Organic Flow Batteries: Recent Progress and PerspectivesClick to copy article linkArticle link copied!
- Jianyu CaoJianyu CaoJiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, ChinaMore by Jianyu Cao
- Junya TianJunya TianJiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, ChinaMore by Junya Tian
- Juan Xu*Juan Xu*(J.X.) Email: [email protected]Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, ChinaMore by Juan Xu
- Yonggang Wang*Yonggang Wang*(Y.W.) Email: [email protected]Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Centre of Chemistry for Energy Materials), Fudan University, Shanghai 200433, ChinaMore by Yonggang Wang
Abstract

As a necessary supplement to clean renewable energy, aqueous flow batteries have become one of the most promising next-generation energy storage and conversion devices because of their excellent safety, high efficiency, flexibility, low cost, and particular capability of being scaled severally in light of energy and power density. The water-soluble redox-active electrolytes are the core components of aqueous flow batteries. The redox-active organic molecules have leaped to the more important electrolytes than conventional inorganic species because of their structural diversity, tailorability, and potential low cost. Much research work was conducted on organic electrolytes for designing high-performance aqueous flow batteries. The motivation of this review is to summarize and present the structure features, property evaluation methods, performance improvement schemes and battery design principles. The detailed functionalization methods to improve the physical and chemical performances of organic electrolytes including redox potential, reaction kinetic rate, solubility, and permeability have been emphatically provided and analyzed. Meanwhile, the further development prospect of aqueous organic electrolytes was put forward.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 85 publications.
- Yuyue Zhao, Sambasiva R. Bheemireddy, Diqing Yue, Zhou Yu, Mohammad Afsar Uddin, Haoyu Liu, Zhiguang Li, Xiaoting Fang, Xingyi Lyu, Garvit Agarwal, Zhangxing Shi, Lily A. Robertson, Lei Cheng, Tao Li, Rajeev S. Assary, Venkat Srinivasan, Susan J. Babinec, Zhengcheng Zhang, Jeffrey S. Moore, Ilya A. Shkrob, Xiaoliang Wei, Lu Zhang. Stable, Impermeable Hexacyanoferrate Anolyte for Nonaqueous Redox Flow Batteries. ACS Energy Letters 2024, 9
(9)
, 4273-4279. https://doi.org/10.1021/acsenergylett.4c01351
- Rajesh B. Jethwa, Dominic Hey, Rachel N. Kerber, Andrew D. Bond, Dominic S. Wright, Clare P. Grey. Exploring the Landscape of Heterocyclic Quinones for Redox Flow Batteries. ACS Applied Energy Materials 2024, 7
(2)
, 414-426. https://doi.org/10.1021/acsaem.3c02223
- Bebin Ambrose, Raghupandiyan Naresh, Swapnil Deshmukh, Murugavel Kathiresan, Pitchai Ragupathy. Exploring Contemporary Advancements and Outlook in Viologen-Based Aqueous Organic Redox Flow Batteries: A Mini Review. Energy & Fuels 2023, 37
(23)
, 18226-18242. https://doi.org/10.1021/acs.energyfuels.3c02299
- Penghua Qian, Wanhai Zhou, Yuxia Zhang, Dongliang Chao, Ming Song. Review and Perspectives of Sulfonated Poly(ether ether ketone) Proton Exchange Membrane for Vanadium Flow Batteries. Energy & Fuels 2023, 37
(23)
, 17681-17707. https://doi.org/10.1021/acs.energyfuels.3c02373
- Juan Asenjo-Pascual, Cedrik Wiberg, Mahsa Shahsavan, Ivan Salmeron-Sanchez, Pablo Mauleon, Juan Ramon Aviles Moreno, Pilar Ocon, Pekka Peljo. Sulfonate-Based Triazine Multiple-Electron Anolyte for Aqueous Organic Flow Batteries. ACS Applied Materials & Interfaces 2023, 15
(30)
, 36242-36249. https://doi.org/10.1021/acsami.3c05850
- Chun-I Wang, Nicholas E. Jackson. Bringing Quantum Mechanics to Coarse-Grained Soft Materials Modeling. Chemistry of Materials 2023, 35
(4)
, 1470-1486. https://doi.org/10.1021/acs.chemmater.2c03712
- Arsalan Hashemi, Pekka Peljo, Kari Laasonen. Understanding Electron Transfer Reactions Using Constrained Density Functional Theory: Complications Due to Surface Interactions. The Journal of Physical Chemistry C 2023, 127
(7)
, 3398-3407. https://doi.org/10.1021/acs.jpcc.2c06537
- Aleksandr Koronatov, Assaf Mauda, Boris Tumansky, Alexander Kaushansky, Natalia Fridman, Dmitry Bravo-Zhivotovskii, Mark Gandelman. Multimodal Reactivity of N–H Bonds in Triazanes and Isolation of a Triazinyl Radical. Journal of the American Chemical Society 2022, 144
(51)
, 23642-23648. https://doi.org/10.1021/jacs.2c11113
- Jing Li, Fei Xu, Yanbo Chen, Yuyang Han, Bencai Lin. Sulfonated Poly(ether Ether Ketone)/Sulfonated Covalent Organic Framework Composite Membranes with Enhanced Performance for Application in Vanadium Redox Flow Batteries. ACS Applied Energy Materials 2022, 5
(12)
, 15856-15863. https://doi.org/10.1021/acsaem.2c03397
- Yufeng Liu, Xianzhi Yuan, Mingbao Huang, Zhipeng Xiang, Shuzhi Hu, Zhiyong Fu, Xuhong Guo, Zhenxing Liang. Redox-Modulated Host–Guest Complex Realizing Stable Two-Electron Storage Viologen for Flow Battery. Industrial & Engineering Chemistry Research 2022, 61
(39)
, 14508-14514. https://doi.org/10.1021/acs.iecr.2c02272
- Siddharth Ghule, Soumya Ranjan Dash, Sayan Bagchi, Kavita Joshi, Kumar Vanka. Predicting the Redox Potentials of Phenazine Derivatives Using DFT-Assisted Machine Learning. ACS Omega 2022, 7
(14)
, 11742-11755. https://doi.org/10.1021/acsomega.1c06856
- Yue Liu, Gaole Dai, Yuanyuan Chen, Ru Wang, Huamei Li, Xueliang Shi, Xiaohong Zhang, Yang Xu, Yu Zhao. Effective Design Strategy of Small Bipolar Molecules through Fused Conjugation toward 2.5 V Based Redox Flow Batteries. ACS Energy Letters 2022, 7
(4)
, 1274-1283. https://doi.org/10.1021/acsenergylett.2c00198
- Fengming Chu, Minghui Su, Guozhen Xiao, Zhanao Tan, Guoan Yang. Analysis of Electrode Configuration Effects on Mass Transfer and Organic Redox Flow Battery Performance. Industrial & Engineering Chemistry Research 2022, 61
(7)
, 2915-2925. https://doi.org/10.1021/acs.iecr.1c04689
- Aleksandr Korshunov, Anna Gibalova, Mariano Gruenebaum, Bart Jan Ravoo, Martin Winter, Isidora Cekic-Laskovic. Supramolecular Viologen–Cyclodextrin Electrolytes for Aqueous Organic Redox Flow Batteries. ACS Applied Energy Materials 2021, 4
(11)
, 12353-12364. https://doi.org/10.1021/acsaem.1c02156
- Eduardo Martínez-González, Martha M. Flores-Leonar, Carlos Amador-Bedolla, Víctor M. Ugalde-Saldívar. Concentration Effects on the First Reduction Process of Methyl Viologens and Diquat Redox Flow Battery Electrolytes. ACS Applied Energy Materials 2021, 4
(7)
, 6624-6634. https://doi.org/10.1021/acsaem.1c00685
- Lei Yi, Zhaowei Zeng, Yucong Liao, Yayun Tang, Xiang Li, Ning Lv, Yuexin Xu, Hanyang Li, Yadong Wang. New Battery with Borides as Both Anode and Cathode Materials. Energy & Fuels 2021, 35
(12)
, 10315-10321. https://doi.org/10.1021/acs.energyfuels.1c01381
- Jun Qiao, Zirui Liu, Zheng Wang, Meng Qin, Yanjun Shi, Juan Xu, Zhidong Chen, Jianyu Cao. Long-Life Aqueous H+/K+ Dual-Cation Batteries Based on Dipyridophenazine//Hexacyanoferrate Electrodes. ACS Applied Energy Materials 2021, 4
(5)
, 4903-4909. https://doi.org/10.1021/acsaem.1c00489
- Haiguang Gao, Mengcheng Song, Chen Gu, Yanjun Shi, Xiaofei Yu, Yucheng Huang, Juan Xu, Jianyu Cao. Advanced aqueous phenazine redox flow battery enhanced by selective interfacial water behavior on Co/NC modified electrode. Journal of Colloid and Interface Science 2025, 683 , 1055-1063. https://doi.org/10.1016/j.jcis.2024.12.142
- Gabriel Gonzalez, Anton A. Nechaev, Vsevolod A. Peshkov, Eduardo Martínez‐González, Andrey Belyaev, Andrea Hamza, Mahsa Shahsavan, Petri M. Pihko, Pekka Peljo. Redox‐Active Bisphosphonate‐Based Viologens as Negolytes for Aqueous Organic Flow Batteries. Chemistry – A European Journal 2025, 31
(16)
https://doi.org/10.1002/chem.202404122
- Yiyang Cui, Kai Zheng, Ruoqing Sun, Zhiwei Yuan, Dengfeng Guo, Juan Xu, Xiaofei Yu, Jian Zang, Jianyu Cao. A multi-substituted phenazine derivative aqueous redox flow battery with high energy efficiency and long lifetime. Journal of Power Sources 2025, 633 , 236461. https://doi.org/10.1016/j.jpowsour.2025.236461
- Taha Yasin Eken, Cantekin Kaykilarli, Ali Tuna, Ebru Devrim Şam Parmak, Deniz Uzunsoy, Pekka Peljo. Graphene nanoplatelet-coated electrodes with cellulose binders for 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl-based aqueous posolyte. Fullerenes, Nanotubes and Carbon Nanostructures 2025, , 1-12. https://doi.org/10.1080/1536383X.2025.2458510
- Touma B. Issa, Jonovan Van Yken, Pritam Singh, Aleksandar N. Nikoloski. Advancements and Applications of Redox Flow Batteries in Australia. Batteries 2025, 11
(2)
, 78. https://doi.org/10.3390/batteries11020078
- Honglin Chen, Youke Chen, Manrong Song, Xiaocong Zhou, Meiling Huang, Xuan Shen, Jiayou Ren, Chao Ji, Shengxin Yao, Liuping Chen, Bin Liu, Tianshou Zhao. A high redox potential phenothiazine-based catholyte for aqueous organic redox flow batteries. Future Batteries 2025, 5 , 100050. https://doi.org/10.1016/j.fub.2025.100050
- Aswathy Joseph, Suresh Mathew. Ionic Liquid-Based Redox Flow Batteries. 2025, 1-35. https://doi.org/10.1007/978-981-16-4480-1_10-1
- Dongdong Zhu, Lu Li, Yunlong Ji, Pan Wang. Aqueous colloid flow batteries with nano Prussian blue. Journal of Colloid and Interface Science 2025, 678 , 88-97. https://doi.org/10.1016/j.jcis.2024.08.110
- Md Al Raihan, C. Adam Dyker. Status and prospects for symmetric organic redox flow batteries. Journal of Energy Chemistry 2025, 100 , 125-143. https://doi.org/10.1016/j.jechem.2024.08.016
- Aswathy Joseph, Suresh Mathew. Ionic Liquid-Based Redox Flow Batteries. 2025, 1-34. https://doi.org/10.1007/978-981-16-4480-1_10-2
- Yu Si, Haiguang Gao, Ruoqing Sun, Juan Xu, Yong-Miao Shen, Yucheng Huang, Jianyu Cao. Nanostructured copper foam electrodes boost redox kinetics and suppress chemical side reactions of viologen anolytes in pH-neutral aqueous organic redox flow batteries. Journal of Materials Chemistry A 2025, 52 https://doi.org/10.1039/D5TA00671F
- Xinjie Guan, Maria Skyllas-Kazacos, Chris Menictas. An electrochemical stack model for aqueous organic flow battery: The MV/TEMPTMA system. Applied Energy 2024, 375 , 124024. https://doi.org/10.1016/j.apenergy.2024.124024
- Xinyue Zhang, Tian Bao, Hong-bin Sun. Organics-based aqueous batteries: Concept for stationary energy storage with resource feasibility. Resources Chemicals and Materials 2024, 3
(4)
, 317-320. https://doi.org/10.1016/j.recm.2024.07.001
- Hang Jiang, Siting Liu, Qianyun Wang, Jianhua Zhang, Yufeng Liao, Zhikang Zhou, Jianwei Wang, Danyang Wang, Qinzhi Lai, Qian Wang. Function regionalized catalyst promoted bromine redox kinetics for bromine-based flow battery. Journal of Power Sources 2024, 624 , 235520. https://doi.org/10.1016/j.jpowsour.2024.235520
- Si Huang, Jun Lu, Jian Wang, Xinghui Fu, Yaping Fu, Yinping Li, Xilin Shi, Zhikai Dong, Kai Zhao, Peng Li, Mingnan Xu, Xiangsheng Chen. Experimental study on creep characteristics of electrolyte-bearing salt rock under long-term triaxial cyclic loading. Frontiers in Earth Science 2024, 12 https://doi.org/10.3389/feart.2024.1503158
- F. Lambert, A. L. Hetzel, Y. Danten, A. A. Franco, C. Gatti, C. Frayret. Investigating the potential of pyrazine dioxide based-compounds as organic electrodes for batteries. Dalton Transactions 2024, 53
(43)
, 17498-17517. https://doi.org/10.1039/D4DT01144A
- Mengna Qin, Guibao Wu, Kai Zheng, Xiaofei Yu, Juan Xu, Jianyu Cao. A highly water-soluble phenoxazine quaternary ammonium compound catholyte for pH-neutral aqueous organic redox flow batteries. Journal of Energy Storage 2024, 102 , 114162. https://doi.org/10.1016/j.est.2024.114162
- Devendra Y. Nikumbe, Priyanka P. Bavdane, Sooraj Sreenath, Selvaraj Paramasivam, R. Govindha Pandi, Shanmugam Senthil Kumar, Bhavana Bhatt, Rajaram K. Nagarale. Stability of monoradical cation dimer of viologen derivatives in aqueous redox flow battery. Journal of Applied Electrochemistry 2024, 54
(10)
, 2165-2177. https://doi.org/10.1007/s10800-024-02100-4
- Mona Masroor Fakhabi, Seyed Mohammad Hamidian, Mehdi Aliehyaei. Exploring the role of the Internet of Things in green buildings. Energy Science & Engineering 2024, 12
(9)
, 3779-3822. https://doi.org/10.1002/ese3.1840
- Diqing Yue, Weilin Zhang, Ivy Zhao, Xiaoting Fang, Yuyue Zhao, Jenny Li, Feng Zhao, Xiaoliang Wei. A New Nonaqueous Flow Battery with Extended Cycling. Reactions 2024, 5
(3)
, 452-461. https://doi.org/10.3390/reactions5030023
- Lachlan O. Smith, Kathryn M. Thatcher, Oscar J. Henderson‐Walshe, Deborah L. Crittenden. Redox Behaviour and Redox Potentials of Dyes in Aqueous Buffers and Protic Ionic Liquids. Chemistry – A European Journal 2024, 30
(48)
https://doi.org/10.1002/chem.202400573
- Hanna Lehtimäki, Marjaana Karhu, Juha M. Kotilainen, Rauno Sairinen, Ari Jokilaakso, Ulla Lassi, Elina Huttunen-Saarivirta. Sustainability of the use of critical raw materials in electric vehicle batteries: A transdisciplinary review. Environmental Challenges 2024, 16 , 100966. https://doi.org/10.1016/j.envc.2024.100966
- Jinyao Tang, Rongxuan Xie, Parsa Pishva, Xiaochen Shen, Yanlin Zhu, Zhenmeng Peng. Recent progress and perspectives of liquid organic hydrogen carrier electrochemistry for energy applications. Journal of Materials Chemistry A 2024, 12
(26)
, 15580-15591. https://doi.org/10.1039/D4TA01893A
- Renata G. Almeida, Oshadie De Silva, Fábio G. Delolo, Maria H. Araujo, Subashani Maniam, Eufrânio N. da Silva Júnior. The Use of the Mannich Reaction toward Amino‐Based Anthraquinone Applied in Aqueous Redox Flow Battery. Advanced Energy and Sustainability Research 2024, 14 https://doi.org/10.1002/aesr.202400118
- Xin Zhang, Haiguang Gao, Wei Jin, Yucheng Huang, Juan Xu, Jianyu Cao. Oxygen-vacancy-enriched MgO/carbon composite as a highly efficient electrocatalyst for phenazine/dihydrophenazine redox reaction of aqueous phenazine redox flow battery. Materials Today Energy 2024, 43 , 101587. https://doi.org/10.1016/j.mtener.2024.101587
- Wei Jin, Yanli Chen, Lai-Ke Chen, De-Yin Wu, Juan Xu, Jianyu Cao. Computational design of C-substituted paraquat/diquat derivatives for neutral aqueous organic redox flow batteries. New Journal of Chemistry 2024, 48
(24)
, 10884-10890. https://doi.org/10.1039/D4NJ01001A
- Yuxuan Yang, Zeyu Xu, Yue Zhang, You Zhou, Zongren Song, Taiyu Jin, Minghua Jing, Xiao Wei, Dawei Fang. Physicochemical and electrochemical properties of several readily available anthraquinone aqueous electrolytes. Journal of Molecular Liquids 2024, 404 , 124971. https://doi.org/10.1016/j.molliq.2024.124971
- Linjing Miao, Yijing Shen, Jianyu Cao, Yong-Miao Shen, Juan Xu. A green and cost-effective zinc-biphenol hybrid flow battery with eutectic electrolyte. Journal of Energy Storage 2024, 86 , 111242. https://doi.org/10.1016/j.est.2024.111242
- Siwoo Lee, Stefan Heinen, Danish Khan, O Anatole von Lilienfeld. Autonomous data extraction from peer reviewed literature for training machine learning models of oxidation potentials. Machine Learning: Science and Technology 2024, 5
(1)
, 015052. https://doi.org/10.1088/2632-2153/ad2f52
- Brian Tarroja, Oladele Ogunseitan, Alissa Kendall. Life Cycle Assessment of Emerging Battery Systems. 2024, 243-258. https://doi.org/10.1007/978-3-031-48359-2_13
- Taha Yasin EKEN, Cantekin KAYKILARLI, Ali TUNA, Ebru Devrim ŞAM PARMAK, Deniz UZUNSOY, Pekka Peljo. Investigating the Impact of Dip Coating on the Performance of Graphene Nanoplatelet-Coated Electrodes with Cellulose Binder for Organic Flow Batteries. 2024https://doi.org/10.2139/ssrn.4795102
- Mengna Qin, Meng Qin, Yanjun Shi, Juan Xu, Jianyu Cao. Redox-active anthraquinone-based π-conjugated polymer anode for high-capacity aqueous organic hybrid flow battery. Journal of Energy Storage 2023, 72 , 108642. https://doi.org/10.1016/j.est.2023.108642
- Patrick T. Sullivan, Honghao Liu, Xiu‐Liang Lv, Song Jin, Wenjie Li, Dawei Feng. Viologen Hydrothermal Synthesis and Structure–Property Relationships for Redox Flow Battery Optimization. Advanced Energy Materials 2023, 13
(34)
https://doi.org/10.1002/aenm.202203919
- Andrea Hamza, Flóra B. Németh, Ádám Madarász, Anton Nechaev, Petri M. Pihko, Pekka Peljo, Imre Pápai. N‐Alkylated Pyridoxal Derivatives as Negative Electrolyte Materials for Aqueous Organic Flow Batteries: Computational Screening**. Chemistry – A European Journal 2023, 29
(44)
https://doi.org/10.1002/chem.202300996
- Lily A. Robertson, Mohammad Afsar Uddin, Ilya A. Shkrob, Jeffrey S. Moore, Lu Zhang. Liquid Redoxmers for Nonaqueous Redox Flow Batteries. ChemSusChem 2023, 16
(14)
https://doi.org/10.1002/cssc.202300043
- Nadia L. Farag, Rajesh B. Jethwa, Alice E. Beardmore, Teresa Insinna, Christopher A. O'Keefe, Peter A. A. Klusener, Clare P. Grey, Dominic S. Wright. Triarylamines as Catholytes in Aqueous Organic Redox Flow Batteries. ChemSusChem 2023, 16
(13)
https://doi.org/10.1002/cssc.202300128
- Lei Xu, Qianwei Wang, Dengfeng Guo, Juan Xu, Jianyu Cao. A quaternized anthraquinone derivative for pH-neutral aqueous organic redox flow batteries. New Journal of Chemistry 2023, 47
(23)
, 11216-11221. https://doi.org/10.1039/D3NJ00784G
- Luuk Kortekaas, Sebastian Fricke, Aleksandr Korshunov, Martin Winter, Isidora Cekic‐Laskovic, Mariano Grünebaum. A Digital Blueprint for 3D‐Printing Lab Scale Aqueous and Organic Redox‐Flow Batteries. Batteries & Supercaps 2023, 6
(6)
https://doi.org/10.1002/batt.202300045
- Wonmi Lee, Kyu In Shim, Gyunho Park, Jeong Woo Han, Yongchai Kwon. Rational design of composite supporting electrolyte required for achieving high performance aqueous organic redox flow battery. Chemical Engineering Journal 2023, 464 , 142661. https://doi.org/10.1016/j.cej.2023.142661
- Qiang Ma, Wenxuan Fu, Jinhua Xu, Zhiqiang Wang, Qian Xu. Study on the Optimal Double-Layer Electrode for a Non-Aqueous Vanadium-Iron Redox Flow Battery Using a Machine Learning Model Coupled with Genetic Algorithm. Processes 2023, 11
(5)
, 1529. https://doi.org/10.3390/pr11051529
- Fulong Zhu, Wei Guo, Yongzhu Fu. Molecular Engineering of Organic Species for Aqueous Redox Flow Batteries. Chemistry – An Asian Journal 2023, 18
(2)
https://doi.org/10.1002/asia.202201098
- Hao Fan, Hongyu Xu, Jiangxuan Song. Aqueous Organic Redox Flow Batteries. 2023, 91-145. https://doi.org/10.1007/978-3-031-37271-1_5
- Luuk Kortekaas, Sebastian Fricke, Aleksandr Korshunov, Isidora Cekic-Laskovic, Martin Winter, Mariano Grünebaum. Building Bridges: Unifying Design and Development Aspects for Advancing Non-Aqueous Redox-Flow Batteries. Batteries 2023, 9
(1)
, 4. https://doi.org/10.3390/batteries9010004
- Abhishek Khetan. High-Throughput Virtual Screening of Quinones for Aqueous Redox Flow Batteries: Status and Perspectives. Batteries 2023, 9
(1)
, 24. https://doi.org/10.3390/batteries9010024
- Noufal Merukan Chola, Rajaram K. Nagarale. Evaluation and degradation mechanism of phthalimide derivatives as anolytes for non-aqueous organic static batteries. New Journal of Chemistry 2022, 46
(47)
, 22593-22601. https://doi.org/10.1039/D2NJ03495F
- Xue Xia, Mengna Qin, Yang Sun, Yanjun Shi, Juan Xu, Yong-Miao Shen, Dengfeng Guo, Zhidong Chen, Jianyu Cao. A high-capacity 1,2:3,4-dibenzophenazine anode integrated into carbon felt for an aqueous organic flow battery in alkaline media. Green Chemistry 2022, 24
(22)
, 8783-8790. https://doi.org/10.1039/D2GC02714C
- Qiang Ma, Chaowei Mao, Lijuan Zhao, Zhenqian Chen, Huaneng Su, Qian Xu. A pore-scale study for reactive transport processes in double-layer gradient electrode as negative side of a deep eutectic solvent electrolyte-based vanadium-iron redox flow battery. Electrochimica Acta 2022, 431 , 141110. https://doi.org/10.1016/j.electacta.2022.141110
- Tao Huang, Rongrong Zheng, Haiyang Chang, Di Ma, Haijun Niu. Green fruit organic primary battery: Positive citric acid, negative sodium tert-pentoxide. Journal of Electroanalytical Chemistry 2022, 920 , 116582. https://doi.org/10.1016/j.jelechem.2022.116582
- Thomas Puleston, Alejandro Clemente, Ramon Costa-Castelló, Maria Serra. Modelling and Estimation of Vanadium Redox Flow Batteries: A Review. Batteries 2022, 8
(9)
, 121. https://doi.org/10.3390/batteries8090121
- Teo Lombardo, Fanny Lambert, Roberto Russo, Franco M. Zanotto, Christine Frayret, Gwenaelle Toussaint, Philippe Stevens, Matthieu Becuwe, Alejandro A. Franco. Experimentally Validated Three‐Dimensional Modeling of Organic‐Based Sodium‐Ion Battery Electrode Manufacturing. Batteries & Supercaps 2022, 5
(8)
https://doi.org/10.1002/batt.202200116
- S. Guiheneuf, T. Godet-Bar, J.-M. Fontmorin, C. Jourdin, D. Floner, F. Geneste. A new hydroxyanthraquinone derivative with a low and reversible capacity fading process as negolyte in alkaline aqueous redox flow batteries. Journal of Power Sources 2022, 539 , 231600. https://doi.org/10.1016/j.jpowsour.2022.231600
- Wenfei Zhang, Yanli Chen, Tai-Rui Wu, Xue Xia, Juan Xu, Zhidong Chen, Jianyu Cao, De-Yin Wu. Computational design of phenazine derivative molecules as redox-active electrolyte materials in alkaline aqueous organic flow batteries. New Journal of Chemistry 2022, 46
(24)
, 11662-11668. https://doi.org/10.1039/D2NJ01769E
- Musbaudeen O. Bamgbopa, Abdulmonem Fetyan, Mikhail Vagin, Adedeji A. Adelodun. Towards eco-friendly redox flow batteries with all bio-sourced cell components. Journal of Energy Storage 2022, 50 , 104352. https://doi.org/10.1016/j.est.2022.104352
- Xu Liu, Xuri Zhang, Guoping Li, Sikun Zhang, Bingjie Zhang, Wenqiang Ma, Zengrong Wang, Yueyan Zhang, Gang He. Thienoviologen anolytes for aqueous organic redox flow batteries with simultaneously enhanced capacity utilization and capacity retention. Journal of Materials Chemistry A 2022, 10
(18)
, 9830-9836. https://doi.org/10.1039/D1TA10112A
- Bebin Ambrose, Raghu Pandiyan Naresh, Mani Ulaganathan, Pitchai Ragupathy, Murugavel Kathiresan. Modified viologen as an efficient anolyte for aqueous organic redox flow batteries. Materials Letters 2022, 314 , 131876. https://doi.org/10.1016/j.matlet.2022.131876
- Mingbao Huang, Shuzhi Hu, Xianzhi Yuan, Jinghua Huang, Wenjin Li, Zhipeng Xiang, Zhiyong Fu, Zhenxing Liang. Five‐Membered‐Heterocycle Bridged Viologen with High Voltage and Superior Stability for Flow Battery. Advanced Functional Materials 2022, 32
(16)
https://doi.org/10.1002/adfm.202111744
- Hongchao Zhang, Qinghong Huang, Xue Xia, Yanjun Shi, Yong-Miao Shen, Juan Xu, Zhidong Chen, Jianyu Cao. Aqueous organic redox-targeting flow battery based on Nernstian-potential-driven anodic redox-targeting reactions. Journal of Materials Chemistry A 2022, 10
(12)
, 6740-6747. https://doi.org/10.1039/D1TA10763A
- Fuzhen Wang, Guozhen Xiao, Minghui Su, Fengming Chu. Coupling influences of electrode and flow field geometry on species transport behavior and battery performance for organic redox flow battery. International Journal of Low-Carbon Technologies 2022, 17 , 1341-1352. https://doi.org/10.1093/ijlct/ctac111
- Hui Deng. Evaluation and Improvement of Innovation Capability of Small and Medium-Sized Enterprises Based on Internet of Things Technology. 2022, 233-240. https://doi.org/10.1007/978-3-030-99616-1_31
- Theo A. Ellingsen, Natasha Hoffmann, Wesley J. Olivier, Stuart C. Thickett, Debbie S. Silvester, Rebecca O. Fuller, . Stable organic radicals and their untapped potential in ionic liquids. Australian Journal of Chemistry 2022, 75
(11)
, 893-898. https://doi.org/10.1071/CH22126
- Peter Symons. Quinones for redox flow batteries. Current Opinion in Electrochemistry 2021, 29 , 100759. https://doi.org/10.1016/j.coelec.2021.100759
- Jinghua Huang, Shuzhi Hu, Xianzhi Yuan, Zhipeng Xiang, Mingbao Huang, Kai Wan, Jinhua Piao, Zhiyong Fu, Zhenxing Liang. Radical Stabilization of a Tripyridinium–Triazine Molecule Enables Reversible Storage of Multiple Electrons. Angewandte Chemie 2021, 133
(38)
, 21089-21093. https://doi.org/10.1002/ange.202107216
- Jinghua Huang, Shuzhi Hu, Xianzhi Yuan, Zhipeng Xiang, Mingbao Huang, Kai Wan, Jinhua Piao, Zhiyong Fu, Zhenxing Liang. Radical Stabilization of a Tripyridinium–Triazine Molecule Enables Reversible Storage of Multiple Electrons. Angewandte Chemie International Edition 2021, 60
(38)
, 20921-20925. https://doi.org/10.1002/anie.202107216
- Jiancong Xu, Shuai Pang, Xinyi Wang, Pan Wang, Yunlong Ji. Ultrastable aqueous phenazine flow batteries with high capacity operated at elevated temperatures. Joule 2021, 5
(9)
, 2437-2449. https://doi.org/10.1016/j.joule.2021.06.019
- Bo Hu, Hao Fan, Hongbin Li, Mahalingam Ravivarma, Jiangxuan Song. Five‐Membered Ring Nitroxide Radical: A New Class of High‐Potential, Stable Catholytes for Neutral Aqueous Organic Redox Flow Batteries. Advanced Functional Materials 2021, 31
(35)
https://doi.org/10.1002/adfm.202102734
- Zachary Deller, Lathe A. Jones, Subashani Maniam. Aqueous redox flow batteries: How ‘green’ are the redox active materials?. Green Chemistry 2021, 23
(14)
, 4955-4979. https://doi.org/10.1039/D1GC01333E
- Shuai Pang, Xinyi Wang, Pan Wang, Yunlong Ji. Biomimetic Amino Acid Functionalized Phenazine Flow Batteries with Long Lifetime at Near‐Neutral pH. Angewandte Chemie 2021, 133
(10)
, 5349-5358. https://doi.org/10.1002/ange.202014610
- Shuai Pang, Xinyi Wang, Pan Wang, Yunlong Ji. Biomimetic Amino Acid Functionalized Phenazine Flow Batteries with Long Lifetime at Near‐Neutral pH. Angewandte Chemie International Edition 2021, 60
(10)
, 5289-5298. https://doi.org/10.1002/anie.202014610
- Shuzhi Hu, Liwen Wang, Xianzhi Yuan, Zhipeng Xiang, Mingbao Huang, Peng Luo, Yufeng Liu, Zhiyong Fu, Zhenxing Liang. Viologen-Decorated TEMPO for Neutral Aqueous Organic Redox Flow Batteries. Energy Material Advances 2021, 2021 https://doi.org/10.34133/2021/9795237
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.