schaar, H. M.; Rust, M. J.; Chen, C.; van der Ende-Metselaar, H.; Wilschut, J.; Zhuang, X.; Smit, J. M. Dissecting the Cell Entry Pathway of Dengue Virus by Single-Particle Tracking in Living Cells. PLoS Pathog. 2008, 4, e1000244  DOI: 10.1371/journal.ppat.1000244
    76. 76
      Tsien, R. Y. The Green Fluorescent Protein. Annu. Rev. Biochem. 1998, 67, 509544,  DOI: 10.1146/annurev.biochem.67.1.509
    77. 77
      Baulcombe, D. C.; Chapman, S.; Santa Cruz, S. Jellyfish Green Fluorescent Protein as a Reporter for Virus Infections. Plant J. 1995, 7, 10451053,  DOI: 10.1046/j.1365-313X.1995.07061045.x
    78. 78
      Elliott, G.; O’Hare, P. Live-Cell Analysis of a Green Fluorescent Protein-Tagged Herpes Simplex Virus Infection. J. Virol. 1999, 73, 41104119,  DOI: 10.1128/JVI.73.5.4110-4119.1999
    79. 79
      Cruz, S. S.; Chapman, S.; Roberts, A. G.; Roberts, I. M.; Prior, D.; Oparka, K. J. Assembly and Movement of a Plant Virus Carrying a Green Fluorescent Protein Overcoat. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 62866290,  DOI: 10.1073/pnas.93.13.6286
    80. 80
      Desai, P.; Person, S. Incorporation of the Green Fluorescent Protein into the Herpes Simplex Virus Type 1 Capsid. J. Virol. 1998, 72, 75637568,  DOI: 10.1128/JVI.72.9.7563-7568.1998
    81. 81
      Moradpour, D.; Evans, M. J.; Gosert, R.; Yuan, Z.; Blum, H. E.; Goff, S. P.; Lindenbach, B. D.; Rice, C. M. Insertion of Green Fluorescent Protein into Nonstructural Protein 5A Allows Direct Visualization of Functional Hepatitis C Virus Replication Complexes. J. Virol. 2004, 78, 74007409,  DOI: 10.1128/JVI.78.14.7400-7409.2004
    82. 82
      McDonald, D.; Vodicka, M. A.; Lucero, G.; Svitkina, T. M.; Borisy, G. G.; Emerman, M.; Hope, T. J. Visualization of the Intracellular Behavior of HIV in Living Cells. J. Cell Biol. 2002, 159, 441452,  DOI: 10.1083/jcb.200203150
    83. 83
      Miyauchi, K.; Kim, Y.; Latinovic, O.; Morozov, V.; Melikyan, G. B. HIV Enters Cells via Endocytosis and Dynamin-Dependent Fusion with Endosomes. Cell 2009, 137, 433444,  DOI: 10.1016/j.cell.2009.02.046
    84. 84
      Koch, P.; Lampe, M.; Godinez, W. J.; Müller, B.; Rohr, K.; Kräusslich, H.-G.; Lehmann, M. J. Visualizing Fusion of Pseudotyped HIV-1 Particles in Real Time by Live Cell Microscopy. Retrovirology 2009, 6, 84,  DOI: 10.1186/1742-4690-6-84
    85. 85
      Endreß, T.; Lampe, M.; Briggs, J. A. G.; Kräusslich, H.-G.; Bräuchle, C.; Müller, B.; Lamb, D. C. HIV-1–Cellular Interactions Analyzed by Single Virus Tracing. Eur. Biophys. J. 2008, 37, 12911301,  DOI: 10.1007/s00249-008-0322-z
    86. 86
      Jolly, C.; Kashefi, K.; Hollinshead, M.; Sattentau, Q. J. HIV-1 Cell to Cell Transfer Across an Env-Induced, Actin-Dependent Synapse. J. Exp. Med. 2004, 199, 283293,  DOI: 10.1084/jem.20030648
    87. 87
      Arhel, N.; Genovesio, A.; Kim, K. A.; Miko, S.; Perret, E.; Olivo-Marin, J. C.; Shorte, S.; Charneau, P. Quantitative Four-Dimensional Tracking of Cytoplasmic and Nuclear HIV-1 Complexes. Nat. Methods 2006, 3, 817824,  DOI: 10.1038/nmeth928
    88. 88
      Hubner, W.; McNerney, G. P.; Chen, P.; Dale, B. M.; Gordon, R. E.; Chuang, F. Y.; Li, X. D.; Asmuth, D. M.; Huser, T.; Chen, B. K. Quantitative 3D Video Microscopy of HIV Transfer Across T Cell Virological Synapses. Science 2009, 323, 17431747,  DOI: 10.1126/science.1167525
    89. 89
      Dahan, M.; Levi, S.; Luccardini, C.; Rostaing, P.; Riveau, B.; Triller, A. Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking. Science 2003, 302, 442445,  DOI: 10.1126/science.1088525
    90. 90
      Bonneau, S.; Dahan, M.; Cohen, L. D. Single Quantum Dot Tracking Based on Perceptual Grouping Using Minimal Paths in a Spatiotemporal Volume. IEEE T. Image Process 2005, 14, 13841395,  DOI: 10.1109/TIP.2005.852794
    91. 91
      Bachir, A. I.; Durisic, N.; Hebert, B.; Grütter, P.; Wiseman, P. W. Characterization of Blinking Dynamics in Quantum Dot Ensembles Using Image Correlation Spectroscopy. J. Appl. Phys. 2006, 99, 064503  DOI: 10.1063/1.2175470
    92. 92
      Durisic, N.; Bachir, A. I.; Kolin, D. L.; Hebert, B.; Lagerholm, B. C.; Grutter, P.; Wiseman, P. W. Detection and Correction of Blinking Bias in Image Correlation Transport Measurements of Quantum Dot Tagged Macromolecules. Biophys. J. 2007, 93, 13381346,  DOI: 10.1529/biophysj.107.106864
    93. 93
      He, K.; Luo, W.; Zhang, Y.; Liu, F.; Liu, D.; Xu, L.; Qin, L.; Xiong, C.; Lu, Z.; Fang, X. Intercellular Transportation of Quantum Dots Mediated by Membrane Nanotubes. ACS Nano 2010, 4, 30153022,  DOI: 10.1021/nn1002198
    94. 94
      Chang, Y.-P.; Pinaud, F.; Antelman, J.; Weiss, S. Tracking Bio-Molecules in Live Cells Using Quantum Dots. J. Biophotonics 2008, 1, 287298,  DOI: 10.1002/jbio.200810029
    95. 95
      Pinaud, F.; Clarke, S.; Sittner, A.; Dahan, M. Probing Cellular Events, One Quantum Dot at a Time. Nat. Methods 2010, 7, 275285,  DOI: 10.1038/nmeth.1444
    96. 96
      Wang, Z. G.; Liu, S. L.; Tian, Z. Q.; Zhang, Z. L.; Tang, H. W.; Pang, D. W. Myosin-Driven Intercellular Transportation of Wheat Germ Agglutinin Mediated by Membrane Nanotubes between Human Lung Cancer Cells. ACS Nano 2012, 6, 1003310041,  DOI: 10.1021/nn303729r
    97. 97
      Liu, S. L.; Zhang, Z. L.; Sun, E. Z.; Peng, J.; Xie, M.; Tian, Z. Q.; Lin, Y.; Pang, D. W. Visualizing the Endocytic and Exocytic Processes of Wheat Germ Agglutinin by Quantum Dot-Based Single-Particle Tracking. Biomaterials 2011, 32, 76167624,  DOI: 10.1016/j.biomaterials.2011.06.046
    98. 98
      Joo, K.-I.; Lei, Y.; Lee, C.-L.; Lo, J.; Xie, J.; Hamm-Alvarez, S. F.; Wang, P. Site-Specific Labeling of Enveloped Viruses with Quantum Dots for Single Virus Tracking. ACS Nano 2008, 2, 15531562,  DOI: 10.1021/nn8002136
    99. 99
      Liu, S. L.; Tian, Z. Q.; Zhang, Z. L.; Wu, Q. M.; Zhao, H. S.; Ren, B.; Pang, D. W. High-Efficiency Dual Labeling of Influenza Virus for Single-Virus Imaging. Biomaterials 2012, 33, 78287833,  DOI: 10.1016/j.biomaterials.2012.07.026
    100. 100
      Lv, C.; Lin, Y.; Liu, A. A.; Hong, Z. Y.; Wen, L.; Zhang, Z.; Zhang, Z. L.; Wang, H.; Pang, D. W. Labeling Viral Envelope Lipids with Quantum Dots by Harnessing the Biotinylated Lipid-Self-Inserted Cellular Membrane. Biomaterials 2016, 106, 6977,  DOI: 10.1016/j.biomaterials.2016.08.013
    101. 101
      Hong, Z. Y.; Lv, C.; Liu, A. A.; Liu, S. L.; Sun, E. Z.; Zhang, Z. L.; Lei, A. W.; Pang, D. W. Clicking Hydrazine and Aldehyde: The Way to Labeling of Viruses with Quantum Dots. ACS Nano 2015, 9, 1175011760,  DOI: 10.1021/acsnano.5b03256
    102. 102
      Wen, L.; Lin, Y.; Zheng, Z. H.; Zhang, Z. L.; Zhang, L. J.; Wang, L. Y.; Wang, H. Z.; Pang, D. W. Labeling the Nucleocapsid of Enveloped Baculovirus with Quantum Dots for Single-Virus Tracking. Biomaterials 2014, 35, 22952301,  DOI: 10.1016/j.biomaterials.2013.11.069
    103. 103
      Xie, M.; Luo, K.; Huang, B.-H.; Liu, S.-L.; Hu, J.; Cui, D.; Zhang, Z.-L.; Xiao, G.-F.; Pang, D.-W. PEG-Interspersed Nitrilotriacetic Acid-Functionalized Quantum Dots for Site-Specific Labeling of Prion Proteins Expressed on Cell Surfaces. Biomaterials 2010, 31, 83628370,  DOI: 10.1016/j.biomaterials.2010.07.063
    104. 104
      Wen, L.; Zheng, Z. H.; Liu, A. A.; Lv, C.; Zhang, L. J.; Ao, J.; Zhang, Z. L.; Wang, H. Z.; Lin, Y.; Pang, D. W. Tracking Single Baculovirus Retrograde Transportation in Host Cell via Quantum Dot-Labeling of Virus Internal Component. J. Nanobiotechnol. 2017, 15, 37,  DOI: 10.1186/s12951-017-0270-9
    105. 105
      Hao, J.; Huang, L. L.; Zhang, R.; Wang, H. Z.; Xie, H. Y. A Mild and Reliable Method to Label Enveloped Virus with Quantum Dots by Copper-Free Click Chemistry. Anal. Chem. 2012, 84, 83648370,  DOI: 10.1021/ac301918t
    106. 106
      Zhang, P.; Liu, S.; Gao, D.; Hu, D.; Gong, P.; Sheng, Z.; Deng, J.; Ma, Y.; Cai, L. Click-Functionalized Compact Quantum Dots Protected by Multidentate-Imidazole Ligands: Conjugation-Ready Nanotags for Living-Virus Labeling and Imaging. J. Am. Chem. Soc. 2012, 134, 83888391,  DOI: 10.1021/ja302367s
    107. 107
      Liu, H.; Liu, Y.; Liu, S.; Pang, D. W.; Xiao, G. Clathrin-Mediated Endocytosis in Living Host Cells Visualized through Quantum Dot Labeling of Infectious Hematopoietic Necrosis virus. J. Virol. 2011, 85, 62526262,  DOI: 10.1128/JVI.00109-11
    108. 108
      Liu, S. L.; Zhang, Z. L.; Tian, Z. Q.; Zhao, H. S.; Liu, H.; Sun, E. Z.; Xiao, G. F.; Zhang, W.; Wang, H. Z.; Pang, D. W. Effectively and Efficiently Dissecting the Infection of Influenza Virus by Quantum-Dot-Based Single-Particle Tracking. ACS Nano 2012, 6, 141150,  DOI: 10.1021/nn2031353
    109. 109
      Luo, K.; Li, S.; Xie, M.; Wu, D.; Wang, W.; Chen, R.; Huang, L.; Huang, T.; Pang, D.; Xiao, G. Real-Time Visualization of Prion Transport in Single Live Cells Using Quantum Dots. Biochem. Biophys. Res. Commun. 2010, 394, 493497,  DOI: 10.1016/j.bbrc.2010.02.159
    110. 110
      Liu, S. L.; Zhang, L. J.; Wang, Z. G.; Zhang, Z. L.; Wu, Q. M.; Sun, E. Z.; Shi, Y. B.; Pang, D. W. Globally Visualizing the Microtubule-Dependent Transport Behaviors of Influenza Virus in Live Cells. Anal. Chem. 2014, 86, 39023908,  DOI: 10.1021/ac500640u
    111. 111
      Liu, S. L.; Wu, Q. M.; Zhang, L. J.; Wang, Z. G.; Sun, E. Z.; Zhang, Z. L.; Pang, D. W. Three-Dimensional Tracking of Rab5- and Rab7-Associated Infection Process of Influenza Virus. Small 2014, 10, 47464753,  DOI: 10.1002/smll.201400944
    112. 112
      Wang, Z. G.; Liu, S. L.; Zhang, Z. L.; Tian, Z. Q.; Tang, H. W.; Pang, D. W. Exploring Sialic Acid Receptors-Related Infection Behavior of Avian Influenza Virus in Human Bronchial Epithelial Cells by Single-Particle Tracking. Small 2014, 10, 27122720,  DOI: 10.1002/smll.201303532
    113. 113
      Qin, C.; Li, W.; Li, Q.; Yin, W.; Zhang, X.; Zhang, Z.; Zhang, X. E.; Cui, Z. Real-Time Dissection of Dynamic Uncoating of Individual Influenza Viruses. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 25772582,  DOI: 10.1073/pnas.1812632116
    114. 114
      Sun, E. Z.; Liu, A. A.; Zhang, Z. L.; Liu, S. L.; Tian, Z. Q.; Pang, D. W. Real-Time Dissection of Distinct Dynamin-Dependent Endocytic Routes of Influenza A Virus by Quantum Dot-Based Single-Virus Tracking. ACS Nano 2017, 11, 43954406,  DOI: 10.1021/acsnano.6b07853
    115. 115
      Wu, Q. M.; Liu, S. L.; Chen, G.; Zhang, W.; Sun, E. Z.; Xiao, G. F.; Zhang, Z. L.; Pang, D. W. Uncovering the Rab5-Independent Autophagic Trafficking of Influenza A Virus by Quantum-Dot-Based Single-Virus Tracking. Small 2018, 14, e1702841  DOI: 10.1002/smll.201702841
    116. 116
      Ma, Y.; Wang, M.; Li, W.; Zhang, Z.; Zhang, X.; Tan, T.; Zhang, X. E.; Cui, Z. Live Cell Imaging of Single Genomic Loci with Quantum Dot-Labeled TALEs. Nat. Commun. 2017, 8, 15318,  DOI: 10.1038/ncomms15318
    117. 117
      Li, Q.; Yin, W.; Li, W.; Zhang, Z.; Zhang, X.; Zhang, X. E.; Cui, Z. Encapsulating Quantum Dots within HIV-1 Virions through Site-Specific Decoration of the Matrix Protein Enables Single Virus Tracking in Live Primary Macrophages. Nano Lett. 2018, 18, 74577468,  DOI: 10.1021/acs.nanolett.8b02800
    118. 118
      Zhang, L. J.; Xia, L.; Liu, S. L.; Sun, E. Z.; Wu, Q. M.; Wen, L.; Zhang, Z. L.; Pang, D. W. A ″Driver Switchover″ Mechanism of Influenza Virus Transport from Microfilaments to Microtubules. ACS Nano 2018, 12, 474484,  DOI: 10.1021/acsnano.7b06926
    119. 119
      Muller, B.; Daecke, J.; Fackler, O. T.; Dittmar, M. T.; Zentgraf, H.; Krausslich, H. G. Construction and Characterization of a Fluorescently Labeled Infectious Human Immunodeficiency Virus Type 1 Derivative. J. Virol. 2004, 78, 1080310813,  DOI: 10.1128/JVI.78.19.10803-10813.2004
    120. 120
      Carlson, L. A.; Briggs, J. A. G.; Glass, B.; Riches, J. D.; Simon, M. N.; Johnson, M. C.; Muller, B.; Grunewald, K.; Krausslich, H. G. Three-Dimensional Analysis of Budding Sites and Released Virus Suggests a Revised Model for HIV-1 Morphogenesis. Cell Host Microbe 2008, 4, 592599,  DOI: 10.1016/j.chom.2008.10.013
    121. 121
      Sakin, V.; Paci, G.; Lemke, E. A.; Muller, B. Labeling of Virus Components for Advanced, Quantitative Imaging Analyses. FEBS Lett. 2016, 590, 18961914,  DOI: 10.1002/1873-3468.12131
    122. 122
      Goncalves, M. S. Fluorescent Labeling of Biomolecules with Organic Probes. Chem. Rev. 2009, 109, 190212,  DOI: 10.1021/cr0783840
    123. 123
      Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum Dots versus Organic Dyes as Fluorescent Labels. Nat. Methods 2008, 5, 763775,  DOI: 10.1038/nmeth.1248
    124. 124
      Miyawaki, A.; Sawano, A.; Kogure, T. Lighting Up Cells: Labelling Proteins with Fluorophores. Nat. Cell Biol. 2003, S1S7
    125. 125
      Sivaraman, D.; Biswas, P.; Cella, L. N.; Yates, M. V.; Chen, W. Detecting RNA Viruses in Living Mammalian Cells by Fluorescence Microscopy. Trends Biotechnol. 2011, 29, 307313,  DOI: 10.1016/j.tibtech.2011.02.006
    126. 126
      Wang, I. H.; Burckhardt, C. J.; Yakimovich, A.; Greber, U. F. Imaging, Tracking and Computational Analyses of Virus Entry and Egress with the Cytoskeleton. Viruses 2018, 10, 166,  DOI: 10.3390/v10040166
    127. 127
      Rao, J.; Dragulescu-Andrasi, A.; Yao, H. Fluorescence Imaging in Vivo: Recent Advances. Curr. Opin. Biotechnol. 2007, 18, 1725,  DOI: 10.1016/j.copbio.2007.01.003
    128. 128
      Lakadamyali, M.; Rust, M. J.; Zhuang, X. Ligands for Clathrin-Mediated Endocytosis Are Differentially Sorted into Distinct Populations of Early Endosomes. Cell 2006, 124, 9971009,  DOI: 10.1016/j.cell.2005.12.038
    129. 129
      Babcock, H. P.; Chen, C.; Zhuang, X. Using Single-Particle Tracking to Study Nuclear Trafficking of Viral Genes. Biophys. J. 2004, 87, 27492758,  DOI: 10.1529/biophysj.104.042234
    130. 130
      Vaughan, J. C.; Brandenburg, B.; Hogle, J. M.; Zhuang, X. Rapid Actin-Dependent Viral Motility in Live Cells. Biophys. J. 2009, 97, 16471656,  DOI: 10.1016/j.bpj.2009.07.011
    131. 131
      Brandenburg, B.; Lee, L. Y.; Lakadamyali, M.; Rust, M. J.; Zhuang, X.; Hogle, J. M. Imaging Poliovirus Entry in Live Cells. PLoS Biol. 2007, 5, e183  DOI: 10.1371/journal.pbio.0050183
    132. 132
      Xu, H.; Hao, X.; Wang, S.; Wang, Z.; Cai, M.; Jiang, J.; Qin, Q.; Zhang, M.; Wang, H. Real-Time Imaging of Rabies Virus Entry into Living Vero Cells. Sci. Rep. 2015, 5, 11753,  DOI: 10.1038/srep11753
    133. 133
      Vonderheit, A.; Helenius, A. Rab7 Associates with Early Endosomes to Mediate Sorting and Transport of Semliki Forest Virus to Late Endosomes. PLoS Biol. 2005, 3, e233  DOI: 10.1371/journal.pbio.0030233
    134. 134
      Johannsdottir, H. K.; Mancini, R.; Kartenbeck, J.; Amato, L.; Helenius, A. Host Cell Factors and Functions Involved in Vesicular Stomatitis Virus Entry. J. Virol. 2009, 83, 440453,  DOI: 10.1128/JVI.01864-08
    135. 135
      Engel, S.; Heger, T.; Mancini, R.; Herzog, F.; Kartenbeck, J.; Hayer, A.; Helenius, A. Role of Endosomes in Simian Virus 40 Entry and Infection. J. Virol. 2011, 85, 41984211,  DOI: 10.1128/JVI.02179-10
    136. 136
      Joo, K. I.; Fang, Y.; Liu, Y.; Xiao, L.; Gu, Z.; Tai, A.; Lee, C. L.; Tang, Y.; Wang, P. Enhanced Real-Time Monitoring of Adeno-Associated Virus Trafficking by Virus-Quantum Dot Conjugates. ACS Nano 2011, 5, 35233535,  DOI: 10.1021/nn102651p
    137. 137
      Schelhaas, M.; Ewers, H.; Rajamaki, M. L.; Day, P. M.; Schiller, J. T.; Helenius, A. Human Papillomavirus Type 16 Entry: Retrograde Cell Surface Transport along Actin-Rich Protrusions. PLoS Pathog. 2008, 4, e1000148  DOI: 10.1371/journal.ppat.1000148
    138. 138
      Martin-Acebes, M. A.; Vazquez-Calvo, A.; Gonzalez-Magaldi, M.; Sobrino, F. Foot-and-Mouth Disease Virus Particles Inactivated with Binary Ethylenimine Are Efficiently Internalized into Cultured Cells. Vaccine 2011, 29, 96559662,  DOI: 10.1016/j.vaccine.2011.10.031
    139. 139
      Ewers, H.; Smith, A. E.; Sbalzarini, I. F.; Lilie, H.; Koumoutsakos, P.; Helenius, A. Single-Particle Tracking of Murine Polyoma Virus-Like Particles on Live Cells and Artificial Membranes. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 1511015115,  DOI: 10.1073/pnas.0504407102
    140. 140
      Cureton, D. K.; Massol, R. H.; Whelan, S. P.; Kirchhausen, T. The Length of Vesicular Stomatitis Virus Particles Dictates a Need for Actin Assembly During Clathrin-Dependent Endocytosis. PLoS Pathog. 2010, 6, e1001127  DOI: 10.1371/journal.ppat.1001127
    141. 141
      Pelkmans, L.; Puntener, D.; Helenius, A. Local Actin Polymerization and Dynamin Recruitment in SV40-Induced Internalization of Caveolae. Science 2002, 296, 535539,  DOI: 10.1126/science.1069784
    142. 142
      Cureton, D. K.; Harbison, C. E.; Cocucci, E.; Parrish, C. R.; Kirchhausen, T. Limited Transferrin Receptor Clustering Allows Rapid Diffusion of Canine Parvovirus into Clathrin Endocytic Structures. J. Virol. 2012, 86, 53305340,  DOI: 10.1128/JVI.07194-11
    143. 143
      Ehrlich, M.; Boll, W.; Van Oijen, A.; Hariharan, R.; Chandran, K.; Nibert, M. L.; Kirchhausen, T. Endocytosis by Random Initiation and Stabilization of Clathrin-Coated Pits. Cell 2004, 118, 591605,  DOI: 10.1016/j.cell.2004.08.017
    144. 144
      Damm, E. M.; Pelkmans, L.; Kartenbeck, J.; Mezzacasa, A.; Kurzchalia, T.; Helenius, A. Clathrin- and Caveolin-1-Independent Endocytosis: Entry of Simian Virus 40 into Cells Devoid of Caveolae. J. Cell Biol. 2005, 168, 477488,  DOI: 10.1083/jcb.200407113
    145. 145
      Meier, R.; Franceschini, A.; Horvath, P.; Tetard, M.; Mancini, R.; Von Mering, C.; Helenius, A.; Lozach, P.-Y. Genome-Wide Small Interfering RNA Screens Reveal VAMP3 as a Novel Host Factor Required for Uukuniemi Virus Late Penetration. J. Virol. 2014, 88, 85658578,  DOI: 10.1128/JVI.00388-14
    146. 146
      Kalin, S.; Amstutz, B.; Gastaldelli, M.; Wolfrum, N.; Boucke, K.; Havenga, M.; DiGennaro, F.; Liska, N.; Hemmi, S.; Greber, U. F. Macropinocytotic Uptake and Infection of Human Epithelial Cells with Species B2 Adenovirus Type 35. J. Virol. 2010, 84, 53365350,  DOI: 10.1128/JVI.02494-09
    147. 147
      Mishra, A.; Behera, R. K.; Behera, P. K.; Mishra, B. K.; Behera, G. B. Cyanines During the 1990s: A Review. Chem. Rev. 2000, 100, 19732011,  DOI: 10.1021/cr990402t
    148. 148
      Kvach, M. V.; Ustinov, A. V.; Stepanova, I. A.; Malakhov, A. D.; Skorobogatyi, M. V.; Shmanai, V. V.; Korshun, V. A. A Convenient Synthesis of Cyanine Dyes: Reagents for the Labeling of Biomolecules. Eur. J. Org. Chem. 2008, 2008, 21072117,  DOI: 10.1002/ejoc.200701190
    149. 149
      Yang, X.; Shi, C.; Tong, R.; Qian, W.; Zhau, H. E.; Wang, R.; Zhu, G.; Cheng, J.; Yang, V. W.; Cheng, T. Near IR Heptamethine Cyanine Dye-Mediated Cancer Imaging. Clin. Cancer Res. 2010, 16, 28332844,  DOI: 10.1158/1078-0432.CCR-10-0059
    150. 150
      Brauchle, C.; Seisenberger, G.; Endress, T.; Ried, M. U.; Buning, H.; Hallek, M. Single Virus Tracing: Visualization of the Infection Pathway of a Virus into a Living Cell. ChemPhysChem 2002, 3, 299303,  DOI: 10.1002/1439-7641(20020315)3:3<299::AID-CPHC299>3.0.CO;2-R
    151. 151
      Berlier, J. E.; Rothe, A.; Buller, G.; Bradford, J.; Gray, D. R.; Filanoski, B. J.; Telford, W. G.; Yue, S.; Liu, J. X.; Cheung, C. Y. Quantitative Comparison of Long-Wavelength Alexa Fluor Dyes to Cy Dyes: Fluorescence of the Dyes and Their Bioconjugates. J. Histochem. Cytochem. 2003, 51, 16991712,  DOI: 10.1177/002215540305101214
    152. 152
      Mahmoudian, J.; Hadavi, R.; Jeddi-Tehrani, M.; Mahmoudi, A. R.; Bayat, A. A.; Shaban, E.; Vafakhah, M.; Darzi, M.; Tarahomi, M.; Ghods, R. Comparison of the Photobleaching and Photostability Traits of Alexa Fluor 568-and Fluorescein Isothiocyanate- Conjugated Antibody. Cell J. 2011, 13, 169172
    153. 153
      Hoekstra, D.; de Boer, T.; Klappe, K.; Wilschut, J. Fluorescence Method for Measuring the Kinetics of Fusion between Biological Membranes. Biochemistry 1984, 23, 56755681,  DOI: 10.1021/bi00319a002
    154. 154
      Floyd, D. L.; Ragains, J. R.; Skehel, J. J.; Harrison, S. C.; van Oijen, A. M. Single-Particle Kinetics of Influenza Virus Membrane Fusion. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 1538215387,  DOI: 10.1073/pnas.0807771105
    155. 155
      Jha, N. K.; Latinovic, O.; Martin, E.; Novitskiy, G.; Marin, M.; Miyauchi, K.; Naughton, J.; Young, J. A.; Melikyan, G. B. Imaging Single Retrovirus Entry through Alternative Receptor Isoforms and Intermediates of Virus-Endosome Fusion. PLoS Pathog. 2011, 7, e1001260  DOI: 10.1371/journal.ppat.1001260
    156. 156
      Hoornweg, T. E.; van Duijl-Richter, M. K. S.; Ayala Nunez, N. V.; Albulescu, I. C.; van Hemert, M. J.; Smit, J. M. Dynamics of Chikungunya Virus Cell Entry Unraveled by Single-Virus Tracking in Living Cells. J. Virol. 2016, 90, 47454756,  DOI: 10.1128/JVI.03184-15
    157. 157
      Li, Q.; Li, W.; Yin, W.; Guo, J.; Zhang, Z. P.; Zeng, D.; Zhang, X.; Wu, Y.; Zhang, X. E.; Cui, Z. Single-Particle Tracking of Human Immunodeficiency Virus Type 1 Productive Entry into Human Primary Macrophages. ACS Nano 2017, 11, 38903903,  DOI: 10.1021/acsnano.7b00275
    158. 158
      Nanbo, A.; Imai, M.; Watanabe, S.; Noda, T.; Takahashi, K.; Neumann, G.; Halfmann, P.; Kawaoka, Y. Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner. PLoS Pathog. 2010, 6, e1001121  DOI: 10.1371/journal.ppat.1001121
    159. 159
      Hao, X.; Shang, X.; Wu, J. Z.; Shan, Y. P.; Cai, M. J.; Jiang, J. G.; Huang, Z.; Tang, Z. Y.; Wang, H. D. Single-Particle Tracking of Hepatitis B Virus-Like Vesicle Entry into Cells. Small 2011, 7, 12121218,  DOI: 10.1002/smll.201002020
    160. 160
      Le Blanc, I.; Luyet, P. P.; Pons, V.; Ferguson, C.; Emans, N.; Petiot, A.; Mayran, N.; Demaurex, N.; Faure, J.; Sadoul, R. Endosome-to-Cytosol Transport of Viral Nucleocapsids. Nat. Cell Biol. 2005, 7, 653664,  DOI: 10.1038/ncb1269
    161. 161
      Lozach, P.-Y.; Kühbacher, A.; Meier, R.; Mancini, R.; Bitto, D.; Bouloy, M.; Helenius, A. DC-SIGN as a Receptor for Phleboviruses. Cell Host Microbe 2011, 10, 7588,  DOI: 10.1016/j.chom.2011.06.007
    162. 162
      Ayala-Nuñez, N. V.; Wilschut, J.; Smit, J. M. Monitoring Virus Entry into Living Cells Using DiD-Labeled Dengue Virus Particles. Methods 2011, 55, 137143,  DOI: 10.1016/j.ymeth.2011.07.009
    163. 163
      Crowther, D.; Melnick, J. L. The Incorporation of Neutral Red and Acridine Orange into Developing Poliovirus Particles Making Them Photosensitive. Virology 1961, 14, 1121,  DOI: 10.1016/0042-6822(61)90127-1
    164. 164
      Wilson, J. N.; Cooper, P. D. Aspects of the Growth of Poliovirus as Revealed by the Photodynamic Effects of Neutral Red and Acridine Orange. Virology 1963, 21, 135145,  DOI: 10.1016/0042-6822(63)90249-6
    165. 165
      Glynn, T. J.; Power, S.; Ryder, A. G.; Morrison, J. J. Time-Domain Measurement of Fluorescence Lifetime Variation with pH. Proc. SPIE-Int. Soc. Opt. Eng.; Society of Photo-optical Instrumentation Engineers: 2001.
    166. 166
      Kremser, L.; Okun, V. M.; Nicodemou, A.; Blaas, D.; Kenndler, E. Binding of Fluorescent Dye to Genomic RNA inside Intact Human Rhinovirus after Viral Capsid Penetration Investigated by Capillary Electrophoresis. Anal. Chem. 2004, 76, 882887,  DOI: 10.1021/ac034898x
    167. 167
      Kremser, L.; Petsch, M.; Blaas, D.; Kenndler, E. Labeling of Capsid Proteins and Genomic RNA of Human Rhinovirus with Two Different Fluorescent Dyes for Selective Detection by Capillary Electrophoresis. Anal. Chem. 2004, 76, 73607365,  DOI: 10.1021/ac048999m
    168. 168
      Jones, L. J.; Yue, S. T.; Cheung, C. Y.; Singer, V. L. RNA Quantitation by Fluorescence-Based Solution Assay: RiboGreen Reagent Characterization. Anal. Biochem. 1998, 265, 368374,  DOI: 10.1006/abio.1998.2914
    169. 169
      Lin, Y.-W.; Chiu, T.-C.; Chang, H.-T. Laser-Induced Fluorescence Technique for DNA and Proteins Separated by Capillary Electrophoresis. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2003, 793, 3748,  DOI: 10.1016/S1570-0232(03)00363-5
    170. 170
      Wen, L.; Lin, Y.; Zhang, Z. L.; Lu, W.; Lv, C.; Chen, Z. L.; Wang, H. Z.; Pang, D. W. Intracellular Self-Assembly Based Multi-Labeling of Key Viral Components: Envelope, Capsid and Nucleic Acids. Biomaterials 2016, 99, 2433,  DOI: 10.1016/j.biomaterials.2016.04.038
    171. 171
      Zhou, P.; Zheng, Z.; Lu, W.; Zhang, F.; Zhang, Z.; Pang, D.; Hu, B.; He, Z.; Wang, H. Multicolor Labeling of Living-Virus Particles in Live Cells. Angew. Chem., Int. Ed. 2012, 51, 670674,  DOI: 10.1002/anie.201105701
    172. 172
      Huang, L. L.; Zhou, P.; Wang, H. Z.; Zhang, R.; Hao, J.; Xie, H. Y.; He, Z. K. A New Stable and Reliable Method for Labeling Nucleic Acids of Fully Replicative Viruses. Chem. Commun. 2012, 48, 24242426,  DOI: 10.1039/c2cc17069h
    173. 173
      Shimomura, O.; Johnson, F. H.; Saiga, Y. Extraction, Purification and Properties of Aequorin, a Bioluminescent Protein from the Luminous Hydromedusan, Aequorea. J. Cell. Comp. Physiol. 1962, 59, 223239,  DOI: 10.1002/jcp.1030590302
    174. 174
      Chalfie, M. Green Fluorescent Protein as a Marker for Gene Expression. Trends Genet. 1994, 10, 151,  DOI: 10.1016/0168-9525(94)90088-4
    175. 175
      Lippincott-Schwartz, J.; Patterson, G. H. Development and Use of Fluorescent Protein Markers in Living Cells. Science 2003, 300, 8791,  DOI: 10.1126/science.1082520
    176. 176
      Day, R. N.; Davidson, M. W. The Fluorescent Protein Palette: Tools for Cellular Imaging. Chem. Soc. Rev. 2009, 38, 28872921,  DOI: 10.1039/b901966a
    177. 177
      Wiedenmann, J.; Oswald, F.; Nienhaus, G. U. Fluorescent Proteins for Live Cell Imaging: Opportunities, Limitations, and Challenges. IUBMB Life 2009, 61, 10291042,  DOI: 10.1002/iub.256
    178. 178
      Shaner, N. C.; Campbell, R. E.; Steinbach, P. A.; Giepmans, B. N.; Palmer, A. E.; Tsien, R. Y. Improved Monomeric Red, Orange and Yellow Fluorescent Proteins Derived from Discosoma sp. Red Fluorescent Protein. Nat. Biotechnol. 2004, 22, 15671572,  DOI: 10.1038/nbt1037
    179. 179
      Shkrob, M. A.; Yanushevich, Y. G.; Chudakov, D. M.; Gurskaya, N. G.; Labas, Y. A.; Poponov, S. Y.; Mudrik, N. N.; Lukyanov, S.; Lukyanov, K. A. Far-Red Fluorescent Proteins Evolved From a Blue Chromoprotein from Actinia Equina. Biochem. J. 2005, 392, 649654,  DOI: 10.1042/BJ20051314
    180. 180
      Nienhaus, K.; Nienhaus, G. U. Fluorescent Proteins for Live-Cell Imaging with Super-Resolution. Chem. Soc. Rev. 2014, 43, 10881106,  DOI: 10.1039/C3CS60171D
    181. 181
      Shcherbakova, D. M.; Verkhusha, V. V. Near-Infrared Fluorescent Proteins for Multicolor in Vivo Imaging. Nat. Methods 2013, 10, 751754,  DOI: 10.1038/nmeth.2521
    182. 182
      Shcherbakova, D. M.; Subach, O. M.; Verkhusha, V. V. Red Fluorescent Proteins: Advanced Imaging Applications and Future Design. Angew. Chem., Int. Ed. 2012, 51, 1072410738,  DOI: 10.1002/anie.201200408
    183. 183
      Tomosugi, W.; Matsuda, T.; Tani, T.; Nemoto, T.; Kotera, I.; Saito, K.; Horikawa, K.; Nagai, T. An Ultramarine Fluorescent Protein with Increased Photostability and pH Insensitivity. Nat. Methods 2009, 6, 351353,  DOI: 10.1038/nmeth.1317
    184. 184
      Ai, H. W.; Shaner, N. C.; Cheng, Z.; Tsien, R. Y.; Campbell, R. E. Exploration of New Chromophore Structures Leads to the Identification of Improved Blue Fluorescent Proteins. Biochemistry 2007, 46, 59045910,  DOI: 10.1021/bi700199g
    185. 185
      Subach, O. M.; Gundorov, I. S.; Yoshimura, M.; Subach, F. V.; Zhang, J.; Grüenwald, D.; Souslova, E. A.; Chudakov, D. M.; Verkhusha, V. V. Conversion of Red Fluorescent Protein into a Bright Blue Probe. Chem. Biol. 2008, 15, 11161124,  DOI: 10.1016/j.chembiol.2008.08.006
    186. 186
      Goedhart, J.; van Weeren, L.; Hink, M. A.; Vischer, N. O.; Jalink, K.; Gadella, T. W., Jr. Bright Cyan Fluorescent Protein Variants Identified by Fluorescence Lifetime Screening. Nat. Methods 2010, 7, 137139,  DOI: 10.1038/nmeth.1415
    187. 187
      Ai, H. W.; Henderson, J. N.; Remington, S. J.; Campbell, R. E. Directed Evolution of a Monomeric, Bright and Photostable Version of Clavularia Cyan Fluorescent Protein: Structural Characterization and Applications in Fluorescence Imaging. Biochem. J. 2006, 400, 531540,  DOI: 10.1042/BJ20060874
    188. 188
      Samarkina, O. N.; Popova, A. G.; Gvozdik, E. Y.; Chkalina, A. V.; Zvyagin, I. V.; Rylova, Y. V.; Rudenko, N. V.; Lusta, K. A.; Kelmanson, I. V.; Gorokhovatsky, A. Y. Universal and Rapid Method for Purification of GFP-Like Proteins by the Ethanol Extraction. Protein Expression Purif. 2009, 65, 108113,  DOI: 10.1016/j.pep.2008.11.008
    189. 189
      Ai, H. W.; Olenych, S. G.; Wong, P.; Davidson, M. W.; Campbell, R. E. Hue-Shifted Monomeric Variants of Clavularia Cyan Fluorescent Protein: Identification of the Molecular Determinants of Color and Applications in Fluorescence Imaging. BMC Biol. 2008, 6, 13,  DOI: 10.1186/1741-7007-6-13
    190. 190
      Shaner, N. C.; Lambert, G. G.; Chammas, A.; Ni, Y.; Cranfill, P. J.; Baird, M. A.; Sell, B. R.; Allen, J. R.; Day, R. N.; Israelsson, M. A Bright Monomeric Green Fluorescent Protein Derived from Branchiostoma Lanceolatum. Nat. Methods 2013, 10, 407409,  DOI: 10.1038/nmeth.2413
    191. 191
      Miyawaki, A.; Griesbeck, O.; Heim, R.; Tsien, R. Y. Dynamic and Quantitative Ca2+ Measurements Using Improved Cameleons. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 21352140,  DOI: 10.1073/pnas.96.5.2135
    192. 192
      Griesbeck, O.; Baird, G. S.; Campbell, R. E.; Zacharias, D. A.; Tsien, R. Y. Reducing the Environmental Sensitivity of Yellow Fluorescent Protein Mechanism and Applications. J. Biol. Chem. 2001, 276, 2918829194,  DOI: 10.1074/jbc.M102815200
    193. 193
      Sakaue-Sawano, A.; Kurokawa, H.; Morimura, T.; Hanyu, A.; Hama, H.; Osawa, H.; Kashiwagi, S.; Fukami, K.; Miyata, T.; Miyoshi, H. Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression. Cell 2008, 132, 487498,  DOI: 10.1016/j.cell.2007.12.033
    194. 194
      Merzlyak, E. M.; Goedhart, J.; Shcherbo, D.; Bulina, M. E.; Shcheglov, A. S.; Fradkov, A. F.; Gaintzeva, A.; Lukyanov, K. A.; Lukyanov, S.; Gadella, T. W. Bright Monomeric Red Fluorescent Protein with an Extended Fluorescence Lifetime. Nat. Methods 2007, 4, 555557,  DOI: 10.1038/nmeth1062
    195. 195
      Lam, A. J.; St-Pierre, F.; Gong, Y.; Marshall, J. D.; Cranfill, P. J.; Baird, M. A.; McKeown, M. R.; Wiedenmann, J.; Davidson, M. W.; Schnitzer, M. J. Improving FRET Dynamic Range with Bright Green and Red Fluorescent Proteins. Nat. Methods 2012, 9, 10051012,  DOI: 10.1038/nmeth.2171
    196. 196
      Shcherbo, D.; Murphy, C. S.; Ermakova, G. V.; Solovieva, E. A.; Chepurnykh, T. V.; Shcheglov, A. S.; Verkhusha, V. V.; Pletnev, V. Z.; Hazelwood, K. L.; Roche, P. M. Far-Red Fluorescent Tags for Protein Imaging in Living Tissues. Biochem. J. 2009, 418, 567574,  DOI: 10.1042/BJ20081949
    197. 197
      Lin, M. Z.; McKeown, M. R.; Ng, H. L.; Aguilera, T. A.; Shaner, N. C.; Campbell, R. E.; Adams, S. R.; Gross, L. A.; Ma, W.; Alber, T. Autofluorescent Proteins with Excitation in the Optical Window for Intravital Imaging in Mammals. Chem. Biol. 2009, 16, 11691179,  DOI: 10.1016/j.chembiol.2009.10.009
    198. 198
      Piatkevich, K. D.; Malashkevich, V. N.; Morozova, K. S.; Nemkovich, N. A.; Almo, S. C.; Verkhusha, V. V. Extended Stokes Shift in Fluorescent Proteins: Chromophore-Protein Interactions in a Near-Infrared TagRFP675 Variant. Sci. Rep. 2013, 3, 1847,  DOI: 10.1038/srep01847
    199. 199
      Sankaranarayanan, S.; De Angelis, D.; Rothman, J. E.; Ryan, T. A. The Use of pHluorins for Optical Measurements of Presynaptic Activity. Biophys. J. 2000, 79, 21992208,  DOI: 10.1016/S0006-3495(00)76468-X
    200. 200
      Shen, Y.; Rosendale, M.; Campbell, R. E.; Perrais, D. pHuji, A pH-Sensitive Red Fluorescent Protein for Imaging of Exo- and Endocytosis. J. Cell Biol. 2014, 207, 419432,  DOI: 10.1083/jcb.201404107
    201. 201
      Rodriguez, E. A.; Campbell, R. E.; Lin, J. Y.; Lin, M. Z.; Miyawaki, A.; Palmer, A. E.; Shu, X.; Zhang, J.; Tsien, R. Y. The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Trends Biochem. Sci. 2017, 42, 111129,  DOI: 10.1016/j.tibs.2016.09.010
    202. 202
      Shaner, N. C.; Steinbach, P. A.; Tsien, R. Y. A Guide to Choosing Fluorescent Proteins. Nat. Methods 2005, 2, 905909,  DOI: 10.1038/nmeth819
    203. 203
      Chudakov, D. M.; Matz, M. V.; Lukyanov, S.; Lukyanov, K. A. Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues. Physiol. Rev. 2010, 90, 11031163,  DOI: 10.1152/physrev.00038.2009
    204. 204
      Foo, Y. H.; Naredi-Rainer, N.; Lamb, D. C.; Ahmed, S.; Wohland, T. Factors Affecting the Quantification of Biomolecular Interactions by Fluorescence Cross-Correlation Spectroscopy. Biophys. J. 2012, 102, 11741183,  DOI: 10.1016/j.bpj.2012.01.040
    205. 205
      McDonald, D.; Wu, L.; Bohks, S. M.; KewalRamani, V. N.; Unutmaz, D.; Hope, T. J. Recruitment of HIV and Its Receptors to Dendritic Cell-T Cell Junctions. Science 2003, 300, 12951297,  DOI: 10.1126/science.1084238
    206. 206
      Zacharias, D. A.; Tsien, R. Y. Molecular Biology and Mutation of Green Fluorescent Protein. Methods Biochem. Anal. 2005, 47, 83120,  DOI: 10.1002/0471739499.ch5
    207. 207
      Klingen, Y.; Conzelmann, K. K.; Finke, S. Double-Labeled Rabies Virus: Live Tracking of Enveloped Virus Transport. J. Virol. 2008, 82, 237245,  DOI: 10.1128/JVI.01342-07
    208. 208
      Lehmann, M. J.; Sherer, N. M.; Marks, C. B.; Pypaert, M.; Mothes, W. Actin- and Myosin-Driven Movement of Viruses along Filopodia Precedes Their Entry into Cells. J. Cell Biol. 2005, 170, 317325,  DOI: 10.1083/jcb.200503059
    209. 209
      Sugimoto, K.; Uema, M.; Sagara, H.; Tanaka, M.; Sata, T.; Hashimoto, Y.; Kawaguchi, Y. Simultaneous Tracking of Capsid, Tegument, and Envelope Protein Localization in Living Cells Infected with Triply Fluorescent Herpes Simplex Virus 1. J. Virol. 2008, 82, 51985211,  DOI: 10.1128/JVI.02681-07
    210. 210
      Liesche, J.; Ziomkiewicz, I.; Schulz, A. Super-Resolution Imaging with Pontamine Fast Scarlet 4BS Enables Direct Visualization of Cellulose Orientation and Cell Connection Architecture in Onion Epidermis Cells. BMC Plant Biol. 2013, 13, 226,  DOI: 10.1186/1471-2229-13-226
    211. 211
      Melikyan, G. B.; Barnard, R. J.; Abrahamyan, L. G.; Mothes, W.; Young, J. A. Imaging Individual Retroviral Fusion Events: From Hemifusion to Pore Formation and Growth. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 87288733,  DOI: 10.1073/pnas.0501864102
    212. 212
      Dixit, R.; Tiwari, V.; Shukla, D. Herpes Simplex Virus Type 1 Induces Filopodia in Differentiated P19 Neural Cells to Facilitate Viral Spread. Neurosci. Lett. 2008, 440, 113118,  DOI: 10.1016/j.neulet.2008.05.031
    213. 213
      Adu-Gyamfi, E.; Digman, M. A.; Gratton, E.; Stahelin, R. V. Single-Particle Tracking Demonstrates That Actin Coordinates the Movement of the Ebola Virus Matrix Protein. Biophys. J. 2012, 103, L41143,  DOI: 10.1016/j.bpj.2012.09.026
    214. 214
      Miyauchi, K.; Marin, M.; Melikyan, G. B. Visualization of Retrovirus Uptake and Delivery into Acidic Endosomes. Biochem. J. 2011, 434, 559569,  DOI: 10.1042/BJ20101588
    215. 215
      Padilla-Parra, S.; Marin, M.; Kondo, N.; Melikyan, G. B. Pinpointing Retrovirus Entry Sites in Cells Expressing Alternatively Spliced Receptor Isoforms by Single Virus Imaging. Retrovirology 2014, 11, 47,  DOI: 10.1186/1742-4690-11-47
    216. 216
      Mercer, J.; Helenius, A. Vaccinia Virus Uses Macropinocytosis and Apoptotic Mimicry to Enter Host Cells. Science 2008, 320, 531535,  DOI: 10.1126/science.1155164
    217. 217
      Manicassamy, B.; Manicassamy, S.; Belicha-Villanueva, A.; Pisanelli, G.; Pulendran, B.; Garcia-Sastre, A. Analysis of in Vivo Dynamics of Influenza Virus Infection in Mice Using a GFP Reporter Virus. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 1153111536,  DOI: 10.1073/pnas.0914994107
    218. 218
      Bencina, M. Illumination of the Spatial Order of Intracellular pH by Genetically Encoded pH-Sensitive Sensors. Sensors 2013, 13, 1673616758,  DOI: 10.3390/s131216736
    219. 219
      Hogue, I. B.; Bosse, J. B.; Engel, E. A.; Scherer, J.; Hu, J. R.; Del Rio, T.; Enquist, L. W. Fluorescent Protein Approaches in Alpha Herpesvirus Research. Viruses 2015, 7, 59335961,  DOI: 10.3390/v7112915
    220. 220
      Jouvenet, N.; Bieniasz, P. D.; Simon, S. M. Imaging the Biogenesis of Individual HIV-1 Virions in Live Cells. Nature 2008, 454, 236240,  DOI: 10.1038/nature06998
    221. 221
      Hogue, I. B.; Bosse, J. B.; Hu, J. R.; Thiberge, S. Y.; Enquist, L. W. Cellular Mechanisms of Alpha Herpesvirus Eegress: Live Cell Fluorescence Microscopy of Pseudorabies Virus Exocytosis. PLoS Pathog. 2014, 10, e1004535  DOI: 10.1371/journal.ppat.1004535
    222. 222
      Adam, V.; Berardozzi, R.; Byrdin, M.; Bourgeois, D. Phototransformable Fluorescent Proteins: Future Challenges. Curr. Opin. Chem. Biol. 2014, 20, 92102,  DOI: 10.1016/j.cbpa.2014.05.016
    223. 223
      Chudakov, D. M.; Verkhusha, V. V.; Staroverov, D. B.; Souslova, E. A.; Lukyanov, S.; Lukyanov, K. A. Photoswitchable Cyan Fluorescent Protein for Protein Tracking. Nat. Biotechnol. 2004, 22, 14351439,  DOI: 10.1038/nbt1025
    224. 224
      Nemet, I.; Ropelewski, P.; Imanishi, Y. Applications of Phototransformable Fluorescent Proteins for Tracking the Dynamics of Cellular Components. Photochem. Photobiol. Sci. 2015, 14, 17871806,  DOI: 10.1039/C5PP00174A
    225. 225
      Ando, R.; Hama, H.; Yamamoto-Hino, M.; Mizuno, H.; Miyawaki, A. An Optical Marker Based on the UV-Induced Green-to-Red Photoconversion of a Fluorescent Protein. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 1265112656,  DOI: 10.1073/pnas.202320599
    226. 226
      Patterson, G. H.; Lippincott-Schwartz, J. A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells. Science 2002, 297, 18731877,  DOI: 10.1126/science.1074952
    227. 227
      Zhou, X. X.; Lin, M. Z. Photoswitchable Fluorescent Proteins: Ten Years of Colorful Chemistry and Exciting Applications. Curr. Opin. Chem. Biol. 2013, 17, 682690,  DOI: 10.1016/j.cbpa.2013.05.031
    228. 228
      Shroff, H.; Galbraith, C. G.; Galbraith, J. A.; White, H.; Gillette, J.; Olenych, S.; Davidson, M. W.; Betzig, E. Dual-Color Superresolution Imaging of Genetically Expressed Probes within Individual Adhesion Complexes. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 2030820313,  DOI: 10.1073/pnas.0710517105
    229. 229
      Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J.; Hess, H. F. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 2006, 313, 16421645,  DOI: 10.1126/science.1127344
    230. 230
      Fernandez-Suarez, M.; Ting, A. Y. Fluorescent Probes for Super-Resolution Imaging in Living Cells. Nat. Rev. Mol. Cell Biol. 2008, 9, 929943,  DOI: 10.1038/nrm2531
    231. 231
      Bourgeois, D.; Adam, V. Reversible Photoswitching in Fluorescent Proteins: A Mechanistic View. IUBMB Life 2012, 64, 482491,  DOI: 10.1002/iub.1023
    232. 232
      Muranyi, W.; Malkusch, S.; Muller, B.; Heilemann, M.; Krausslich, H. G. Super-Resolution Microscopy Reveals Specific Recruitment of HIV-1 Envelope Proteins to Viral Assembly Sites Dependent on the Envelope C-Terminal Tail. PLoS Pathog. 2013, 9, e1003198  DOI: 10.1371/journal.ppat.1003198
    233. 233
      Muller, B.; Heilemann, M. Shedding New Light on Viruses: Super-Resolution Microscopy for Studying Human Immunodeficiency Virus. Trends Microbiol. 2013, 21, 522533,  DOI: 10.1016/j.tim.2013.06.010
    234. 234
      Grove, J. Super-Resolution Microscopy: A Virus’ Eye View of the Cell. Viruses 2014, 6, 13651378,  DOI: 10.3390/v6031365
    235. 235
      Manley, S.; Gillette, J. M.; Patterson, G. H.; Shroff, H.; Hess, H. F.; Betzig, E.; Lippincott-Schwartz, J. High-Density Mapping of Single-Molecule Trajectories with Photoactivated Localization Microscopy. Nat. Methods 2008, 5, 155157,  DOI: 10.1038/nmeth.1176
    236. 236
      Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots. Nat. Biotechnol. 2004, 22, 969976,  DOI: 10.1038/nbt994
    237. 237
      Algar, W. R.; Susumu, K.; Delehanty, J. B.; Medintz, I. L. Semiconductor Quantum Dots in Bioanalysis: Crossing the Valley of Death. Anal. Chem. 2011, 83, 88268837,  DOI: 10.1021/ac201331r
    238. 238
      Wegner, K. D.; Hildebrandt, N. Quantum Dots: Bright and Versatile in Vitro and in Vivo Fluorescence Imaging Biosensors. Chem. Soc. Rev. 2015, 44, 47924834,  DOI: 10.1039/C4CS00532E
    239. 239
      Chen, G.; Zhu, J. Y.; Zhang, Z. L.; Zhang, W.; Ren, J. G.; Wu, M.; Hong, Z. Y.; Lv, C.; Pang, D. W.; Zhao, Y. F. Transformation of Cell-Derived Microparticles into Quantum-Dot-Labeled Nanovectors for Antitumor siRNA Delivery. Angew. Chem., Int. Ed. 2015, 54, 10361040,  DOI: 10.1002/anie.201410223
    240. 240
      Rosenthal, S. J.; Chang, J. C.; Kovtun, O.; McBride, J. R.; Tomlinson, I. D. Biocompatible Quantum Dots for Biological Applications. Chem. Biol. 2011, 18, 1024,  DOI: 10.1016/j.chembiol.2010.11.013
    241. 241
      Jethi, L.; Mack, T. G.; Kambhampati, P. Extending Semiconductor Nanocrystals from the Quantum Dot Regime to the Molecular Cluster Regime. J. Phys. Chem. C 2017, 121, 2610226107,  DOI: 10.1021/acs.jpcc.7b08439
    242. 242
      Zhou, J.; Liu, Y.; Tang, J.; Tang, W. Surface Ligands Engineering of Semiconductor Quantum Dots for Chemosensory and Biological Applications. Mater. Today 2017, 20, 360376,  DOI: 10.1016/j.mattod.2017.02.006
    243. 243
      Zhou, J.; Yang, Y.; Zhang, C. Y. Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chem. Rev. 2015, 115, 1166911717,  DOI: 10.1021/acs.chemrev.5b00049
    244. 244
      Zhang, M.; Yue, J.; Cui, R.; Ma, Z.; Wan, H.; Wang, F.; Zhu, S.; Zhou, Y.; Kuang, Y.; Zhong, Y. Bright Quantum Dots Emitting at Approximately 1,600 nm in the NIR-IIb Window for Deep Tissue Fluorescence Imaging. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 65906595,  DOI: 10.1073/pnas.1806153115
    245. 245
      Zhao, J. Y.; Chen, G.; Gu, Y. P.; Cui, R.; Zhang, Z. L.; Yu, Z. L.; Tang, B.; Zhao, Y. F.; Pang, D. W. Ultrasmall Magnetically Engineered Ag2Se Quantum Dots for Instant Efficient Labeling and Whole-Body High-Resolution Multimodal Real-Time Tracking of Cell-Derived Microvesicles. J. Am. Chem. Soc. 2016, 138, 18931903,  DOI: 10.1021/jacs.5b10340
    246. 246
      Gu, Y. P.; Cui, R.; Zhang, Z. L.; Xie, Z. X.; Pang, D. W. Ultrasmall Near-Infrared Ag2Se Quantum Dots with Tunable Fluorescence for in Vivo Imaging. J. Am. Chem. Soc. 2012, 134, 7982,  DOI: 10.1021/ja2089553
    247. 247
      Alivisatos, A. P.; Gu, W. W.; Larabell, C. Quantum Dots as Cellular Probes. Annu. Rev. Biomed. Eng. 2005, 7, 5576,  DOI: 10.1146/annurev.bioeng.7.060804.100432
    248. 248
      Gao, X.; Yang, L.; Petros, J. A.; Marshall, F. F.; Simons, J. W.; Nie, S. In Vivo Molecular and Cellular Imaging with Quantum Dots. Curr. Opin. Biotechnol. 2005, 16, 6372,  DOI: 10.1016/j.copbio.2004.11.003
    249. 249
      Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 1998, 281, 20132016,  DOI: 10.1126/science.281.5385.2013
    250. 250
      Smith, A. M.; Duan, H. W.; Mohs, A. M.; Nie, S. M. Bioconjugated Quantum Dots for in Vivo Molecular and Cellular Imaging. Adv. Drug Delivery Rev. 2008, 60, 12261240,  DOI: 10.1016/j.addr.2008.03.015
    251. 251
      Lidke, D. S.; Nagy, P.; Heintzmann, R.; Arndt-Jovin, D. J.; Post, J. N.; Grecco, H. E.; Jares-Erijman, E. A.; Jovin, T. M. Quantum Dot Ligands Provide New Insights into erbB/HER Receptor–Mediated Signal Transduction. Nat. Biotechnol. 2004, 22, 198203,  DOI: 10.1038/nbt929
    252. 252
      Srinivasan, C.; Lee, J.; Papadimitrakopoulos, F.; Silbart, L. K.; Zhao, M.; Burgess, D. J. Labeling and Intracellular Tracking of Functionally Active Plasmid DNA with Semiconductor Quantum Dots. Mol. Ther. 2006, 14, 192201,  DOI: 10.1016/j.ymthe.2006.03.010
    253. 253
      Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P. Immunofluorescent Labeling of Cancer Marker Her2 and Other Cellular Targets with Semiconductor Quantum Dots. Nat. Biotechnol. 2003, 21, 4146,  DOI: 10.1038/nbt764
    254. 254
      Chen, C.; Peng, J.; Xia, H.; Wu, Q.; Zeng, L.; Xu, H.; Tang, H.; Zhang, Z.; Zhu, X.; Pang, D. Quantum-Dot-Based Immunofluorescent Imaging of HER2 and ER Provides New Insights into Breast Cancer Heterogeneity. Nanotechnology 2010, 21, 095101  DOI: 10.1088/0957-4484/21/9/095101
    255. 255
      Chen, C.; Xia, H. S.; Gong, Y. P.; Peng, J.; Peng, C. W.; Hu, M. B.; Zhu, X. B.; Pang, D. W.; Sun, S. R.; Li, Y. The Quantitative Detection of Total HER2 Load by Quantum Dots and the Identification of a New Subtype of Breast Cancer with Different 5-Year Prognosis. Biomaterials 2010, 31, 88188825,  DOI: 10.1016/j.biomaterials.2010.07.091
    256. 256
      Chen, C.; Liu, S. L.; Cui, R.; Huang, B. H.; Tian, Z. Q.; Jiang, P.; Pang, D. W.; Zhang, Z. L. Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking. J. Phys. Chem. C 2008, 112, 1890418910,  DOI: 10.1021/jp807074t
    257. 257
      Gao, X.; Wang, T.; Wu, B.; Chen, J.; Chen, J.; Yue, Y.; Dai, N.; Chen, H.; Jiang, X. Quantum Dots for Tracking Cellular Transport of Lectin-Functionalized Nanoparticles. Biochem. Biophys. Res. Commun. 2008, 377, 3540,  DOI: 10.1016/j.bbrc.2008.09.077
    258. 258
      Rajan, S. S.; Liu, H. Y.; Vu, T. Q. Ligand-Bound Quantum Dot Probes for Studying the Molecular Scale Dynamics of Receptor Endocytic Trafficking in Live Cells. ACS Nano 2008, 2, 11531166,  DOI: 10.1021/nn700399e
    259. 259
      Murcia, M. J.; Minner, D. E.; Mustata, G. M.; Ritchie, K.; Naumann, C. A. Design of Quantum Dot-Conjugated Lipids for Long-Term, High-Speed Tracking Experiments on Cell Surfaces. J. Am. Chem. Soc. 2008, 130, 1505415062,  DOI: 10.1021/ja803325b
    260. 260
      Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing. Nat. Mater. 2005, 4, 435446,  DOI: 10.1038/nmat1390
    261. 261
      Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307, 538544,  DOI: 10.1126/science.1104274
    262. 262
      Bentolila, L. A.; Ebenstein, Y.; Weiss, S. Quantum Dots for in Vivo Small-Animal Imaging. J. Nucl. Med. 2009, 50, 493496,  DOI: 10.2967/jnumed.108.053561
    263. 263
      Zrazhevskiy, P.; Sena, M.; Gao, X. Designing Multifunctional Quantum Dots for Bioimaging, Detection, and Drug Delivery. Chem. Soc. Rev. 2010, 39, 43264354,  DOI: 10.1039/b915139g
    264. 264
      Ruan, G.; Agrawal, A.; Marcus, A. I.; Nie, S. Imaging and Tracking of Tat Peptide-Conjugated Quantum Dots in Living Cells: New Insights into Nanoparticle Uptake, Intracellular Transport, and Vesicle Shedding. J. Am. Chem. Soc. 2007, 129, 1475914766,  DOI: 10.1021/ja074936k
    265. 265
      Bruchez, M. P. Quantum Dots Find Their Stride in Single Molecule Tracking. Curr. Opin. Chem. Biol. 2011, 15, 775780,  DOI: 10.1016/j.cbpa.2011.10.011
    266. 266
      Tada, H.; Higuchi, H.; Wanatabe, T. M.; Ohuchi, N. In Vivo Real-Time Tracking of Single Quantum Dots Conjugated with Monoclonal Anti-HER2 Antibody in Tumors of Mice. Cancer Res. 2007, 67, 11381144,  DOI: 10.1158/0008-5472.CAN-06-1185
    267. 267
      Wells, N. P.; Lessard, G. A.; Werner, J. H. Confocal, Three-Dimensional Tracking of Individual Quantum Dots in High-Background Environments. Anal. Chem. 2008, 80, 98309834,  DOI: 10.1021/ac8021899
    268. 268
      Cui, Z. Q.; Ren, Q.; Wei, H. P.; Chen, Z.; Deng, J. Y.; Zhang, Z. P.; Zhang, X. E. Quantum Dot-Aptamer Nanoprobes for Recognizing and Labeling Influenza A Virus Particles. Nanoscale 2011, 3, 24542457,  DOI: 10.1039/c1nr10218d
    269. 269
      Saxton, M. J.; Jacobson, K. Single-Particle Tracking: Applications to Membrane Dynamics. Annu. Rev. Biophys. Biomol. Struct. 1997, 26, 373399,  DOI: 10.1146/annurev.biophys.26.1.373
    270. 270
      Kusumi, A.; Sako, Y.; Yamamoto, M. Confined Lateral Diffusion of Membrane Receptors as Studied by Single Particle Tracking (Nanovid Microscopy). Effects of Calcium-Induced Differentiation in Cultured Epithelial Cells. Biophys. J. 1993, 65, 20212040,  DOI: 10.1016/S0006-3495(93)81253-0
    271. 271
      Wan, X. Y.; Zheng, L. L.; Gao, P. F.; Yang, X. X.; Li, C. M.; Li, Y. F.; Huang, C. Z. Real-Time Light Scattering Tracking of Gold Nanoparticles- Bioconjugated Respiratory Syncytial Virus Infecting HEp-2 Cells. Sci. Rep. 2015, 4, 4529,  DOI: 10.1038/srep04529
    272. 272
      Marjomaki, V.; Lahtinen, T.; Martikainen, M.; Koivisto, J.; Malola, S.; Salorinne, K.; Pettersson, M.; Hakkinen, H. Site-Specific Targeting of Enterovirus Capsid by Functionalized Monodisperse Gold Nanoclusters. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 12771281,  DOI: 10.1073/pnas.1310973111
    273. 273
      Wan, X. K.; Xu, W. W.; Yuan, S. F.; Gao, Y.; Zeng, X. C.; Wang, Q. M. A Near-Infrared-Emissive Alkynyl-Protected Au24 Nanocluster. Angew. Chem., Int. Ed. 2015, 54, 96839686,  DOI: 10.1002/anie.201503893
    274. 274
      Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev. 2016, 116, 1034610413,  DOI: 10.1021/acs.chemrev.5b00703
    275. 275
      Zhang, L. B.; Wang, E. K. Metal Nanoclusters: New Fluorescent Probes for Sensors and Bioimaging. Nano Today 2014, 9, 132157,  DOI: 10.1016/j.nantod.2014.02.010
    276. 276
      Shang, L.; Dong, S. J.; Nienhaus, G. U. Ultra-Small Fluorescent Metal Nanoclusters: Synthesis and Biological Applications. Nano Today 2011, 6, 401418,  DOI: 10.1016/j.nantod.2011.06.004
    277. 277
      Draz, M. S.; Fang, B. A.; Li, L. J.; Chen, Z.; Wang, Y. J.; Xu, Y. H.; Yang, J.; Killeen, K.; Chen, F. F. Hybrid Nanocluster Plasmonic Resonator for Lmmunological Detection of Hepatitis B Virus. ACS Nano 2012, 6, 76347643,  DOI: 10.1021/nn3034056
    278. 278
      Shokri, E.; Hosseini, M.; Faridbod, F.; Rahaie, M. Rapid Pre-Symptomatic Recognition of Tristeza Viral RNA by a Novel Fluorescent Self-Dimerized DNA-Silver Nanocluster probe. RSC Adv. 2016, 6, 9943799443,  DOI: 10.1039/C6RA15199J
    279. 279
      Tao, Y.; Li, M.; Ren, J.; Qu, X. Metal Nanoclusters: Novel Probes for Diagnostic and Therapeutic Applications. Chem. Soc. Rev. 2015, 44, 86368663,  DOI: 10.1039/C5CS00607D
    280. 280
      Basle, E.; Joubert, N.; Pucheault, M. Protein Chemical Modification on Endogenous Amino Acids. Chem. Biol. 2010, 17, 213227,  DOI: 10.1016/j.chembiol.2010.02.008
    281. 281
      Hong, Z. Y.; Zhang, Z. L.; Tang, B.; Ao, J.; Wang, C.; Yu, C.; Pang, D. W. Equipping Inner Central Components of Influenza A Virus with Quantum Dots. Anal. Chem. 2018, 90, 1402014028,  DOI: 10.1021/acs.analchem.8b03995
    282. 282
      Huisgen, R. 1.3-Dipolare Cycloadditionen Rückschau und Ausblick. Angew. Chem. 1963, 75, 604637,  DOI: 10.1002/ange.19630751304
    283. 283
      Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem., Int. Ed. 2001, 40, 20042021,  DOI: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
    284. 284
      Nwe, K.; Brechbiel, M. W. Growing Applications of ″Click Chemistry″ for Bioconjugation in Contemporary Biomedical Research. Cancer Biother.Radiopharm. 2009, 24, 289302,  DOI: 10.1089/cbr.2008.0626
    285. 285
      Codelli, J. A.; Baskin, J. M.; Agard, N. J.; Bertozzi, C. R. Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry. J. Am. Chem. Soc. 2008, 130, 1148611493,  DOI: 10.1021/ja803086r
    286. 286
      Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R. Copper-Free Click Chemistry for Dynamic in Vivo Imaging. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 1679316797,  DOI: 10.1073/pnas.0707090104
    287. 287
      Hoyle, C. E.; Bowman, C. N. Thiol-Ene Click Chemistry. Angew. Chem., Int. Ed. 2010, 49, 15401573,  DOI: 10.1002/anie.200903924
    288. 288
      Nikic, I.; Plass, T.; Schraidt, O.; Szymanski, J.; Briggs, J. A.; Schultz, C.; Lemke, E. A. Minimal Tags for Rapid Dual-Color Live-Cell Labeling and Super-Resolution Microscopy. Angew. Chem., Int. Ed. 2014, 53, 22452249,  DOI: 10.1002/anie.201309847
    289. 289
      Salic, A.; Mitchison, T. J. A Chemical Method for Fast and Sensitive Detection of DNA Synthesis in Vivo. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 24152420,  DOI: 10.1073/pnas.0712168105
    290. 290
      Jao, C. Y.; Salic, A. Exploring RNA Transcription and Turnover in Vivo by Using Click Chemistry. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 1577915784,  DOI: 10.1073/pnas.0808480105
    291. 291
      Jewett, J. C.; Bertozzi, C. R. Cu-Free Click Cycloaddition Reactions in Chemical Biology. Chem. Soc. Rev. 2010, 39, 12721279,  DOI: 10.1039/b901970g
    292. 292
      Rubino, F. A.; Oum, Y. H.; Rajaram, L.; Chu, Y.; Carrico, I. S. Chemoselective Modification of Viral Surfaces via Bioorthogonal Click Chemistry. J. Visualized Exp. 2012, e4246  DOI: 10.3791/4246
    293. 293
      Oum, Y. H.; Desai, T. M.; Marin, M.; Melikyan, G. B. Click Labeling of Unnatural Sugars Metabolically Incorporated into Viral Envelope Glycoproteins Enables Visualization of Single Particle Fusion. J. Virol. Methods 2016, 233, 6271,  DOI: 10.1016/j.jviromet.2016.02.016
    294. 294
      Huang, L. L.; Lu, G. H.; Hao, J.; Wang, H. Z.; Yin, D. L.; Xie, H. Y. Enveloped Virus Labeling via Both Intrinsic Biosynthesis and Metabolic Incorporation of Phospholipids in Host Cells. Anal. Chem. 2013, 85, 52635270,  DOI: 10.1021/ac4008144
    295. 295
      Hou, W.; Li, Y.; Kang, W.; Wang, X.; Wu, X.; Wang, S.; Liu, F. Real-Time Analysis of Quantum Dot Labeled Single Porcine Epidemic Diarrhea Virus Moving along the Microtubules Using Single Particle Tracking. Sci. Rep. 2019, 9, 1307,  DOI: 10.1038/s41598-018-37789-9
    296. 296
      Lin, S.; Yan, H.; Li, L.; Yang, M.; Peng, B.; Chen, S.; Li, W.; Chen, P. R. Site-Specific Engineering of Chemical Functionalities on the Surface of Live Hepatitis D Virus. Angew. Chem., Int. Ed. 2013, 52, 1397013974,  DOI: 10.1002/anie.201305787
    297. 297
      Huang, L. L.; Liu, K.; Zhang, Q.; Xu, J.; Zhao, D.; Zhu, H.; Xie, H. Y. Integrating Two Efficient and Specific Bioorthogonal Ligation Reactions with Natural Metabolic Incorporation in One Cell for Virus Dual Labeling. Anal. Chem. 2017, 89, 1162011627,  DOI: 10.1021/acs.analchem.7b03043
    298. 298
      Wang, I. H.; Suomalainen, M.; Andriasyan, V.; Kilcher, S.; Mercer, J.; Neef, A.; Luedtke, N. W.; Greber, U. F. Tracking Viral Genomes in Host Cells at Single-Molecule Resolution. Cell Host Microbe 2013, 14, 468480,  DOI: 10.1016/j.chom.2013.09.004
    299. 299
      Green, N. M. Avidin and Streptavidin. Methods Enzymol; Elsevier: 1990; Vol. 184, pp 5167.
    300. 300
      Zhang, F.; Zheng, Z.; Liu, S. L.; Lu, W.; Zhang, Z.; Zhang, C.; Zhou, P.; Zhang, Y.; Long, G.; He, Z. Self-Biotinylation and Site-Specific Double Labeling of Baculovirus Using Quantum Dots for Single-Virus in-Situ Tracking. Biomaterials 2013, 34, 75067518,  DOI: 10.1016/j.biomaterials.2013.06.030
    301. 301
      Liu, J.; Xu, M.; Tang, B.; Hu, L.; Deng, F.; Wang, H.; Pang, D. W.; Hu, Z.; Wang, M.; Zhou, Y. Single-Particle Tracking Reveals the Sequential Entry Process of the Bunyavirus Severe Fever with Thrombocytopenia Syndrome Virus. Small 2019, 15, e1803788  DOI: 10.1002/smll.201803788
    302. 302
      Liu, J.; Yu, C.; Gui, J. F.; Pang, D. W.; Zhang, Q. Y. Real-Time Dissecting the Entry and Intracellular Dynamics of Single Reovirus Particle. Front. Microbiol. 2018, 9, 2797,  DOI: 10.3389/fmicb.2018.02797
    303. 303
      Dixit, S. K.; Goicochea, N. L.; Daniel, M. C.; Murali, A.; Bronstein, L.; De, M.; Stein, B.; Rotello, V. M.; Kao, C. C.; Dragnea, B. Quantum Dot Encapsulation in Viral Capsids. Nano Lett. 2006, 6, 19931999,  DOI: 10.1021/nl061165u
    304. 304
      Huang, B. H.; Lin, Y.; Zhang, Z. L.; Zhuan, F.; Liu, A. A.; Xie, M.; Tian, Z. Q.; Zhang, Z.; Wang, H.; Pang, D. W. Surface Labeling of Enveloped Viruses Assisted by Host Cells. ACS Chem. Biol. 2012, 7, 683688,  DOI: 10.1021/cb2001878
    305. 305
      You, J. O.; Liu, Y. S.; Liu, Y. C.; Joo, K. I.; Peng, C. A. Incorporation of Quantum Dots on Virus in Polycationic Solution. Int. J. Nanomedicine 2006, 1, 5964,  DOI: 10.2147/nano.2006.1.1.59
    306. 306
      Chen, Y. H.; Wang, C. H.; Chang, C. W.; Peng, C. A. In Situ Formation of Viruses Tagged with Quantum Dots. Integr. Biol. 2010, 2, 258264,  DOI: 10.1039/b926852a
    307. 307
      Li, F.; Zhang, Z. P.; Peng, J.; Cui, Z. Q.; Pang, D. W.; Li, K.; Wei, H. P.; Zhou, Y. F.; Wen, J. K.; Zhang, X. E. Imaging Viral Behavior in Mammalian Cells with Self-Assembled Capsid-Quantum-Dot Hybrid Particles. Small 2009, 5, 718726,  DOI: 10.1002/smll.200801303
    308. 308
      Johnson, H. E.; Haugh, J. M. Quantitative Analysis of Phosphoinositide 3-Kinase (PI3K) Signaling Using Live-Cell Total Internal Reflection Fluorescence (TIRF) Microscopy. Curr. Protoc. Cell Biol. 2013, 61, 14.14.114.14.24,  DOI: 10.1002/0471143030.cb1414s61
    309. 309
      Chen, I.; Ting, A. Y. Site-Specific Labeling of Proteins with Small Molecules in Live Cells. Curr. Opin. Biotechnol. 2005, 16, 3540,  DOI: 10.1016/j.copbio.2004.12.003
    310. 310
      Gong, Y. K.; Pan, L. F. Recent Advances in Bioorthogonal Reactions for Site-Specific Protein Labeling and Engineering. Tetrahedron Lett. 2015, 56, 21232132,  DOI: 10.1016/j.tetlet.2015.03.065
    311. 311
      Zhang, G.; Zheng, S. Q.; Liu, H. P.; Chen, P. R. Illuminating Biological Processes through Site-Specific Protein Labeling. Chem. Soc. Rev. 2015, 44, 34053417,  DOI: 10.1039/C4CS00393D
    312. 312
      Jing, C.; Cornish, V. W. Chemical Tags for Labeling Proteins inside Living Cells. Acc. Chem. Res. 2011, 44, 784792,  DOI: 10.1021/ar200099f
    313. 313
      Klein, T.; Loschberger, A.; Proppert, S.; Wolter, S.; van de Linde, S.; Sauer, M. Live-Cell dSTORM with SNAP-Tag Fusion Proteins. Nat. Methods 2011, 8, 79,  DOI: 10.1038/nmeth0111-7b
    314. 314
      Chen, Z.; Cornish, V. W.; Min, W. Chemical Tags: Inspiration for Advanced Imaging Techniques. Curr. Opin. Chem. Biol. 2013, 17, 637643,  DOI: 10.1016/j.cbpa.2013.05.018
    315. 315
      Wombacher, R.; Cornish, V. W. Chemical Tags: Applications in Live Cell Fluorescence Imaging. J. Biophotonics 2011, 4, 391402,  DOI: 10.1002/jbio.201100018
    316. 316
      Specht, E. A.; Braselmann, E.; Palmer, A. E. A Critical and Comparative Review of Fluorescent Tools for Live-Cell Imaging. Annu. Rev. Physiol. 2017, 79, 93117,  DOI: 10.1146/annurev-physiol-022516-034055
    317. 317
      Eckhardt, M.; Anders, M.; Muranyi, W.; Heilemann, M.; Krijnse-Locker, J.; Muller, B. A SNAP-Tagged Derivative of HIV-1--A Versatile Tool to Study Virus-Cell Interactions. PLoS One 2011, 6, e22007  DOI: 10.1371/journal.pone.0022007
    318. 318
      Hanne, J.; Gottfert, F.; Schimer, J.; Anders-Osswein, M.; Konvalinka, J.; Engelhardt, J.; Muller, B.; Hell, S. W.; Krausslich, H. G. Stimulated Emission Depletion Nanoscopy Reveals Time-Course of Human Immunodeficiency Virus Proteolytic Maturation. ACS Nano 2016, 10, 82158222,  DOI: 10.1021/acsnano.6b03850
    319. 319
      Sun, X.; Zhang, A.; Baker, B.; Sun, L.; Howard, A.; Buswell, J.; Maurel, D.; Masharina, A.; Johnsson, K.; Noren, C. J. Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging. ChemBioChem 2011, 12, 22172226,  DOI: 10.1002/cbic.201100173
    320. 320
      Keppler, A.; Pick, H.; Arrivoli, C.; Vogel, H.; Johnsson, K. Labeling of Fusion Proteins with Synthetic Fluorophores in Live Cells. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 99559959,  DOI: 10.1073/pnas.0401923101
    321. 321
      Lavis, L. D. Teaching Old Dyes New Tricks: Biological Probes Built from Fluoresceins and Rhodamines. Annu. Rev. Biochem. 2017, 86, 825843,  DOI: 10.1146/annurev-biochem-061516-044839
    322. 322
      Ross-Thriepland, D.; Mankouri, J.; Harris, M. Serine Phosphorylation of the Hepatitis C Virus NS5A Protein Controls the Establishment of Replication Complexes. J. Virol. 2015, 89, 31233135,  DOI: 10.1128/JVI.02995-14
    323. 323
      Gautier, A.; Juillerat, A.; Heinis, C.; Correa, I. R., Jr.; Kindermann, M.; Beaufils, F.; Johnsson, K. An Engineered Protein Tag for Multiprotein Labeling in Living Cells. Chem. Biol. 2008, 15, 128136,  DOI: 10.1016/j.chembiol.2008.01.007
    324. 324
      Liu, A. A.; Zhang, Z.; Sun, E. Z.; Zheng, Z.; Zhang, Z. L.; Hu, Q.; Wang, H.; Pang, D. W. Simultaneous Visualization of Parental and Progeny Viruses by a Capsid-Specific HaloTag Labeling Strategy. ACS Nano 2016, 10, 11471155,  DOI: 10.1021/acsnano.5b06438
    325. 325
      Los, G. V.; Encell, L. P.; McDougall, M. G.; Hartzell, D. D.; Karassina, N.; Zimprich, C.; Wood, M. G.; Learish, R.; Ohana, R. F.; Urh, M. HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem. Biol. 2008, 3, 373382,  DOI: 10.1021/cb800025k
    326. 326
      Chen, Z.; Jing, C.; Gallagher, S. S.; Sheetz, M. P.; Cornish, V. W. Second-Generation Covalent TMP-Tag for Live Cell Imaging. J. Am. Chem. Soc. 2012, 134, 1369213699,  DOI: 10.1021/ja303374p
    327. 327
      Gallagher, S. S.; Jing, C.; Peterka, D. S.; Konate, M.; Wombacher, R.; Kaufman, L. J.; Yuste, R.; Cornish, V. W. A Trimethoprim-Based Chemical Tag for Live Cell Two-Photon Imaging. ChemBioChem 2010, 11, 782784,  DOI: 10.1002/cbic.200900731
    328. 328
      Wombacher, R.; Heidbreder, M.; van de Linde, S.; Sheetz, M. P.; Heilemann, M.; Cornish, V. W.; Sauer, M. Live-Cell Super-Resolution Imaging with Trimethoprim Conjugates. Nat. Methods 2010, 7, 717719,  DOI: 10.1038/nmeth.1489
    329. 329
      Miller, L. W.; Cai, Y.; Sheetz, M. P.; Cornish, V. W. In Vivo Protein Labeling with Trimethoprim Conjugates: A Flexible Chemical Tag. Nat. Methods 2005, 2, 255257,  DOI: 10.1038/nmeth749
    330. 330
      Rudner, L.; Nydegger, S.; Coren, L. V.; Nagashima, K.; Thali, M.; Ott, D. E. Dynamic Fluorescent Imaging of Human Immunodeficiency Virus Type 1 Gag in Live Cells by Biarsenical Labeling. J. Virol. 2005, 79, 40554065,  DOI: 10.1128/JVI.79.7.4055-4065.2005
    331. 331
      Das, S. C.; Panda, D.; Nayak, D.; Pattnaik, A. K. Biarsenical Labeling of Vesicular Stomatitis Virus Encoding Tetracysteine-Tagged M Protein Allows Dynamic Imaging of M Protein and Virus Uncoating in Infected Cells. J. Virol. 2009, 83, 26112622,  DOI: 10.1128/JVI.01668-08
    332. 332
      Li, Y.; Lu, X.; Li, J.; Berube, N.; Giest, K. L.; Liu, Q.; Anderson, D. H.; Zhou, Y. Genetically Engineered, Biarsenically Labeled Influenza Virus Allows Visualization of Viral NS1 Protein in Living Cells. J. Virol. 2010, 84, 72047213,  DOI: 10.1128/JVI.00203-10
    333. 333
      Martin, B. R.; Giepmans, B. N.; Adams, S. R.; Tsien, R. Y. Mammalian Cell-Based Optimization of the Biarsenical-Binding Tetracysteine Motif for Improved Fluorescence and Affinity. Nat. Biotechnol. 2005, 23, 13081314,  DOI: 10.1038/nbt1136
    334. 334
      Adams, S. R.; Campbell, R. E.; Gross, L. A.; Martin, B. R.; Walkup, G. K.; Yao, Y.; Llopis, J.; Tsien, R. Y. New Biarsenical Ligands and Tetracysteine Motifs for Protein Labeling in Vitro and in Vivo: Synthesis and Biological Applications. J. Am. Chem. Soc. 2002, 124, 60636076,  DOI: 10.1021/ja017687n
    335. 335
      Zheng, L. L.; Li, C. M.; Zhen, S. J.; Li, Y. F.; Huang, C. Z. His-Tag Based in Situ Labelling of Progeny Viruses for Real-Time Single Virus Tracking in Living Cells. Nanoscale 2016, 8, 1863518639,  DOI: 10.1039/C6NR05806J
    336. 336
      Guignet, E. G.; Hovius, R.; Vogel, H. Reversible Site-Selective Labeling of Membrane Proteins in Live Cells. Nat. Biotechnol. 2004, 22, 440444,  DOI: 10.1038/nbt954
    337. 337
      Chen, I.; Howarth, M.; Lin, W.; Ting, A. Y. Site-Specific Labeling of Cell Surface Proteins with Biophysical Probes Using Biotin Ligase. Nat. Methods 2005, 2, 99104,  DOI: 10.1038/nmeth735
    338. 338
      Howarth, M.; Ting, A. Y. Imaging Proteins in Live Mammalian Cells with Biotin Ligase and Monovalent Streptavidin. Nat. Protoc. 2008, 3, 534545,  DOI: 10.1038/nprot.2008.20
    339. 339
      Uttamapinant, C.; White, K. A.; Baruah, H.; Thompson, S.; Fernandez-Suarez, M.; Puthenveetil, S.; Ting, A. Y. A Fluorophore Ligase for Site-Specific Protein Labeling inside Living Cells. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 1091410919,  DOI: 10.1073/pnas.0914067107
    340. 340
      Fernandez-Suarez, M.; Baruah, H.; Martinez-Hernandez, L.; Xie, K. T.; Baskin, J. M.; Bertozzi, C. R.; Ting, A. Y. Redirecting Lipoic Acid Ligase for Cell Surface Protein Labeling with Small-Molecule Probes. Nat. Biotechnol. 2007, 25, 14831487,  DOI: 10.1038/nbt1355
    341. 341
      Schumacher, D.; Helma, J.; Mann, F. A.; Pichler, G.; Natale, F.; Krause, E.; Cardoso, M. C.; Hackenberger, C. P.; Leonhardt, H. Versatile and Efficient Site-Specific Protein Functionalization by Tubulin Tyrosine Ligase. Angew. Chem., Int. Ed. 2015, 54, 1378713791,  DOI: 10.1002/anie.201505456
    342. 342
      Schumacher, D.; Lemke, O.; Helma, J.; Gerszonowicz, L.; Waller, V.; Stoschek, T.; Durkin, P. M.; Budisa, N.; Leonhardt, H.; Keller, B. G. Broad Substrate Tolerance of Tubulin Tyrosine Ligase Enables One-Step Site-Specific Enzymatic Protein Labeling. Chem. Sci. 2017, 8, 34713478,  DOI: 10.1039/C7SC00574A
    343. 343
      Zhou, Z.; Cironi, P.; Lin, A. J.; Xu, Y.; Hrvatin, S.; Golan, D. E.; Silver, P. A.; Walsh, C. T.; Yin, J. Genetically Encoded Short Peptide Tags for Orthogonal Protein Labeling by Sfp and AcpS Phosphopantetheinyl Transferases. ACS Chem. Biol. 2007, 2, 337346,  DOI: 10.1021/cb700054k
    344. 344
      Yin, J.; Straight, P. D.; McLoughlin, S. M.; Zhou, Z.; Lin, A. J.; Golan, D. E.; Kelleher, N. L.; Kolter, R.; Walsh, C. T. Genetically Encoded Short Peptide Tag for Versatile Protein Labeling by Sfp Phosphopantetheinyl Transferase. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 1581515820,  DOI: 10.1073/pnas.0507705102
    345. 345
      Crivat, G.; Taraska, J. W. Imaging Proteins inside Cells with Fluorescent Tags. Trends Biotechnol. 2012, 30, 816,  DOI: 10.1016/j.tibtech.2011.08.002
    346. 346
      Hoehnel, S.; Lutolf, M. P. Capturing Cell-Cell Interactions via SNAP-tag and CLIP-tag Technology. Bioconjugate Chem. 2015, 26, 16781686,  DOI: 10.1021/acs.bioconjchem.5b00268
    347. 347
      Liss, V.; Barlag, B.; Nietschke, M.; Hensel, M. Self-Labelling Enzymes as Universal Tags for Fluorescence Microscopy, Super-Resolution Microscopy and Rectron Microscopy. Sci. Rep. 2016, 5, 17740,  DOI: 10.1038/srep17740
    348. 348
      Jing, C.; Cornish, V. W. A Fluorogenic TMP-Tag for High Signal-to-Background Intracellular Live Cell Imaging. ACS Chem. Biol. 2013, 8, 17041712,  DOI: 10.1021/cb300657r
    349. 349
      Lai, Y. T.; Chang, Y. Y.; Hu, L.; Yang, Y.; Chao, A.; Du, Z. Y.; Tanner, J. A.; Chye, M. L.; Qian, C.; Ng, K. M. Rapid Labeling of Intracellular His-Tagged Proteins in Living Cells. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 29482953,  DOI: 10.1073/pnas.1419598112
    350. 350
      Stephanopoulos, N.; Francis, M. B. Choosing an Effective Protein Bioconjugation Strategy. Nat. Chem. Biol. 2011, 7, 876884,  DOI: 10.1038/nchembio.720
    351. 351
      Howarth, M.; Takao, K.; Hayashi, Y.; Ting, A. Y. Targeting Quantum Dots to Surface Proteins in Living Cells with Biotin Ligase. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 75837588,  DOI: 10.1073/pnas.0503125102
    352. 352
      Cohen, J. D.; Zou, P.; Ting, A. Y. Site-Specific Protein Modification Using Lipoic Acid Ligase and Bis-Aryl Hydrazone Formation. ChemBioChem 2012, 13, 888894,  DOI: 10.1002/cbic.201100764
    353. 353
      Lotze, J.; Reinhardt, U.; Seitz, O.; Beck-Sickinger, A. G. Peptide-Tags for Site-Specific Protein Labelling in Vitro and in Vivo. Mol. BioSyst. 2016, 12, 17311745,  DOI: 10.1039/C6MB00023A
    354. 354
      Sunbul, M.; Yen, M.; Zou, Y.; Yin, J. Enzyme Catalyzed Site-Specific Protein Labeling and Cell Imaging with Quantum Dots. Chem. Commun. 2008, 59275929,  DOI: 10.1039/b812162a
    355. 355
      Zhang, Y.; Ke, X.; Zheng, Z.; Zhang, C.; Zhang, Z.; Zhang, F.; Hu, Q.; He, Z.; Wang, H. Encapsulating Quantum Dots into Enveloped Virus in Living Cells for Tracking Virus Infection. ACS Nano 2013, 7, 38963904,  DOI: 10.1021/nn305189n
    356. 356
      Molenaar, C.; Marras, S. A.; Slats, J. C.; Truffert, J. C.; Lemaitre, M.; Raap, A. K.; Dirks, R. W.; Tanke, H. J. Linear 2’ O-Methyl RNA Probes for the Visualization of RNA in Living Cells. Nucleic Acids Res. 2001, 29, E899,  DOI: 10.1093/nar/29.17.e89
    357. 357
      Ma, Y.; Mao, G.; Huang, W.; Wu, G.; Yin, W.; Ji, X.; Deng, Z.; Cai, Z.; Zhang, X. E.; He, Z. Quantum Dot Nanobeacons for Single RNA Labeling and Imaging. J. Am. Chem. Soc. 2019, 141, 1345413458,  DOI: 10.1021/jacs.9b04659
    358. 358
      Ortega-Arroyo, J.; Kukura, P. Interferometric Scattering Microscopy (iSCAT): New Frontiers in Ultrafast and Ultrasensitive Optical Microscopy. Phys. Chem. Chem. Phys. 2012, 14, 1562515636,  DOI: 10.1039/c2cp41013c
    359. 359
      Kukura, P.; Ewers, H.; Muller, C.; Renn, A.; Helenius, A.; Sandoghdar, V. High-Speed Nanoscopic Tracking of the Position and Orientation of a Single Virus. Nat. Methods 2009, 6, 923927,  DOI: 10.1038/nmeth.1395
    360. 360
      Renz, M. Fluorescence Microscopy-A Historical and Technical Perspective. Cytometry, Part A 2013, 83, 767779,  DOI: 10.1002/cyto.a.22295
    361. 361
      Lorenz, K. S.; Salama, P.; Dunn, K. W.; Delp, E. J. Digital Correction of Motion Artefacts in Microscopy Image Sequences Collected from Living Animals Using Rigid and Nonrigid Registration. J. Microsc. 2012, 245, 148160,  DOI: 10.1111/j.1365-2818.2011.03557.x
    362. 362
      Combs, C. A.; Shroff, H. Fluorescence Microscopy: A Concise Guide to Current Imaging Methods. Curr. Protoc. Neurosci. 2017, 79, 2.1.12.1.25,  DOI: 10.1002/cpns.29
    363. 363
      Masters, B. R. Fluorescence Microscopy: from Principles to Biological Applications. J. Biomed. Opt. 2014, 19, 049901  DOI: 10.1117/1.JBO.19.4.049901
    364. 364
      Ma, Y. Y.; Wang, X.; Liu, H.; Wei, L.; Xiao, L. H. Recent Advances in Optical Microscopic Methods for Single-Particle Tracking in Biological Samples. Anal. Bioanal. Chem. 2019, 411, 44454463,  DOI: 10.1007/s00216-019-01638-z
    365. 365
      Deschout, H.; Cella Zanacchi, F.; Mlodzianoski, M.; Diaspro, A.; Bewersdorf, J.; Hess, S. T.; Braeckmans, K. Precisely and Accurately Localizing Single Emitters in Fluorescence Microscopy. Nat. Methods 2014, 11, 253266,  DOI: 10.1038/nmeth.2843
    366. 366
      Lichtman, J. W.; Conchello, J. A. Fluorescence Microscopy. Nat. Methods 2005, 2, 910919,  DOI: 10.1038/nmeth817
    367. 367
      Beier, H. T.; Ibey, B. L. Experimental Comparison of the High-Speed Imaging Performance of an EM-CCD and sCMOS Camera in a Dynamic Live-Cell Imaging Test Case. PLoS One 2014, 9, e84614  DOI: 10.1371/journal.pone.0084614
    368. 368
      Long, F.; Zeng, S.; Huang, Z. L. Localization-Based Super-Resolution Microscopy with an sCMOS Camera Part II: Experimental Methodology for Comparing sCMOS with EMCCD Cameras. Opt. Express 2012, 20, 1774117759,  DOI: 10.1364/OE.20.017741
    369. 369
      Fullerton, S. A Guide to Choosing and Using Scientific Imaging Cameras. Laser Focus World 2014, 50, 3740
    370. 370
      Ivanchenko, S.; Godinez, W. J.; Lampe, M.; Krausslich, H. G.; Eils, R.; Rohr, K.; Brauchle, C.; Muller, B.; Lamb, D. C. Dynamics of HIV-1 Assembly and Release. PLoS Pathog. 2009, 5, e1000652  DOI: 10.1371/journal.ppat.1000652
    371. 371
      Axelrod, D. Cell-Substrate Contacts Illuminated by Total Internal Reflection Fluorescence. J. Cell Biol. 1981, 89, 141145,  DOI: 10.1083/jcb.89.1.141
    372. 372
      Axelrod, D. Total Internal Reflection Fluorescence Microscopy in Cell Biology. Traffic 2001, 2, 764774,  DOI: 10.1034/j.1600-0854.2001.21104.x
    373. 373
      Reichert, W. M.; Truskey, G. A. Total Internal Reflection Fluorescence (TIRF) Microscopy. I. Modelling Cell Contact Region Fluorescence. J. Cell Sci. 1990, 96, 219230
    374. 374
      Johnson, C. Spectroscopy and Dynamics of Single Molecules: Methods and Applications; Elsevier: 2019.
    375. 375
      Tokunaga, M.; Kitamura, K.; Saito, K.; Iwane, A. H.; Yanagida, T. Single Molecule Imaging of Fluorophores and Enzymatic Reactions Achieved by Objective-Type Total Internal Reflection Fluorescence Microscopy. Biochem. Biophys. Res. Commun. 1997, 235, 4753,  DOI: 10.1006/bbrc.1997.6732
    376. 376
      Parhamifar, L.; Moghimi, S. M. Total Internal Reflection Fluorescence (TIRF) Microscopy for Real-Time Imaging of Nanoparticle-Cell Plasma Membrane Interaction. Methods Mol. Biol. 2012, 906, 473482,  DOI: 10.1007/978-1-61779-953-2_38
    377. 377
      Fish, K. N. Total Internal Reflection Fluorescence (TIRF) Microscopy. Curr. Protoc. Cytom. 2009, 12, 1218,  DOI: 10.1002/0471142956.cy1218s50
    378. 378
      Mattheyses, A. L.; Simon, S. M.; Rappoport, J. Z. Imaging with Total Internal Reflection Fluorescence Microscopy for the Cell Biologist. J. Cell Sci. 2010, 123, 36213628,  DOI: 10.1242/jcs.056218
    379. 379
      Johnson, D. S.; Jaiswal, J. K.; Simon, S. Total Internal Reflection Fluorescence (TIRF) Microscopy Illuminator for Improved Imaging of Cell Surface Events. Curr. Protoc. Cytom. 2012, 12, 1229,  DOI: 10.1002/0471142956.cy1229s61
    380. 380
      Ewers, H.; Schelhaas, M. Analysis of Virus Entry and Cellular Membrane Dynamics by Single Particle Tracking. Methods Enzymol. 2012, 506, 6380,  DOI: 10.1016/B978-0-12-391856-7.00028-7
    381. 381
      Tokunaga, M.; Imamoto, N.; Sakata-Sogawa, K. Highly Inclined Thin Illumination Enables Clear Single-Molecule Imaging in Cells. Nat. Methods 2008, 5, 159161,  DOI: 10.1038/nmeth1171
    382. 382
      Schmidt, F. I.; Kuhn, P.; Robinson, T.; Mercer, J.; Dittrich, P. S. Single-Virus Fusion Experiments Reveal Proton Influx into Vaccinia Virions and Hemifusion Lag Times. Biophys. J. 2013, 105, 420431,  DOI: 10.1016/j.bpj.2013.06.016
    383. 383
      Naredi-Rainer, N.; Prescher, J.; Hartschuh, A.; Lamb, D. C. Confocal Microscopy. Fluorescence Microscopy 2013, 1075, 175213,  DOI: 10.1002/9783527671595.ch5
    384. 384
      Minsky, M. Memoir on Inventing the Confocal Scanning Microscope. Scanning 1988, 10, 128138,  DOI: 10.1002/sca.4950100403
    385. 385
      Graf, R.; Rietdorf, J.; Zimmermann, T. Live Cell Spinning Disk Microscopy. Adv. Biochem. Eng./Biotechnol. 2005, 95, 5775,  DOI: 10.1007/b102210
    386. 386
      Egger, M. D.; Petran, M. New Reflected-Light Microscope for Viewing Unstained Brain and Ganglion Cells. Science 1967, 157, 305307,  DOI: 10.1126/science.157.3786.305
    387. 387
      Andersson, S. B. Tracking a Single Fluorescent Molecule with a Confocal Microscope. Appl. Phys. B: Lasers Opt. 2005, 80, 809816,  DOI: 10.1007/s00340-005-1801-x
    388. 388
      Han, J. J.; Kiss, C.; Bradbury, A. R. M.; Werner, J. H. Time-Resolved, Confocal Single-Molecule Tracking of Individual Organic Dyes and Fluorescent Proteins in Three Dimensions. ACS Nano 2012, 6, 89228932,  DOI: 10.1021/nn302912j
    389. 389
      Krzic, U.; Gunther, S.; Saunders, T. E.; Streichan, S. J.; Hufnagel, L. Multiview Light-Sheet Microscope for Rapid in toto Imaging. Nat. Methods 2012, 9, 730733,  DOI: 10.1038/nmeth.2064
    390. 390
      Vettenburg, T.; Dalgarno, H. I. C.; Nylk, J.; Coll-Llado, C.; Ferrier, D. E. K.; Cizmar, T.; Gunn-Moore, F. J.; Dholakia, K. Light-Sheet Microscopy Using An Airy Beam. Nat. Methods 2014, 11, 541544,  DOI: 10.1038/nmeth.2922
    391. 391
      Pitrone, P. G.; Schindelin, J.; Stuyvenberg, L.; Preibisch, S.; Weber, M.; Eliceiri, K. W.; Huisken, J.; Tomancak, P. OpenSPIM: An Open-Access Light-Sheet Microscopy Platform. Nat. Methods 2013, 10, 598599,  DOI: 10.1038/nmeth.2507
    392. 392
      Li, Y.; Hu, Y.; Cang, H. Light Sheet Microscopy for Tracking Single Molecules on the Apical Surface of Living Cells. J. Phys. Chem. B 2013, 117, 1550315511,  DOI: 10.1021/jp405380g
    393. 393
      Keller, P. J.; Schmidt, A. D.; Wittbrodt, J.; Stelzer, E. H. Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy. Science 2008, 322, 10651069,  DOI: 10.1126/science.1162493
    394. 394
      Ritter, J. G.; Veith, R.; Veenendaal, A.; Siebrasse, J. P.; Kubitscheck, U. Light Sheet Microscopy for Single Molecule Tracking in Living Tissue. PLoS One 2010, 5, e11639  DOI: 10.1371/journal.pone.0011639
    395. 395
      Wan, Y.; McDole, K.; Keller, P. J. Light-Sheet Microscopy and Its Potential for Understanding Developmental Processes. Annu. Rev. Cell Dev. Biol. 2019, 35, 655681,  DOI: 10.1146/annurev-cellbio-100818-125311
    396. 396
      Hillman, E. M. C.; Voleti, V.; Li, W.; Yu, H. Light-Sheet Microscopy in Neuroscience. Annu. Rev. Neurosci. 2019, 42, 295313,  DOI: 10.1146/annurev-neuro-070918-050357
    397. 397
      Stelzer, E. H. K. Light-Sheet Fluorescence Microscopy for Quantitative Biology. Nat. Methods 2015, 12, 2326,  DOI: 10.1038/nmeth.3219
    398. 398
      Bosse, J. B.; Hogue, I. B.; Feric, M.; Thiberge, S. Y.; Sodeik, B.; Brangwynne, C. P.; Enquist, L. W. Remodeling Nuclear Architecture Allows Efficient Transport of Herpesvirus Capsids by Diffusion. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E5725E5733,  DOI: 10.1073/pnas.1513876112
    399. 399
      Hoyer, P.; de Medeiros, G.; Balazs, B.; Norlin, N.; Besir, C.; Hanne, J.; Krausslich, H. G.; Engelhardt, J.; Sahl, S. J.; Hell, S. W. Breaking the Diffraction Limit of Light-Sheet Fluorescence Microscopy by RESOLFT. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 34423446,  DOI: 10.1073/pnas.1522292113
    400. 400
      Rust, M. J.; Bates, M.; Zhuang, X. Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM). Nat. Methods 2006, 3, 793795,  DOI: 10.1038/nmeth929
    401. 401
      Malkusch, S.; Muranyi, W.; Muller, B.; Krausslich, H. G.; Heilemann, M. Single-Molecule Coordinate-Based Analysis of the Morphology of HIV-1 Assembly Sites with Near-Molecular Spatial Resolution. Histochem. Cell Biol. 2013, 139, 173179,  DOI: 10.1007/s00418-012-1014-4
    402. 402
      Lehmann, M.; Rocha, S.; Mangeat, B.; Blanchet, F.; Uji, I. H.; Hofkens, J.; Piguet, V. Quantitative Multicolor Super-Resolution Microscopy Reveals Tetherin HIV-1 Interaction. PLoS Pathog. 2011, 7, e1002456  DOI: 10.1371/journal.ppat.1002456
    403. 403
      Inamdar, K.; Floderer, C.; Favard, C.; Muriaux, D. Monitoring HIV-1 Assembly in Living Cells: Insights from Dynamic and Single Molecule Microscopy. Viruses 2019, 11, 72,  DOI: 10.3390/v11010072
    404. 404
      Bleck, M.; Itano, M. S.; Johnson, D. S.; Thomas, V. K.; North, A. J.; Bieniasz, P. D.; Simon, S. M. Temporal and Spatial Organization of ESCRT Protein Recruitment During HIV-1 Budding. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1221112216,  DOI: 10.1073/pnas.1321655111
    405. 405
      Prescher, J.; Baumgartel, V.; Ivanchenko, S.; Torrano, A. A.; Brauchle, C.; Muller, B.; Lamb, D. C. Super-Resolution Imaging of ESCRT-Proteins at HIV-1 Assembly Sites. PLoS Pathog. 2015, 11, e1004677  DOI: 10.1371/journal.ppat.1004677
    406. 406
      Shao, L.; Kner, P.; Rego, E. H.; Gustafsson, M. G. Super-Resolution 3D Microscopy of Live Whole Cells Using Structured Illumination. Nat. Methods 2011, 8, 10441046,  DOI: 10.1038/nmeth.1734
    407. 407
      Jones, S. A.; Shim, S. H.; He, J.; Zhuang, X. Fast, Three-Dimensional Super-Resolution Imaging of Live Cells. Nat. Methods 2011, 8, 499508,  DOI: 10.1038/nmeth.1605
    408. 408
      Nair, D.; Hosy, E.; Petersen, J. D.; Constals, A.; Giannone, G.; Choquet, D.; Sibarita, J. B. Super-Resolution Imaging Reveals That AMPA Receptors Inside Synapses Are Dynamically Organized in Nanodomains Regulated by PSD95. J. Neurosci. 2013, 33, 1320413224,  DOI: 10.1523/JNEUROSCI.2381-12.2013
    409. 409
      Izeddin, I.; Recamier, V.; Bosanac, L.; Cisse, I. I.; Boudarene, L.; Dugast-Darzacq, C.; Proux, F.; Benichou, O.; Voituriez, R.; Bensaude, O. Single-Molecule Tracking in Live Cells Reveals Distinct Target-Search Strategies of Transcription Factors in the Nucleus. eLife 2014, 3, e02230  DOI: 10.7554/eLife.02230
    410. 410
      Yang, L.; Dun, A. R.; Martin, K. J.; Qiu, Z.; Dunn, A.; Lord, G. J.; Lu, W.; Duncan, R. R.; Rickman, C. Secretory Vesicles Are Preferentially Targeted to Areas of Low Molecular SNARE Density. PLoS One 2012, 7, e49514  DOI: 10.1371/journal.pone.0049514
    411. 411
      Juette, M. F.; Gould, T. J.; Lessard, M. D.; Mlodzianoski, M. J.; Nagpure, B. S.; Bennett, B. T.; Hess, S. T.; Bewersdorf, J. Three-Dimensional Sub-100 nm Resolution Fluorescence Microscopy of Thick Samples. Nat. Methods 2008, 5, 527529,  DOI: 10.1038/nmeth.1211
    412. 412
      Pavani, S. R.; Thompson, M. A.; Biteen, J. S.; Lord, S. J.; Liu, N.; Twieg, R. J.; Piestun, R.; Moerner, W. E. Three-Dimensional, Single-Molecule Fluorescence Imaging Beyond the Diffraction Limit by Using a Double-Helix Point Spread Function. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 29952999,  DOI: 10.1073/pnas.0900245106
    413. 413
      Thompson, M. A.; Lew, M. D.; Badieirostami, M.; Moerner, W. E. Localizing and Tracking Single Nanoscale Emitters in Three Dimensions with High Spatiotemporal Resolution Using a Double-Helix Point Spread Function. Nano Lett. 2010, 10, 211218,  DOI: 10.1021/nl903295p
    414. 414
      Yu, B.; Yu, J.; Li, W.; Cao, B.; Li, H.; Chen, D.; Niu, H. Nanoscale Three-Dimensional Single Particle Tracking by Light-Sheet-Based Double-Helix Point Spread Function Microscopy. Appl. Opt. 2016, 55, 449453,  DOI: 10.1364/AO.55.000449
    415. 415
      Holtzer, L.; Meckel, T.; Schmidt, T. Nanometric Three-Dimensional Tracking of Individual Quantum Dots in Cells. Appl. Phys. Lett. 2007, 90, 053902  DOI: 10.1063/1.2437066
    416. 416
      Huang, B.; Wang, W.; Bates, M.; Zhuang, X. Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy. Science 2008, 319, 810813,  DOI: 10.1126/science.1153529
    417. 417
      Lange, S.; Katayama, Y.; Schmid, M.; Burkacky, O.; Brauchle, C.; Lamb, D. C.; Jansen, R. P. Simultaneous Transport of Different Localized mRNA Species Revealed by Live-Cell Imaging. Traffic 2008, 9, 12561267,  DOI: 10.1111/j.1600-0854.2008.00763.x
    418. 418
      Wells, N. P.; Lessard, G. A.; Goodwin, P. M.; Phipps, M. E.; Cutler, P. J.; Lidke, D. S.; Wilson, B. S.; Werner, J. H. Time-Resolved Three-Dimensional Molecular Tracking in Live Cells. Nano Lett. 2010, 10, 47324737,  DOI: 10.1021/nl103247v
    419. 419
      Cang, H.; Xu, C. S.; Montiel, D.; Yang, H. Guiding a Confocal Microscope by Single Fluorescent Nanoparticles. Opt. Lett. 2007, 32, 27292731,  DOI: 10.1364/OL.32.002729
    420. 420
      Balzarotti, F.; Eilers, Y.; Gwosch, K. C.; Gynna, A. H.; Westphal, V.; Stefani, F. D.; Elf, J.; Hell, S. W. Nanometer Resolution Imaging and Tracking of Fluorescent Molecules with Minimal Photon Fluxes. Science 2017, 355, 606612,  DOI: 10.1126/science.aak9913
    421. 421
      Enderlein, J. Tracking of Fluorescent Molecules Diffusing within Membranes. Appl. Phys. B: Lasers Opt. 2000, 71, 773777,  DOI: 10.1007/s003400000409
    422. 422
      Kis-Petikova, K.; Gratton, E. Distance Measurement by Circular Scanning of the Excitation Beam in the Two-Photon Microscope. Microsc. Res. Tech. 2004, 63, 3449,  DOI: 10.1002/jemt.10417
    423. 423
      Lessard, G. A.; Goodwin, P. M.; Werner, J. H. Three-Dimensional Tracking of Individual Quantum Dots. Appl. Phys. Lett. 2007, 91, 224106,  DOI: 10.1063/1.2819074
    424. 424
      Verdeny-Vilanova, I.; Wehnekamp, F.; Mohan, N.; Alvarez, A. S.; Borbely, J. S.; Otterstrom, J. J.; Lamb, D. C.; Lakadamyali, M. 3D Motion of Vesicles along Microtubules Helps Them to Circumvent Obstacles in Cells. J. Cell Sci. 2017, 130, 19041916,  DOI: 10.1242/jcs.201178
    425. 425
      Wehnekamp, F.; Plucinska, G.; Thong, R.; Misgeld, T.; Lamb, D. C. Nanoresolution Real-Time 3D Orbital Tracking for Studying Mitochondrial Trafficking in Vertebrate Axons in Vivo. eLife 2019, 8, e46059  DOI: 10.7554/eLife.46059
    426. 426
      Katayama, Y.; Burkacky, O.; Meyer, M.; Brauchle, C.; Gratton, E.; Lamb, D. C. Real-Time Nanomicroscopy via Three-Dimensional Single-Particle Tracking. ChemPhysChem 2009, 10, 24582464,  DOI: 10.1002/cphc.200900436
    427. 427
      Hellriegel, C.; Gratton, E. Real-Time Multi-Parameter Spectroscopy and Localization in Three-Dimensional Single-Particle Tracking. J. R. Soc., Interface 2009, 6, S3S14,  DOI: 10.1098/rsif.2008.0313.focus
    428. 428
      Liu, Z.; Lavis, L. D.; Betzig, E. Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level. Mol. Cell 2015, 58, 644659,  DOI: 10.1016/j.molcel.2015.02.033
    429. 429
      Saxton, M. J. Single-Particle Tracking: Connecting the Dots. Nat. Methods 2008, 5, 671672,  DOI: 10.1038/nmeth0808-671
    430. 430
      Carter, B. C.; Shubeita, G. T.; Gross, S. P. Tracking Single Particles: A User-Friendly Quantitative Evaluation. Phys. Biol. 2005, 2, 6072,  DOI: 10.1088/1478-3967/2/1/008
    431. 431
      Thompson, R. E.; Larson, D. R.; Webb, W. W. Precise Nanometer Localization Analysis for Individual Fluorescent Probes. Biophys. J. 2002, 82, 27752783,  DOI: 10.1016/S0006-3495(02)75618-X
    432. 432
      Small, A.; Stahlheber, S. Fluorophore Localization Algorithms for Super-Resolution Microscopy. Nat. Methods 2014, 11, 267279,  DOI: 10.1038/nmeth.2844
    433. 433
      Ernst, D.; Kohler, J. How the Number of Fitting Points for the Slope of the Mean-Square Displacement Influences the Experimentally Determined Particle Size Distribution from Single-Particle Tracking. Phys. Chem. Chem. Phys. 2013, 15, 34293432,  DOI: 10.1039/c3cp44391d
    434. 434
      Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: 2013.
    435. 435
      Liu, S. L.; Li, J.; Zhang, Z. L.; Wang, Z. G.; Tian, Z. Q.; Wang, G. P.; Pang, D. W. Fast and High-Accuracy Localization for Three-Dimensional Single-Particle Tracking. Sci. Rep. 2013, 3, 2462,  DOI: 10.1038/srep02462
    436. 436
      Qu, X. H.; Wu, D.; Mets, L.; Scherer, N. F. Nanometer-Localized Multiple Single-Molecule Fluorescence Microscopy. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 1129811303,  DOI: 10.1073/pnas.0402155101
    437. 437
      Hess, S. T.; Girirajan, T. P.; Mason, M. D. Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy. Biophys. J. 2006, 91, 42584272,  DOI: 10.1529/biophysj.106.091116
    438. 438
      Parthasarathy, R. Rapid, Accurate Particle Tracking by Calculation of Radial Symmetry Centers. Nat. Methods 2012, 9, 724726,  DOI: 10.1038/nmeth.2071
    439. 439
      Sage, D.; Neumann, F. R.; Hediger, F.; Gasser, S. M.; Unser, M. Automatic Tracking of Individual Fluorescence Particles: Application to the Study of Chromosome Dynamics. IEEE Trans. Image Process. 2005, 14, 13721383,  DOI: 10.1109/TIP.2005.852787
    440. 440
      Godinez, W. J.; Lampe, M.; Worz, S.; Muller, B.; Eils, R.; Rohr, K. Deterministic and Probabilistic Approaches for Tracking Virus Particles in Time-Lapse Fluorescence Microscopy Image Sequences. Med. Image Anal. 2009, 13, 325342,  DOI: 10.1016/j.media.2008.12.004
    441. 441
      Chenouard, N.; Smal, I.; de Chaumont, F.; Maska, M.; Sbalzarini, I. F.; Gong, Y.; Cardinale, J.; Carthel, C.; Coraluppi, S.; Winter, M. Objective Comparison of Particle Tracking Methods. Nat. Methods 2014, 11, 281289,  DOI: 10.1038/nmeth.2808
    442. 442
      Reid, D. An Algorithm for Tracking Multiple Targets. IEEE Trans. Autom. Control 1979, 24, 843854,  DOI: 10.1109/TAC.1979.1102177
    443. 443
      Veenman, C. J.; Reinders, M. J.; Backer, E. Resolving Motion Correspondence for Densely Moving Points. IEEE T. Pattern Anal. 2001, 23, 5472,  DOI: 10.1109/34.899946
    444. 444
      Jiang, S.; Zhou, X.; Kirchhausen, T.; Wong, S. T. Tracking Molecular Particles in Live Cells Using Fuzzy Rule-Based System. Cytometry, Part A 2007, 71, 576584,  DOI: 10.1002/cyto.a.20411
    445. 445
      Shafique, K.; Shah, M. A Noniterative Greedy Algorithm for Multiframe Point Correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 5165,  DOI: 10.1109/TPAMI.2005.1
    446. 446
      Jaqaman, K.; Loerke, D.; Mettlen, M.; Kuwata, H.; Grinstein, S.; Schmid, S. L.; Danuser, G. Robust Single-Particle Tracking in Live-Cell Time-Lapse Sequences. Nat. Methods 2008, 5, 695702,  DOI: 10.1038/nmeth.1237
    447. 447
      Saxton, M. J. Single-Particle Tracking: The Distribution of Diffusion Coefficients. Biophys. J. 1997, 72, 17441753,  DOI: 10.1016/S0006-3495(97)78820-9
    448. 448
      Dahan, M. From Analog to Digital: Exploring Cell Dynamics with Single Quantum Dots. Histochem. Cell Biol. 2006, 125, 451456,  DOI: 10.1007/s00418-005-0105-x
    449. 449
      Dupont, A.; Gorelashvili, M.; Schuller, V.; Wehnekamp, F.; Arcizet, D.; Katayama, Y.; Lamb, D. C.; Heinrich, D. Three-Dimensional Single-Particle Tracking in Live Cells: News from the Third Dimension. New J. Phys. 2013, 15, 075008  DOI: 10.1088/1367-2630/15/7/075008
    450. 450
      Bannai, H.; Lévi, S.; Schweizer, C.; Dahan, M.; Triller, A. Imaging the Lateral Diffusion of Membrane Molecules with Quantum Dots. Nat. Protoc. 2006, 1, 26282634,  DOI: 10.1038/nprot.2006.429
    451. 451
      Saxton, M. J. Single-Particle Tracking: Effects of Corrals. Biophys. J. 1995, 69, 389398,  DOI: 10.1016/S0006-3495(95)79911-8
    452. 452
      Rock, R. S. Myosin VI Is a Processive Motor with a Large Step Size. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 1365513659,  DOI: 10.1073/pnas.191512398
    453. 453
      Ma, S.; Chisholm, R. L. Cytoplasmic Dynein-Associated Structures Move Bidirectionally in Vivo. J. Cell Sci. 2002, 115, 14531460
    454. 454
      Sieczkarski, S. B.; Whittaker, G. R. Dissecting Virus Entry via Endocytosis. J. Gen. Virol. 2002, 83, 15351545,  DOI: 10.1099/0022-1317-83-7-1535
    455. 455
      Boulant, S.; Stanifer, M.; Lozach, P. Y. Dynamics of Virus-Receptor Interactions in Virus Binding, Signaling, and Endocytosis. Viruses 2015, 7, 27942815,  DOI: 10.3390/v7062747
    456. 456
      Mudhakir, D.; Harashima, H. Learning from the Viral Journey: How to Enter Cells and How to Overcome Intracellular Barriers to Reach the Nucleus. AAPS J. 2009, 11, 6577,  DOI: 10.1208/s12248-009-9080-9
    457. 457
      Damm, E. M.; Pelkmans, L. Systems Biology of Virus Entry in Mammalian Cells. Cell. Microbiol. 2006, 8, 12191227,  DOI: 10.1111/j.1462-5822.2006.00745.x
    458. 458
      Chang, K.; Baginski, J.; Hassan, S. F.; Volin, M.; Shukla, D.; Tiwari, V. Filopodia and Vruses: An Analysis of Membrane Processes in Entry Mechanisms. Front. Microbiol. 2016, 7, 300,  DOI: 10.3389/fmicb.2016.00300
    459. 459
      Shinya, K.; Ebina, M.; Yamada, S.; Ono, M.; Kasai, N.; Kawaoka, Y. Avian Flu: Influenza Virus Receptors in the Human Airway. Nature 2006, 440, 435436,  DOI: 10.1038/440435a
    460. 460
      Ibricevic, A.; Pekosz, A.; Walter, M. J.; Newby, C.; Battaile, J. T.; Brown, E. G.; Holtzman, M. J.; Brody, S. L. Influenza Virus Receptor Specificity and Cell Tropism in Mouse and Human Airway Epithelial Cells. J. Virol. 2006, 80, 74697480,  DOI: 10.1128/JVI.02677-05
    461. 461
      Lakadamyali, M.; Rust, M. J.; Zhuang, X. Endocytosis of Influenza Viruses. Microbes Infect. 2004, 6, 929936,  DOI: 10.1016/j.micinf.2004.05.002
    462. 462
      Mercer, J.; Schelhaas, M.; Helenius, A. Virus Entry by Endocytosis. Annu. Rev. Biochem. 2010, 79, 803833,  DOI: 10.1146/annurev-biochem-060208-104626
    463. 463
      Nisole, S.; Saib, A. Early Steps of Retrovirus Replicative Cycle. Retrovirology 2004, 1, 9,  DOI: 10.1186/1742-4690-1-9
    464. 464
      Spear, P. G.; Eisenberg, R. J.; Cohen, G. H. Three Classes of Cell Surface Receptors for Alphaherpesvirus Entry. Virology 2000, 275, 18,  DOI: 10.1006/viro.2000.0529
    465. 465
      Bailey, C. J.; Crystal, R. G.; Leopold, P. L. Association of Adenovirus with the Microtubule Organizing Center. J. Virol. 2003, 77, 1327513287,  DOI: 10.1128/JVI.77.24.13275-13287.2003
    466. 466
      Kielian, M.; Rey, F. A. Virus Membrane-Fusion Proteins: More Than One Way to Make a Hairpin. Nat. Rev. Microbiol. 2006, 4, 6776,  DOI: 10.1038/nrmicro1326
    467. 467
      Dupont, A.; Stirnnagel, K.; Lindemann, D.; Lamb, D. C. Tracking Image Correlation: Combining Single-Particle Tracking and Image Correlation. Biophys. J. 2013, 104, 23732382,  DOI: 10.1016/j.bpj.2013.04.005
    468. 468
      Alenquer, M.; Vale-Costa, S.; Etibor, T. A.; Ferreira, F.; Sousa, A. L.; Amorim, M. J. Influenza A Virus Ribonucleoproteins Form Liquid Organelles at Endoplasmic Reticulum Exit Sites. Nat. Commun. 2019, 10, 1629,  DOI: 10.1038/s41467-019-09549-4
    469. 469
      Jo, S.; Kawaguchi, A.; Takizawa, N.; Morikawa, Y.; Momose, F.; Nagata, K. Involvement of Vesicular Trafficking System in Membrane Targeting of the Progeny Influenza Virus Genome. Microbes Infect. 2010, 12, 10791084,  DOI: 10.1016/j.micinf.2010.06.011
    470. 470
      Avilov, S. V.; Moisy, D.; Naffakh, N.; Cusack, S. Influenza A Virus Progeny vRNP Trafficking in Live Infected Cells Studied with the Virus-Encoded Fluorescently Tagged PB2 Protein. Vaccine 2012, 30, 74117417,  DOI: 10.1016/j.vaccine.2012.09.077
    471. 471
      Amorim, M. J.; Bruce, E. A.; Read, E. K. C.; Foeglein, A.; Mahen, R.; Stuart, A. D.; Digard, P. A Rab11-and Microtubule-Dependent Mechanism for Cytoplasmic Transport of Influenza A Virus Viral RNA. J. Virol. 2011, 85, 41434156,  DOI: 10.1128/JVI.02606-10
    472. 472
      Hendrix, J.; Baumgartel, V.; Schrimpf, W.; Ivanchenko, S.; Digman, M. A.; Gratton, E.; Krausslich, H. G.; Muller, B.; Lamb, D. C. Live-Cell Observation of Cytosolic HIV-1 Assembly onset Reveals RNA-Interacting Gag Oligomers. J. Cell Biol. 2015, 210, 629646,  DOI: 10.1083/jcb.201504006
    473. 473
      Jose, J.; Tang, J.; Taylor, A. B.; Baker, T. S.; Kuhn, R. J. Fluorescent Protein-Tagged Sindbis Virus E2 Glycoprotein Allows Single Particle Analysis of Virus Budding from Live Cells. Viruses 2015, 7, 61826199,  DOI: 10.3390/v7122926
    474. 474
      Baumgartel, V.; Muller, B.; Lamb, D. C. Quantitative Live-Cell Imaging of Human Immunodeficiency Virus (HIV-1) Assembly. Viruses 2012, 4, 777799,  DOI: 10.3390/v4050777
    475. 475
      Perlman, M.; Resh, M. D. Identification of an Intracellular Trafficking and Assembly Pathway for HIV-1 Gag. Traffic 2006, 7, 731745,  DOI: 10.1111/j.1398-9219.2006.00428.x
    476. 476
      Gunzenhauser, J.; Olivier, N.; Pengo, T.; Manley, S. Quantitative Super-Resolution Imaging Reveals Protein Stoichiometry and Nanoscale Morphology of Assembling HIV-Gag Virions. Nano Lett. 2012, 12, 47054710,  DOI: 10.1021/nl3021076
    477. 477
      Fogarty, K. H.; Chen, Y.; Grigsby, I. F.; Macdonald, P. J.; Smith, E. M.; Johnson, J. L.; Rawson, J. M.; Mansky, L. M.; Mueller, J. D. Characterization of Cytoplasmic Gag-Gag Interactions by Dual-Color z-Scan Fluorescence Fluctuation Spectroscopy. Biophys. J. 2011, 100, 15871595,  DOI: 10.1016/j.bpj.2011.02.008
    478. 478
      Chen, Y.; Wu, B.; Musier-Forsyth, K.; Mansky, L. M.; Mueller, J. D. Fluorescence Fluctuation Spectroscopy on Viral-Like Particles Reveals Variable Gag Stoichiometry. Biophys. J. 2009, 96, 19611969,  DOI: 10.1016/j.bpj.2008.10.067
    479. 479
      Sardo, L.; Hatch, S. C.; Chen, J.; Nikolaitchik, O.; Burdick, R. C.; Chen, D.; Westlake, C. J.; Lockett, S.; Pathak, V. K.; Hu, W. S. Dynamics of HIV-1 RNA Near the Plasma Membrane during Virus Assembly. J. Virol. 2015, 89, 1083210840,  DOI: 10.1128/JVI.01146-15
    480. 480
      Rahman, S. A.; Koch, P.; Weichsel, J.; Godinez, W. J.; Schwarz, U.; Rohr, K.; Lamb, D. C.; Krausslich, H. G.; Muller, B. Investigating the Role of F-Actin in Human Immunodeficiency Virus Assembly by Live-Cell Microscopy. J. Virol. 2014, 88, 79047914,  DOI: 10.1128/JVI.00431-14
    481. 481
      Baumgartel, V.; Ivanchenko, S.; Dupont, A.; Sergeev, M.; Wiseman, P. W.; Krausslich, H. G.; Brauchle, C.; Muller, B.; Lamb, D. C. Live-Cell Visualization of Dynamics of HIV Budding Site Interactions with an ESCRT Component. Nat. Cell Biol. 2011, 13, 469474,  DOI: 10.1038/ncb2215
    482. 482
      Dimitrov, D. S.; Willey, R. L.; Sato, H.; Chang, L. J.; Blumenthal, R.; Martin, M. A. Quantitation of Human Immunodeficiency Virus Type 1 Infection Kinetics. J. Virol. 1993, 67, 21822190,  DOI: 10.1128/JVI.67.4.2182-2190.1993
    483. 483
      Johnson, D. C.; Huber, M. T. Directed Egress of Animal Viruses Promotes Cell-to-Cell Spread. J. Virol. 2002, 76, 18,  DOI: 10.1128/JVI.76.1.1-8.2002
    484. 484
      Sattentau, Q. Avoiding the Void: Cell-to-Cell Spread of Human Viruses. Nat. Rev. Microbiol. 2008, 6, 815826,  DOI: 10.1038/nrmicro1972
    485. 485
      Sherer, N. M.; Lehmann, M. J.; Jimenez-Soto, L. F.; Horensavitz, C.; Pypaert, M.; Mothes, W. Retroviruses Can Establish Filopodial Bridges for Efficient Cell-to-Cell Transmission. Nat. Cell Biol. 2007, 9, 310315,  DOI: 10.1038/ncb1544
    486. 486
      Mothes, W.; Sherer, N. M.; Jin, J.; Zhong, P. Virus Cell-to-Cell Transmission. J. Virol. 2010, 84, 83608368,  DOI: 10.1128/JVI.00443-10
    487. 487
      Eugenin, E. A.; Gaskill, P. J.; Berman, J. W. Tunneling Nanotubes (TNT) Are Induced by HIV-Infection of Macrophages: A Potential Mechanism for Intercellular HIV Trafficking. Cell. Immunol. 2009, 254, 142148,  DOI: 10.1016/j.cellimm.2008.08.005
    488. 488
      Gousset, K.; Schiff, E.; Langevin, C.; Marijanovic, Z.; Caputo, A.; Browman, D. T.; Chenouard, N.; de Chaumont, F.; Martino, A.; Enninga, J. Prions Hijack Tunnelling Nanotubes for Intercellular Spread. Nat. Cell Biol. 2009, 11, 328336,  DOI: 10.1038/ncb1841
    489. 489
      Sowinski, S.; Jolly, C.; Berninghausen, O.; Purbhoo, M. A.; Chauveau, A.; Köhler, K.; Oddos, S.; Eissmann, P.; Brodsky, F. M.; Hopkins, C. Membrane Nanotubes Physically Connect T Cells over Long Distances Presenting a Novel Route for HIV-1 Transmission. Nat. Cell Biol. 2008, 10, 211219,  DOI: 10.1038/ncb1682
    490. 490
      Kumar, A.; Kim, J. H.; Ranjan, P.; Metcalfe, M. G.; Cao, W.; Mishina, M.; Gangappa, S.; Guo, Z.; Boyden, E. S.; Zaki, S. Influenza Virus Exploits Tunneling Nanotubes for Cell-to-Cell Spread. Sci. Rep. 2017, 7, 40360,  DOI: 10.1038/srep40360
    491. 491
      Nzounza, P.; Chazal, M.; Guedj, C.; Schmitt, A.; Masse, J. M.; Randriamampita, C.; Pique, C.; Ramirez, B. C. The Scaffolding Protein Dlg1 Is a Negative Regulator of Cell-Free Virus Infectivity but Not of Cell-to-Cell HIV-1 Transmission in T Cells. PLoS One 2012, 7, e30130  DOI: 10.1371/journal.pone.0030130
    492. 492
      Igakura, T.; Stinchcombe, J. C.; Goon, P. K.; Taylor, G. P.; Weber, J. N.; Griffiths, G. M.; Tanaka, Y.; Osame, M.; Bangham, C. R. Spread of HTLV-I between Lymphocytes by Virus-Induced Polarization of the Cytoskeleton. Science 2003, 299, 17131716,  DOI: 10.1126/science.1080115
    493. 493
      Barnard, A. L.; Igakura, T.; Tanaka, Y.; Taylor, G. P.; Bangham, C. R. Engagement of Specific T-Cell Surface Molecules Regulates Cytoskeletal Polarization in HTLV-1–Infected Lymphocytes. Blood 2005, 106, 988995,  DOI: 10.1182/blood-2004-07-2850
    494. 494
      Johnson, D. C.; Webb, M.; Wisner, T. W.; Brunetti, C. Herpes Simplex Virus gE/gI Sorts Nascent Virions to Epithelial Cell Junctions, Promoting Virus Spread. J. Virol. 2001, 75, 821833,  DOI: 10.1128/JVI.75.2.821-833.2001
    495. 495
      Rustom, A.; Saffrich, R.; Markovic, I.; Walther, P.; Gerdes, H. H. Nanotubular Highways for Intercellular Organelle Transport. Science 2004, 303, 10071010,  DOI: 10.1126/science.1093133
    496. 496
      Davis, D. M.; Sowinski, S. Membrane Nanotubes: Dynamic Long-Distance Connections between Animal Cells. Nat. Rev. Mol. Cell Biol. 2008, 9, 431436,  DOI: 10.1038/nrm2399
    497. 497
      Efros, A. L.; Nesbitt, D. J. Origin and Control of Blinking in Quantum Dots. Nat. Nanotechnol. 2016, 11, 661671,  DOI: 10.1038/nnano.2016.140
    498. 498
      Marchuk, K.; Guo, Y.; Sun, W.; Vela, J.; Fang, N. High-Precision Tracking with Non-Blinking Quantum Dots Resolves Nanoscale Vertical Displacement. J. Am. Chem. Soc. 2012, 134, 61086111,  DOI: 10.1021/ja301332t
    499. 499
      Keller, A. M.; Ghosh, Y.; DeVore, M. S.; Phipps, M. E.; Stewart, M. H.; Wilson, B. S.; Lidke, D. S.; Hollingsworth, J. A.; Werner, J. H. 3-Dimensional Tracking of Non-blinking ’Giant’ Quantum Dots in Live Cells. Adv. Funct. Mater. 2014, 24, 47964803,  DOI: 10.1002/adfm.201400349
    500. 500
      Patterson, G.; Davidson, M.; Manley, S.; Lippincott-Schwartz, J. Superresolution Imaging Using Single-Molecule Localization. Annu. Rev. Phys. Chem. 2010, 61, 345367,  DOI: 10.1146/annurev.physchem.012809.103444
    501. 501
      Lee, A.; Tsekouras, K.; Calderon, C.; Bustamante, C.; Presse, S. Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis. Chem. Rev. 2017, 117, 72767330,  DOI: 10.1021/acs.chemrev.6b00729
    502. 502
      Huang, B.; Bates, M.; Zhuang, X. Super-Resolution Fluorescence Microscopy. Annu. Rev. Biochem. 2009, 78, 9931016,  DOI: 10.1146/annurev.biochem.77.061906.092014
    503. 503
      Pan, W.; Dong, Z.; Li, F.; Meng, W.; Feng, L.; Niu, X.; Li, C.; Luo, Q.; Li, Z.; Sun, C. Visualizing Influenza Virus Infection in Living Mice. Nat. Commun. 2013, 4, 2369,  DOI: 10.1038/ncomms3369
    504. 504
      Pan, H.; Zhang, P.; Gao, D.; Zhang, Y.; Li, P.; Liu, L.; Wang, C.; Wang, H.; Ma, Y.; Cai, L. Noninvasive Visualization of Respiratory Viral Infection Using Bioorthogonal Conjugated Near-Infrared-Emitting Quantum Dots. ACS Nano 2014, 8, 54685477,  DOI: 10.1021/nn501028b
    505. 505
      Zong, W.; Wu, R.; Li, M.; Hu, Y.; Li, Y.; Li, J.; Rong, H.; Wu, H.; Xu, Y.; Lu, Y. Fast High-Resolution Miniature Two-Photon Microscopy for Brain Imaging in Freely Behaving Mice. Nat. Methods 2017, 14, 713719,  DOI: 10.1038/nmeth.4305
    506. 506
      Wang, K.; Sun, W.; Richie, C. T.; Harvey, B. K.; Betzig, E.; Ji, N. Direct Wavefront Sensing for High-Resolution in Vivo Imaging in Scattering Tissue. Nat. Commun. 2015, 6, 7276,  DOI: 10.1038/ncomms8276
    507. 507
      Hong, G.; Antaris, A. L.; Dai, H. Near-Infrared Fluorophores for Biomedical Imaging. Nat. Biomed. Eng. 2017, 1, 0010  DOI: 10.1038/s41551-016-0010
    508. 508
      Ding, F.; Zhan, Y. B.; Lu, X. J.; Sun, Y. Recent Advances in Near-Infrared II Fluorophores for Multifunctional Biomedical Imaging. Chem. Sci. 2018, 9, 43704380,  DOI: 10.1039/C8SC01153B
    509. 509
      Smith, A. M.; Mancini, M. C.; Nie, S. Bioimaging: Second Window for in Vivo Imaging. Nat. Nanotechnol. 2009, 4, 710,  DOI: 10.1038/nnano.2009.326
    510. 510
      Zhang, J. J.; Lin, Y.; Zhou, H.; He, H.; Ma, J. J.; Luo, M. Y.; Zhang, Z. L.; Pang, D. W. Cell Membrane-Camouflaged NIR II Fluorescent Ag2Te Quantum Dots-Based Nanobioprobes for Enhanced in Vivo Homotypic Tumor Imaging. Adv. Healthcare Mater. 2019, 8, e1900341  DOI: 10.1002/adhm.201900341
    511. 511
      Hong, G.; Robinson, J. T.; Zhang, Y.; Diao, S.; Antaris, A. L.; Wang, Q.; Dai, H. In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near-Infrared Region. Angew. Chem., Int. Ed. 2012, 51, 98189821,  DOI: 10.1002/anie.201206059
    512. 512
      Jiang, P.; Zhu, C. N.; Zhang, Z. L.; Tian, Z. Q.; Pang, D. W. Water-Soluble Ag2S Quantum Dots for Near-Infrared Fluorescence Imaging in Vivo. Biomaterials 2012, 33, 51305135,  DOI: 10.1016/j.biomaterials.2012.03.059