ACS Publications. Most Trusted. Most Cited. Most Read
Quantifying Time-Averaged Methane Emissions from Individual Coal Mine Vents with GHGSat-D Satellite Observations
My Activity

Figure 1Loading Img
  • Open Access
Energy and Climate

Quantifying Time-Averaged Methane Emissions from Individual Coal Mine Vents with GHGSat-D Satellite Observations
Click to copy article linkArticle link copied!

Open PDFSupporting Information (1)

Environmental Science & Technology

Cite this: Environ. Sci. Technol. 2020, 54, 16, 10246–10253
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.est.0c01213
Published July 16, 2020

Copyright © 2020 American Chemical Society. This publication is licensed under CC-BY-NC-ND.

Abstract

Click to copy section linkSection link copied!

Satellite observations of atmospheric methane plumes offer a means for global mapping of methane point sources. Here we use the GHGSat-D satellite instrument with 50 m effective spatial resolution and 9–18% single-pass column precision to quantify mean source rates for three coal mine vents (San Juan, United States; Appin, Australia; and Bulianta, China) over a two-year period (2016–2018). This involves averaging wind-rotated observations from 14 to 24 overpasses to achieve satisfactory signal-to-noise. Our wind rotation method optimizes the wind direction information for individual plumes to account for error in meteorological databases. We derive source rates from the time-averaged plumes using integrated mass enhancement (IME) and cross-sectional flux (CSF) methods calibrated with large eddy simulations. We find time-averaged source rates ranging from 2320 to 5850 kg h–1 for the three coal mine vents, with 40–45% precision (1σ), and generally consistent with previous estimates. The IME and CSF methods agree within 15%. Our results demonstrate the potential of space-based monitoring for annual reporting of methane emissions from point sources and suggest that future satellite instruments with similar pixel resolution but better precision should be able to constrain a wide range of point sources.

Copyright © 2020 American Chemical Society

Introduction

Click to copy section linkSection link copied!

Methane is a powerful greenhouse gas with large anthropogenic sources. It has contributed 1.0 W m–2 to radiative forcing since preindustrial times on an emission basis. (1) Underground coal mines are estimated to account for ∼10% of global anthropogenic methane emissions. (2) Their ventilation shafts are among the largest individual point sources of methane, (3) but individual source estimates are highly uncertain. (4) Remote sensing of atmospheric methane by solar backscatter in the shortwave infrared can be effective for quantifying point sources. (5,6) Krings et al. (2013) (7) used aircraft remote-sensing measurements to quantify methane emissions from coal mine vents in Germany. Frankenberg et al. (2016) (4) observed coal mine plumes in the Four Corners region of the Southwest United States using the airborne AVIRIS-NG spectrometer. Global-observing satellite instruments have demonstrated the capability to characterize methane emissions on regional scales (8−10) and from anomalously large sources (11) but are limited by relatively coarse imaging resolution (∼10 km). The GHGSat-D satellite instrument overcomes this limitation by conducting high-resolution observations of point sources over targeted domains. (12) Here we demonstrate the capability of GHGSat-D to observe methane plumes from individual coal mine vents and infer time-averaged source rates.
GHGSat-D was launched in June 2016 as demonstration for a future constellation of small satellites to monitor individual methane point sources from space. (13,14) Single-pass GHGSat-D observations have revealed anomalously high-emitting facilities in oil/gas fields with source rates exceeding 10,000 kg h–1. (12) The largest methane point sources under normal operating conditions are the vents of large underground coal mines, typically in the range of 1000–10,000 kg h–1. (4,5,7,15) Here we show that time averaging of wind-rotated GHGSat-D observations can enable detection and quantification of methane emissions from individual coal mine vents, adapting an approach previously applied to satellite observations of point sources for CO, (16) SO2, (17,18) NO2, (19−21) and NH3, (22,23) but including significant innovation to account for large errors and limited number of observations. Time averaging is necessary here to achieve satisfactory signal-to-noise, but it also has the advantage of smoothing over source variability and providing the annual emission estimates most relevant for national emission reporting and global methane budget analyses.

Materials and Methods

Click to copy section linkSection link copied!

GHGSat-D Observations

GHGSat-D uses a miniature Fabry–Perot interferometer with a spectral bandpass of 1630–1675 nm. (12,24) The measurements are made at 50 m effective pixel resolution over ∼12 × 12 km2 targeted domains. Methane column concentrations are retrieved from the resulting spectra using a 100-layer, clear-sky radiative transfer model in an inverse modelling framework, following Rodgers (2000) (25) and as described by Varon et al. (2019). (12) The inversion retrieves the total column concentrations Ω(x,y) [mol m–2] of methane across the scene, based on HITRAN absorption line spectra (26) and U.S. Standard Atmosphere vertical profiles. (27) The column mass enhancement ΔΩ(x,y) = Ω(x,y) – Ωb then characterizes the plume relative to the local background column concentration Ωb [mol m–2], which is inferred from a scene-wide methane column retrieval. (12) The inversion also retrieves albedo, CO2, and water vapor. The work presented here includes a correction of retrieval errors from aliased surface properties and other measurement parameters. (24)
GHGSat-D has an average revisit time of about two weeks depending on latitude and requires clear skies for successful observation. Since its launch in June 2016, it has repeatedly targeted the vents of three underground coal mines: the San Juan mine in New Mexico, USA; the Appin mine in New South Wales, Australia; and the Bulianta mine in Inner Mongolia, China. These coal mines were selected for their large coal production rates and/or previous reports of large methane emissions. (4,15,28,29) Here, we examine GHGSat-D observations of the coal mine vents taken between August 2016 and December 2018, totaling 14–24 cloud-free observations per mine (see Table 1). The Appin mine was closed on 28 June 2017 because of safety concerns and partially reopened on 13 October 2017. The four cloud-free observations made during this extended closure may reflect lower emissions than under normal operating conditions. Several other shorter closures occurred at Appin during the observation period, but these did not overlap with our measurements.
Table 1. Methane Source Rates from Coal Mine Vents Retrieved with GHGSat-D
 San Juan ventAppin ventBulianta vent
Location
CountryUnited StatesAustraliaChina
State/regionNew MexicoNew South WalesInner Mongolia
Latitude36.7928°N34.1815°S39.3835°N
Longitude108.3890°W150.7197°E110.0951°E
Source Retrieval Metadata
Averaging periodAug 2016–Nov 2018Nov 2016–Oct 2018Aug 2016–Dec 2018
Number of clear-sky observations241714
Single-pass error level9%18%12%
10 m wind speed (m s–1)a3.0 (0.5, 8.0)2.2 (0.7, 3.8)3.6 (0.9, 9)
Source Rate Estimates (kg h–1)b
IME method2320 ± 10505850 ± 23602410 ± 1000
CSF method2390 ± 10704980 ± 21002450 ± 970
Previous estimates360–2800c, 2585d, 1446e5200f, 10,800–12,600g170h
a

Mean (minimum, maximum) hourly wind speed for the ensemble of GHGSat-D observations, obtained from the GEOS-FP database.

b

Reported source rates are for time-averaged plumes after wind direction optimization (Figure 4) and using either the IME or CSF method.

c

Range from several days of aircraft remote-sensing measurements in April 2015. (4)

d

Annual mean estimate for 2017 from quarterly in situ measurements of flow rate and methane concentration. (40)

e

Mean estimate from five days of in situ aircraft mass-balance measurements. (15)

f

Estimate by Cardno (2009) (41) based on annual coal production activity data and emission factors (converted from kt CO2e a–1).

g

Estimate based on ventilation flow rate and air stream methane concentration from vent design. (29)

h

Estimate from in situ measurements during a weeks-long safety evaluation in 2011. (28)

Figure 1 shows methane column enhancements from individual GHGSat-D scenes centered on the San Juan coal mine vent. The geolocation of the retrieved column enhancements is accurate to within ∼30 m. (24) These scenes were chosen for their detectable plumes but also illustrate GHGSat-D retrieval artefacts resulting primarily from striping noise, surface reflectance variability, and stray light. Some artefacts are similar in magnitude to the plumes, which highlights the importance of prior knowledge of source location. Column precisions for our San Juan, Appin, and Bulianta observations are estimated at 9, 18, and 12% of background, respectively, based on the standard deviations of nonplume column enhancements across the scenes. Most scenes do not feature readily detectable plumes, which motivates our time-averaging analysis.

Figure 1

Figure 1. Instantaneous plumes observed by GHGSat-D over the San Juan mine in New Mexico on (a) November 1st, 2017, and (b) September 18th, 2018. The white “x” symbols mark the location of the coal mine vent (36.7928°N, 108.3890°W) and the white arrows show the instantaneous local wind direction inferred from the orientation of the plumes (see the “Wind Data for Time Averaging” section).

Wind Data for Time-Averaging

Time averaging of plume observations to improve signal-to-noise and infer emissions from point sources requires knowledge of wind speed and direction for the individual scenes. (16−23,30) Wind information can come from local measurements, from assimilated meteorological databases, or directly from the plume observations themselves. (31) The appropriate wind-averaging time for an individual scene depends on the lifetime of the detectable plume before turbulent diffusion dilutes it to below detectable levels. It ranges from ∼5 min for a typical plume (<1 km) to ∼1 h for a very large plume several km in extent. (32) Short averaging times produce higher source rate retrieval errors because of added uncertainty from subhourly wind variability. Coal mine vent plumes as observed by GHGSat-D tend to be <1 km in scale (Figure 1) and are therefore best interpreted with a short averaging time of about 5 min.
Our algorithm to relate plume concentrations to emissions uses 10 m wind information. (32) We take this information from two hourly meteorological databases: (1) the NASA Goddard Earth Observing System—Fast Processing (GEOS-FP) reanalysis product with full global coverage at 0.25° × 0.3125° resolution (33) and (2) the DarkSky online weather application programming interface with partial coverage. (34) Comparison with one month of daytime (15:00–21:00 UTC) wind measurements from 10 U.S. airports in the MesoWest database (35) suggests that GEOS-FP has more precise wind speed data than DarkSky, while DarkSky has more precise wind direction data. Error standard deviations on hourly average wind speed and direction from GEOS-FP are 1.5 m s–1 and 49° relative to the airport measurements, compared to 2.2 m s–1 and 37° for DarkSky. We therefore use GEOS-FP wind speed and direction as default, but substitute DarkSky wind direction where available. DarkSky winds are available for nearly all our observations of the San Juan and Appin mines, but not for Bulianta.
Figure 2 shows the wind direction error statistics when using meteorological reanalysis data to infer local wind direction as referenced by the MesoWest database. The error depends strongly on wind speed, with larger errors for low wind speeds, as would be expected from turbulence. Uncertainty in the mean hourly wind in the meteorological databases (Figure 2a) is calculated as the standard deviation of the residuals between hourly GEOS-FP (or DarkSky) and MesoWest wind directions. Wind direction errors for both GEOS-FP and DarkSky are binned by GEOS-FP wind speed, which is the wind speed we use to estimate source rates (see the “Estimating Source Rates” section). This error is compounded for small plumes by the error in inferring the more appropriate 5 min average wind (Figure 2b), in which case the two errors are added in quadrature. We calculate this additional error as the standard deviation of the residuals between the hourly and 5 min MesoWest wind directions. For observations with strong instantaneous plumes detectable by eye (Figure 1), we estimate wind direction directly from the plume axis, which we define from a weighted mean of pixel coordinates with the plume column concentrations as weights. The wind direction error in that case is set to 5° to account for error in the retrieved methane columns.

Figure 2

Figure 2. Error in estimating 10 m wind direction from the GEOS-FP and DarkSky datasets. (a) Error standard deviations for GEOS-FP and DarkSky hourly average wind direction relative to one month of measurements from 10 U.S. airports (ABQ, ATL, BOS, DFW, LAX, MCI, MSP, PDX, PHL, and PHX) in the MesoWest database, binned by GEOS-FP wind speed. The airport measurements are for daytime June 2017 (15:00–21:00 UTC). (b) Additional uncertainty for estimating 5 min wind direction from 1 h averages, based on 5 min wind direction variability in the MesoWest data.

For a given point source, a time-averaged plume over the GHGSat-D record can be constructed from the methane column enhancements ΔΩi(x,y) [mol m–2] observed over the source domain (x, y) on individual days i = 1...N. This is done by (1) georeferencing the observations and aligning them by linear interpolation to the grid of the first observation, (2) rotating each observation around the known source location by the local wind direction θi, and (3) computing perpixel means over the rotated observations remapped to the common grid. The alignment and rotation steps require precise knowledge of the source location at the scale of the observations. The rotation step may introduce negative bias from wind direction uncertainty, as a misrotated plume may be lost in the noisy background of the time-averaged observation. We account for this bias through our source rate retrieval method, as described in the “Estimating Source Rates” section below.

Optimizing Wind Directions

Wind direction errors in the meteorological databases are relatively large, particularly under low wind conditions (Figure 2). Here, we correct the wind directions used for plume rotation in order to maximize concentrations in the time-averaged plume while minimizing deviation from prior wind estimates. Specifically, we maximize the joint Gaussian probability distribution P(θ) given by
(1)
by minimizing −log P(θ). Here, θ is a wind direction vector whose elements θi, i = 1...N, are the wind directions used to rotate N GHGSat-D observations; θa is a vector of prior wind direction estimates for the observations, from GEOS-FP and DarkSky; Sa is the (diagonal) prior error covariance matrix describing uncertainty in the prior wind direction, which depends on wind speed, plume lifetime (here, 5 min), and whether the prior is drawn from GEOS-FP, DarkSky, or the plume itself; M(θ) [mol] is the total methane mass [integrated mass enhancement (IME)] in a wedge-shaped mask placed downwind of the source after time-averaging with a set of wind directions θ (see below); Mmax [mol] is the maximum possible value of M(θ) for the set of observations when no constraints are placed on θ; and δ2 [mol2] is the error variance in M(θ) due to GHGSat-D measurement noise. We minimize −log P(θ) numerically using the Nelder–Mead simplex algorithm. (36,37)
We rotate individual observations by their wind direction such that the time-averaged rotated wind is by convention from the north. M(θ) is computed at each iteration of the optimization procedure as the IME over a simple wedge-shaped mask extending 500 m south and ±15° of south. The IME is the sum of column enhancements ΔΩ(x,y) over the mask, multiplied by the pixel area. We then compute Mmax by rotating the mask around the source location by 360° in each observation, recording for each the maximum IME, and averaging over all observations. To calculate δ, we perform time averaging using our prior wind directions and then compute the IME within the wedge-shaped mask when placed at 100 random nonplume locations across the time-averaged domain; the standard deviation of these results gives δ.
Optimizing wind directions to enhance plume mass introduces a risk of aliasing positive measurement artefacts into the time-averaged plume. This problem is mitigated by the prior wind direction term in eq 1, which penalizes the optimizer for straying too far from reanalysis wind direction estimates. To assess the remaining risk, we conduct a series of null tests, optimizing winds for our observations of the San Juan mine with the wind-rotated average centered on four false source locations (Figure S1). The results indicate a minor effect and are described in the Supporting Information.

Defining Plume Boundaries

Inferring source rates from plume observations requires a mask that distinguishes plume pixels from the background. Varon et al. (2018) (32) suggested a t-test procedure for isolating plumes from normally distributed measurement noise, but that procedure’s performance is limited here by systematic errors in the time-averaged observations. Instead, we isolate the plumes by applying an enhancement threshold at the 98th percentile of ΔΩ(x,y) over the time-averaged domain. This defines a binary threshold mask for the scene. To delete random classification errors and reduce loss of plume enhancements at mask edges because of thresholding, we smooth the masks with a 150 × 150 m2 median filter, which replaces each pixel’s value with the median of its 150 × 150 m2 neighborhood, followed by a Gaussian filter with a standard deviation of 50 m. A final threshold is applied to produce a smooth, binary plume mask. Wind rotation and time averaging smooth out most of the observation artefacts such as those seen in Figure 1, but some still appear in the mask. For the purpose of inferring point source rates, we only consider the continuous portion of the mask originating from the source location.
The plume-masking scheme can strongly influence source rate retrieval results because it determines which measurement pixels are included in the analysis and which are not. The retrieval must therefore be calibrated according to the chosen scheme. We discuss this process in the next section.

Estimating Source Rates

We estimate source rates for our time-averaged plumes using two different methods: the IME method and the cross-sectional flux (CSF) method. (32) The IME method relates the source rate Q [mol s–1] to the detectable plume mass IME [mol] in terms of an effective wind speed Ueff,IME [m s–1] and plume size L [m]:
(2)
where , j = 1...n, is the time-averaged column concentration of the jth plume pixel with coordinates (xj,yj) and area Aj and the summation is over the n pixels within the continuous plume mask originating from the source location. The plume size L is defined following Varon et al. (2018) (32) as the square root of the plume mask’s area. The effective wind speed Ueff,IME is an operational parameter that is inferred from the local 10 m wind speed U10 in a manner that depends on the definitions of the plume mask and size. We discuss the Ueff = f(U10) relationship below.
The CSF method originally introduced by White (1976) (38) and adapted to column observations by Krings et al. (2011, 2013) (7,39) and Varon et al. (2018) (32) relates Q to a cross-plume concentration integral [mol m–1] and a different effective wind speed Ueff,CSF than in the IME method:
(3)
Here, the x-axis is defined by the wind direction (northerly by convention for our time-averaged plumes) and the y-axis is perpendicular to the wind direction. The integral is computed between the plume boundaries [a, b] defined by the plume mask, and this computation can be done at multiple downwind distances x to improve estimation of Q through averaging. Here, we repeat the calculation at pixel-width intervals across the full extent of the detectable plume. The effective wind speeds in the IME and CSF methods are operational parameters that can be related to the local 10 m wind speed U10. Varon et al. (2018) (32) calibrated Ueff = f(U10) relationships for instantaneous plumes generated by large eddy simulation (LES), but the relationships may be different here for two reasons. First, we use a different definition of the plume mask, as described in the previous section. This affects the dependence of IME and plume transects on Q. Second, the dependences of IME (or plume transects) on wind speed and source rate may be different for time-averaged compared to instantaneous plumes.
Here, we calibrate new Ueff = f(U10) relationships for the IME and CSF methods, customized to our observing conditions and plume mask. To do this, we repeat the LES plume analysis of Varon et al. (2018) (32) on the same ensemble of simulations, but with time-averaged rather than instantaneous plumes. The LES ensemble comprises fifteen 5 h simulations with a range of wind speeds and boundary layer depths. We calibrate Ueff = f(U10) relationships for each coal mine independently because for each we have a different number of observations and level of background noise. We use the following procedure. First, a number of LES plume snapshots are randomly drawn from the ensemble (24 for San Juan, 17 for Appin, and 14 for Bulianta). The source rate for the plumes is set to a random (constant) value between 1000 and 6000 kg h–1, typical for large coal mine vent emissions. (5) Each snapshot is rotated by a random wind direction, and the 5 min average value of U10 at the source location is recorded. We corrupt the plume snapshots with normally distributed, spatially uncorrelated noise of mean zero and standard deviation dependent on the observation conditions of each mine (9, 18, or 12% of a 1850 ppb background). We then follow the wind direction optimization procedure outlined above (eq 1) to recover the LES plume wind directions from the randomly corrupted prior estimates, and assemble in this manner a time-averaged plume pseudo-observation. After constructing the plume mask and calculating IME, L, and the mean transect for the time-averaged plume, we use eqs 2 and 3 to compute Ueff based on prior knowledge of Q. Meanwhile, we compute U10 for the time-averaged observation as the mean of the 5 min averages across aggregated plumes. We repeat this procedure 100 times on a set of LES plumes comprising 80% of the ensemble (∼2900 plume snapshots), simulating 100 time-averaged plumes with different mean source rates. We then derive the Ueff = f(U10) relationships by least squares fitting. Finally, to quantify source rate retrieval error, we evaluate these relationships on time-averaged plumes constructed from the remaining 20% of the LES plume ensemble (see the Supporting Information).
Figure 3 shows our derived Ueff = f(U10) relationships for the three coal mines. We find that linear relationships without intercepts capture the behavior well in all cases, and that the slopes are similar despite differences in the number of observations aggregated, level of measurement noise, and wind direction prior error variance. The winds are fit by robust linear regression, which assigns less weight to outlier points, to mitigate the considerable scatter in Ueff for larger values of U10. Plume enhancements in these outlier cases are very low and difficult to detect, even after wind direction optimization. Ueff = f(U10) slopes for the CSF method are similar to the results of Varon et al. (2018), (32) but slopes for the IME method are significantly different, which would reflect different interdependences between plume shape, mass, and ventilation time for time-averaged plumes compared to instantaneous plumes.

Figure 3

Figure 3. Effective wind speeds Ueff for retrieving time-averaged methane source rates by the IME and CSF methods (eqs 2 and 3) as a function of the time-averaged 10 m wind speed U10. The Ueff = f(U10) relationships are derived from LESs of instantaneous methane plumes, with time averaging and wind rotation corresponding to our measurement conditions for (a) San Juan, (b) Appin, and (c) Bulianta. Each point represents a time-averaged plume assembled from LES instantaneous plumes, with the level of background noise and number of observations adapted to the mine of interest (see Table 1). The functions are fit by robust least squares (see text).

Results and Discussion

Click to copy section linkSection link copied!

Time-Averaged Plumes

Figure 4 shows our time-averaged rotated observations of the San Juan, Appin, and Bulianta coal mine vents, both before and after wind direction optimization. The plumes are oriented to the south of the source location by convention and are separated from the noisy background by thresholding and smoothing as discussed in the “Defining Plume Boundaries” section. Enhancements above the threshold but not directly downwind of the source location are ignored as retrieval artefacts. We can make this distinction because wind-rotated time averaging with variable wind direction destroys spatial continuity between observations. Time-averaged enhancements lying outside of the downwind area should be classified as artefacts unless they are identified as plausible plumes in single-pass observations, particularly under low-wind conditions in which plumes may have highly complex shapes, which is not the case here.

Figure 4

Figure 4. Time-averaged methane plumes from the San Juan, Appin, and Bulianta coal mine vents, as observed by GHGSat-D from August 2016 through December 2018. The single-pass observations have been rotated to a northerly wind direction using (a–c) local wind data from GEOS-FP and DarkSky and (d–f) optimized wind directions with GEOS-FP and DarkSky winds as prior estimates (see the “Optimizing Wind Directions” section). The methane column enhancements are overlaid on Google Earth Pro imagery after thresholding and smoothing the plume masks with median and Gaussian filters (see the “Defining Plume Boundaries” section). The white markers show the location of the coal mine vent in the center of each scene.

Before optimizing wind direction to improve plume-to-noise contrast, the San Juan and Appin mine vents show strong time-averaged plumes with respective peak enhancements 7 and 17% above background. The Bulianta mine vent shows peak downwind enhancements 8% above background, but a less distinctive plume shape. One possible explanation for this is that the Bulianta vent is at the base of a hill, leading to large and potentially systematic wind direction error, in contrast to the San Juan and Appin vents, which are in flat terrain. Optimizing wind direction amplifies the plumes’ mean enhancements by 11–13% and produces a more elongated plume shape for the Bulianta coal mine, with peak methane enhancements more than 10% above background. Peak plume enhancements do not generally appear at the source location, contrary to what one would expect. This could be because of systematic retrieval errors over the vent location (e.g. because of surface reflectance variability or aerosol particles in the plume). Source pixel enhancements may also be lower than downwind pixel enhancements because the plume is present in only part of the source pixel along the wind direction. We expect this effect to be weaker at fine spatial scales than previously documented for the TROPOMI satellite instrument’s kilometer-scale pixels. (11) Finally, intrapixel variations in methane concentration can produce errors from nonlinearity in the column retrieval algorithm. Missing large enhancements near the vent could lead to a low bias in IME emission rate estimates, but would have a smaller effect on the CSF method, where each cross-plume integral downwind of the source independently approximates the emissions.

Time-Averaged Source Rates

Table 1 shows our time-averaged source rate estimates for the San Juan, Appin, and Bulianta mines determined from the wind-optimized plumes. Estimates from the IME and CSF methods agree within their error standard deviations, which is a first check that our effective wind speed functions are well-calibrated. We estimate mean emissions of 2320 ± 1050 kg h–1 for the San Juan vent, 5850 ± 2360 kg h–1 for the Appin vent, and 2410 ± 1000 kg h–1 for the Bulianta vent using the IME method. Using the CSF method, the estimates are 2–3% higher for San Juan and Bulianta, but 15% lower for Appin, contradicting the prospect of low bias in the IME method. The reported uncertainties (1σ) are 40–45% and incorporate wind speed error, error in the IME and CSF models (including wind direction error and uncertainty in the effective wind speed fits of Figure 3), correlated random measurement noise in the retrieved columns, and error from source variability. We assess wind speed error by comparing GEOS-FP and MesoWest wind data, model error by evaluating source rate retrievals on a test set of synthetic time-averaged plumes, and measurement error by randomly sampling GHGSat-D background noise. We estimate the error from source variability using daily ground-based emission estimates for three coal mine ventilation shafts in China from 2007 to 2009, provided to us by Raven Ridge Resources, Inc. (Figure S2). We add these errors in quadrature to obtain our final error estimates. A detailed error analysis is presented in the Supporting Information.
Also shown in Table 1 are previous emission estimates for each of the coal mine vents, all from much smaller samples and/or durations. Frankenberg et al. (2016) (4) estimated emissions of 360–2800 kg h–1 for the San Juan vent based on several days of aircraft remote-sensing measurements, and Smith et al. (2017) (15) inferred mean emissions of 1446 kg h–1 from five days of aircraft mass-balance measurements during the same period. Quarterly in situ measurements of the vent flow rate and methane concentration reported to the United States Environmental Protection Agency (EPA) in 2017 put emissions from the San Juan vent at 2585 kg h–1 averaged over the year, (40) in remarkable agreement with our estimate. Ong et al. (2017) (29) approximated emissions of 10,800–12,600 kg h–1 from the Appin mine, based on estimates of the vent flow rate and air stream methane concentration. Cardno (2009) (41) used coal production activity data and Australian National Greenhouse Accounts (NGA) emission factors to estimate ventilation shaft methane emissions of ∼5200 kg h–1 for the Appin mine in a two longwall mining formation. We are aware of only one emission estimate for the Bulianta mine: 170 kg h–1, reported by the Chinese State Administration for Coal Mine Safety (SACMS). (28) This estimate is based on ground measurements made during a 2–3 month safety evaluation performed in 2011 and is much lower than our result.
In summary, our results demonstrate the capability of space-based observations of methane plumes to quantify point source rates from high-emitting facilities under apparently normal operating conditions. The GHGSat-D demonstration satellite instrument used in our work has fine spatial resolution (50 m) but coarse single-pass column retrieval precision (9–18%) and large retrieval artefacts. Nevertheless, we were able to quantify time-averaged methane emissions from large coal mine vents (>1000 kg h–1) with ∼40% uncertainty. This involved averaging 14–24 observations per target over a 2 year period, using an optimized wind rotation procedure. Our time-averaged result for the San Juan coal mine vent was in close agreement with the annual emission reported to the U.S. EPA. Future methane-observing satellite instruments with similar spatial resolution but improved precision, including GHGSat-C1 to launch in 2020 (42) and the next generation of orbiting hyperspectral surface imagers, (43) will likely improve our ability to detect methane plumes from individual facilities and infer source rates. Quantifying sources down to 100 kg h–1 would account for more than 90% of emissions from point sources in the U.S. GHGRP. (5) Such thresholds for detection and quantification will continue to shrink as revisit rates for time averaging increase with the number of instruments in orbit. (30) Repeated measurements from satellites may be particularly useful for estimating annual emissions for facility-level reporting purposes.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.0c01213.

  • Wind direction optimization null tests and source rate retrieval error analysis (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
  • Authors
    • Daniel J. Jacob - Harvard University, Cambridge, Massachusetts 02138, United States
    • Dylan Jervis - GHGSat Inc., Montréal, Québec H2W 1Y5, Canada
    • Jason McKeever - GHGSat Inc., Montréal, Québec H2W 1Y5, Canada
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

We thank O. B. A. Durak and J. J. Sloan for their roles in developing the GHGSat retrieval algorithm and measurement concept. We thank C. Herzog, M. Arias, K. Wisniewski, M. Latulippe, N. Brown, and J. Thompson for technical assistance and preparation of the GHGSat-D methane data. We also thank J. D. Maasakkers for helpful discussion. This research was funded by GHGSat, Inc. D.J.J. acknowledges support from the Carbon Monitoring System of the NASA Earth Science Division.

References

Click to copy section linkSection link copied!

This article references 43 other publications.

  1. 1
    International Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution Of Working Group I to the Fifth Assessment Report Of the Intergovernmental Panel On Climate Change; IPCC, Cambridge University Press: New York , 2013.
  2. 2
    Saunois, M.; Bousquet, P.; Poulter, B.; Peregon, A.; Ciais, P.; Canadell, J. G.; Dlugokencky, E. J.; Etiope, G.; Bastviken, D.; Houweling, S.; Janssens-Maenhout, G.; Tubiello, F. N.; Castaldi, S.; Jackson, R. B.; Alexe, M.; Arora, V. K.; Beerling, D. J.; Bergamaschi, P.; Blake, D. R.; Brailsford, G.; Brovkin, V.; Bruhwiler, L.; Crevoisier, C.; Crill, P.; Covey, K.; Curry, C.; Frankenberg, C.; Gedney, N.; Höglund-Isaksson, L.; Ishizawa, M.; Ito, A.; Joos, F.; Kim, H.-S.; Kleinen, T.; Krummel, P.; Lamarque, J.-F.; Langenfelds, R.; Locatelli, R.; Machida, T.; Maksyutov, S.; McDonald, K. C.; Marshall, J.; Melton, J. R.; Morino, I.; Naik, V.; Patra, S.; Parmentier, F.-J. W.; Patra, P. K.; Peng, C.; Peng, S.; Peters, G. P.; Pison, I.; Prigent, C.; Prinn, R.; Ramonet, M.; Riley, W. J.; Saito, M.; Santini, M.; Schroeder, R.; Simpson, I. J.; Spahni, R.; Steele, P.; Takizawa, A.; Thornton, B. F.; Tian, H.; Tohjima, Y.; Viovy, N.; Voulgarakis, A.; van Weele, M.; van der Werf, G. R.; Weiss, R.; Wiedinmyer, C.; Wilton, D. J.; Wiltshire, A.; Worthy, D.; Wunch, D.; Xu, X.; Yoshida, Y.; Zhang, B.; Zhang, Z.; Zhu, Q. The Global Methane Budget 2000-2012. Earth Syst. Sci. Data 2016, 8, 697751,  DOI: 10.5194/essd-8-697-2016
  3. 3
    Maasakkers, J. D.; Jacob, D. J.; Sulprizio, M. P.; Turner, A. J.; Weitz, M.; Wirth, T.; Hight, C.; DeFigueiredo, M.; Desai, M.; Schmeltz, R.; Hockstad, L.; Bloom, A. A.; Bowman, K. W.; Jeong, S.; Fischer, M. L. Gridded National Inventory of U.S. Methane Emissions. Environ. Sci. Technol. 2016, 50, 1312313133,  DOI: 10.1021/acs.est.6b02878
  4. 4
    Frankenberg, C.; Thorpe, A. K.; Thompson, D. R.; Hulley, G.; Kort, E. A.; Vance, N.; Borchardt, J.; Krings, T.; Gerilowski, K.; Sweeney, C.; Conley, S.; Bue, B. D.; Aubrey, A. D.; Hook, S.; Green, R. O. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 97349739,  DOI: 10.1073/pnas.1605617113
  5. 5
    Jacob, D. J.; Turner, A. J.; Maasakkers, J. D.; Sheng, J.; Sun, K.; Liu, X.; Chance, K.; Aben, I.; McKeever, J.; Frankenberg, C. Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmos. Chem. Phys. 2016, 16, 1437114396,  DOI: 10.5194/acp-16-14371-2016
  6. 6
    Duren, R. M.; Thorpe, A. K.; Foster, K. T.; Rafiq, T.; Hopkins, F. M.; Yadav, V.; Bue, B. D.; Thompson, D. R.; Conley, S.; Colombi, N. K.; Frankenberg, C.; McCubbin, I. B.; Eastwood, M. L.; Falk, M.; Herner, J. D.; Croes, B. E.; Green, R. O.; Miller, C. E. California’s methane super-emitters. Nature 2019, 575, 180184,  DOI: 10.1038/s41586-019-1720-3
  7. 7
    Krings, T.; Gerilowski, K.; Buchwitz, M.; Hartmann, J.; Sachs, T.; Erzinger, J.; Burrows, J. P.; Bovensmann, H. Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data. Atmos. Meas. Tech. 2013, 6, 151166,  DOI: 10.5194/amt-6-151-2013
  8. 8
    Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Lundgren, E.; Andrews, A. E.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; Dubey, M. K.; Griffith, D. W. T.; Hase, F.; Kuze, A.; Notholt, J.; Ohyama, H.; Parker, R.; Payne, V. H.; Sussmann, R.; Sweeney, C.; Velazco, V. A.; Warneke, T.; Wennberg, P. O.; Wunch, D. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data. Atmos. Chem. Phys. 2015, 15, 70497069,  DOI: 10.5194/acp-15-7049-2015
  9. 9
    Maasakkers, J. D.; Jacob, D. J.; Sulprizio, M. P.; Scarpelli, T. R.; Nesser, H.; Sheng, J.-X.; Zhang, Y.; Hersher, M.; Bloom, A. A.; Bowman, K. W.; Worden, J. R.; Janssens-Maenhout, G.; Parker, R. J. Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015. Atmos. Chem. Phys. 2019, 19, 78597881,  DOI: 10.5194/acp-19-7859-2019
  10. 10
    Miller, S. M.; Michalak, A. M.; Detmers, R. G.; Hasekamp, O. P.; Bruhwiler, L. M. P.; Schwietzke, S. China’s coal mine methane regulations have not curbed growing Emissions. Nat. Commun. 2019, 10, 303,  DOI: 10.1038/s41467-018-07891-7
  11. 11
    Pandey, S.; Gautam, R.; Houweling, S.; van der Gon, H. D.; Sadavarte, P.; Borsdorff, T.; Hasekamp, O.; Landgraf, J.; Tol, P.; van Kempen, T.; Hoogeveen, R.; van Hees, R.; Hamburg, S. P.; Maasakkers, J. D.; Aben, I. Satellite observations reveal extreme methane leakage from a natural gas well blowout. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 2637626381,  DOI: 10.1073/pnas.1908712116
  12. 12
    Varon, D. J.; McKeever, J.; Jervis, D.; Maasakkers, J. D.; Pandey, S.; Houweling, S.; Aben, I.; Scarpelli, T.; Jacob, D. J. Satellite discovery of anomalously large methane emissions from oil/gas production. Geophys. Res. Lett. 2019, 46, 1350713516,  DOI: 10.1029/2019GL083798
  13. 13
    Brakeboer, B. N. A. Development of the structural and thermal control subsystems for an Earth observation microsatellite and its payload. M.Sc. Thesis, University of Toronto, 2015.
  14. 14
    Sloan, J. J.; Durak, B.; Gains, D.; Ricci, F.; McKeever, J.; Lamorie, J.; Sdao, M.; Latendresse, V.; Lavoie, J.; Kruzelecky, R. Fabry-Perot interferometer based satellite detection of atmospheric trace gases. U.S. Patent 9,228,897 B2, 2016, United States Patent and Trademark Office. Retrieved from https://patentimages.storage.googleapis.com/85/4e/65/b3f964823f2f3b/US9228897.pdf.
  15. 15
    Smith, M. L.; Gvakharia, A.; Kort, E. A.; Sweeney, C.; Conley, S. A.; Faloona, I.; Newberger, T.; Schnell, R.; Schwietzke, S.; Wolter, S. Airborne Quantification of Methane Emissions over the Four Corners Region. Environ. Sci. Technol. 2017, 51, 58325837,  DOI: 10.1021/acs.est.6b06107
  16. 16
    Pommier, M.; McLinden, C. A.; Deeter, M. Relative changes in CO emissions over megacities based on observations from space. Geophys. Res. Lett. 2013, 40, 37663771,  DOI: 10.1002/grl.50704
  17. 17
    Fioletov, V. E.; McLinden, C. A.; Krotkov, N.; Li, C. Lifetimes and emissions of SO2 from point sources estimated from OMI. Geophys. Res. Lett. 2015, 42, 19691976,  DOI: 10.1002/2015GL063148
  18. 18
    McLinden, C. A.; Fioletov, V.; Shephard, M. W.; Krotkov, N.; Li, C.; Martin, R. V.; Moran, M. D.; Joiner, J. Space-based detection of missing sulfur dioxide sources of global air pollution. Nat. Geosci. 2016, 9, 496500,  DOI: 10.1038/NGEO2724
  19. 19
    Valin, L. C.; Russell, A. R.; Cohen, R. C. Variations of OH radical in an urban plume inferred from NO2 column measurements. Geophys. Res. Lett. 2013, 40, 18561860,  DOI: 10.1002/grl.50267
  20. 20
    De Foy, B.; Lu, Z.; Streets, D. G.; Lamsal, L. N.; Duncan, B. N. Estimates of power plant NOx emissions and lifetimes from OMI NO2 satellite retrievals. Atmos. Environ. 2015, 116, 111,  DOI: 10.1016/j.atmosenv.2015.05.056
  21. 21
    Zhang, Y.; Gautam, R.; Zavala-Araiza, D.; Jacob, D. J.; Zhang, R.; Zhu, L.; Sheng, J. X.; Scarpelli, T. Satellite observed changes in Mexico’s offshore gas flaring activity linked to oil/gas regulations. Geophys. Res. Lett. 2019, 46, 18791888,  DOI: 10.1029/2018GL081145
  22. 22
    Clarisse, L.; Van Damme, M.; Clerbaux, C.; Coheur, P.-F. Tracking down global NH3 point sources with wind-adjusted superresolution. Atmos. Meas. Tech. 2019, 12, 54575473,  DOI: 10.5194/amt-12-5457-2019
  23. 23
    Dammers, E.; McLinden, C. A.; Griffin, D.; Shephard, M. W.; Van Der Graaf, S.; Lutsch, E.; Schaap, M.; Gainairu-Matz, Y.; Fioletov, V.; Van Damme, M.; Whitburn, S.; Clarisse, L.; Cady-Pereira, K.; Clerbaux, C.; Coheur, P. F.; Erisman, J. W. NH3 emissions from large point sources derived from CrIS and IASI satellite observations. Atmos. Chem. Phys. 2019, 19, 1226112293,  DOI: 10.5194/acp-19-12261-2019
  24. 24
    McKeever, J.; Durak, B. O. A.; Gains, D.; Varon, D. J.; Germain, S.; Sloan, J. J. GHGSat-D: Greenhouse Gas Plume Imaging and Quantification from Space Using a Fabry–Perot Imaging Spectrometer. Abstract presented at the American Geophysical Union 2017 Fall Meeting, New Orleans, LA, 2017, Dec 11–15, 2017.
  25. 25
    Rodgers, C. D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific, 2000; Vol. 2.
  26. 26
    Gordon, I. E.; Rothman, L. S.; Hill, C.; Kochanov, R. V.; Tan, Y.; Bernath, P. F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K. V.; Drouin, B. J.; Flaud, J.-M.; Gamache, R. R.; Hodges, J. T.; Jacquemart, D.; Perevalov, V. I.; Perrin, A.; Shine, K. P.; Smith, M.-A. H.; Tennyson, J.; Toon, G. C.; Tran, H.; Tyuterev, V. G.; Barbe, A.; Császár, A. G.; Devi, V. M.; Furtenbacher, T.; Harrison, J. J.; Hartmann, J.-M.; Jolly, A.; Johnson, T. J.; Karman, T.; Kleiner, I.; Kyuberis, A. A.; Loos, J.; Lyulin, O. M.; Massie, S. T.; Mikhailenko, S. N.; Moazzen-Ahmadi, N.; Müller, H. S. P.; Naumenko, O. V.; Nikitin, A. V.; Polyansky, O. L.; Rey, M.; Rotger, M.; Sharpe, S. W.; Sung, K.; Starikova, E.; Tashkun, S. A.; Auwera, J. V.; Wagner, G.; Wilzewski, J.; Wcisło, P.; Yu, S.; Zak, E. J. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transfer 2017, 203, 369,  DOI: 10.1016/j.jqsrt.2017.06.038
  27. 27
    United States National Aeronautics and Space Agency. U.S. Standard Atmosphere , 1976 (Technical Report NASA-TM-X-74335, NASA, 1976). Available at https://ntrs.nasa.gov/search.jsp?R=19770009539.
  28. 28
    China State Administration of Coal Mine Safety. Compilation of National Coal Mine Gas Level Identification for 2011; National Coal Mine Safety Supervision Bureau, 2019.
  29. 29
    Ong, C.; Day, S.; Halliburton, B.; Marvig, P.; White, S. Regional Methane Emissions In NSW CSG Basins Final Report; CSIRO: Australia, 2017.
  30. 30
    Hill, T.; Nassar, R. Pixel size and revisit rate requirements for monitoring power plant CO2 emissions from space. Remote Sens. 2019, 11, 1608,  DOI: 10.3390/rs11131608
  31. 31
    Jongaramrungruang, S.; Frankenberg, C.; Matheou, G.; Thorpe, A.; Thompson, D. R.; Kuai, L.; Duren, R. Towards accurate methane point-source quantification from high-resolution 2-D plume imagery. Atmos. Meas. Tech. 2019, 12, 66676681,  DOI: 10.5194/amt-12-6667-2019
  32. 32
    Varon, D. J.; Jacob, D. J.; McKeever, J.; Jervis, D.; Durak, B. O. A.; Xia, Y.; Huang, Y. Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes. Atmos. Meas. Tech. 2018, 11, 56735686,  DOI: 10.5194/amt-11-5673-2018
  33. 33
    Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J.; In-Sun, S.; Eichmann, A. The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna Technical Report Series on Global Modeling and Data Assimilation; NASA, 2012; Vol. 28.
  34. 34
    DarkSky. DarkSky weather application programming interface (API). https://darksky.net/dev (accessed on May 9, 2019).
  35. 35
    Horel, J.; Splitt, M.; Dunn, L.; Pechmann, J.; White, B.; Ciliberti, C.; Lazarus, S.; Slemmer, J.; Zaff, D.; Burks, J. MesoWest: Cooperative Mesonets in the Western United States. Bull. Am. Meteorol. Soc. 2002, 83, 211225,  DOI: 10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2
  36. 36
    Nelder, J. A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308313,  DOI: 10.1093/comjnl/7.4.308
  37. 37
    Lagarias, J. C.; Reeds, J. A.; Wright, M. H.; Wright, P. E. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112147,  DOI: 10.1137/S1052623496303470
  38. 38
    White, W.; Anderson, J.; Blumenthal, D.; Husar, R.; Gillani, N.; Husar, J.; Wilson, W. Formation and transport of secondary air pollutants: ozone and aerosols in the St. Louis urban plume. Science 1976, 194, 187189,  DOI: 10.1126/science.959846
  39. 39
    Krings, T.; Gerilowski, K.; Buchwitz, M.; Reuter, M.; Tretner, A.; Erzinger, J.; Heinze, D.; Pflüger, U.; Burrows, J. P.; Bovensmann, H. MAMAP – a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates. Atmos. Meas. Tech. 2011, 4, 17351758,  DOI: 10.5194/amt-4-1735-2011
  40. 40
    United States Environmental Protection Agency (EPA). Facility Level Information on Greenhouse Gases Tool (FLIGHT), 2017. https://ghgdata.epa.gov/ghgp/service/html/2017?id=1009342&et=undefined via https://ghgdata.epa.gov/ghgp/main.do (accessed on July 1, 2019).
  41. 41
    Cardno. Environmental Assessment Appin Colliery Area 7 Goaf Gas Drainage Project, 2009. https://www.south32.net/docs/default-source/illawarra-coal/bulli-seam-operations/appin/appin-surface-gas-management-project---enviro-asse/environmental-assessment-appin-surface-gas-management-project.pdf?sfvrsn=321a9200_4 (accessed on Feb 14, 2020).
  42. 42
    Jervis, D.; McKeever, J.; Strupler, M.; Gains, D.; Tarrant, E.; Germain, S. Rapid Design, Build and Characterization Cycle of the GHGSat Constellation. Abstract presented at the American Geophysical Union 2019 Fall Meeting, San Francisco, CA, Dec 9–13, 2019.
  43. 43
    Cusworth, D. H.; Jacob, D. J.; Varon, D. J.; Chan Miller, C.; Liu, X.; Chance, K.; Thorpe, A. K.; Duren, R. M.; Miller, C. E.; Thompson, D. R.; Frankenberg, C.; Guanter, L.; Randles, C. A. Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space. Atmos. Meas. Tech. 2019, 12, 56555668,  DOI: 10.5194/amt-12-5655-2019

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 65 publications.

  1. Jakob Borchardt, Stephen J. Harris, Jorg M. Hacker, Mark Lunt, Sven Krautwurst, Mei Bai, Hartmut Bösch, Heinrich Bovensmann, John P. Burrows, Shakti Chakravarty, Robert A. Field, Konstantin Gerilowski, Oke Huhs, Wolfgang Junkermann, Bryce F. J. Kelly, Martin Kumm, Wolfgang Lieff, Andrew McGrath, Adrian Murphy, Josua Schindewolf, Jakob Thoböll. Insights into Elevated Methane Emissions from an Australian Open-Cut Coal Mine Using Two Independent Airborne Techniques. Environmental Science & Technology Letters 2025, 12 (4) , 397-404. https://doi.org/10.1021/acs.estlett.4c01063
  2. Broghan M. Erland, Andrew K. Thorpe, John A. Gamon. Recent Advances Toward Transparent Methane Emissions Monitoring: A Review. Environmental Science & Technology 2022, 56 (23) , 16567-16581. https://doi.org/10.1021/acs.est.2c02136
  3. Pankaj Sadavarte, Sudhanshu Pandey, Joannes D. Maasakkers, Alba Lorente, Tobias Borsdorff, Hugo Denier van der Gon, Sander Houweling, Ilse Aben. Methane Emissions from Superemitting Coal Mines in Australia Quantified Using TROPOMI Satellite Observations. Environmental Science & Technology 2021, 55 (24) , 16573-16580. https://doi.org/10.1021/acs.est.1c03976
  4. Fenjuan Wang, Shamil Maksyutov, Rajesh Janardanan, Akihiko Ito, Isamu Morino, Yukio Yoshida, Yu Someya, Yasunori Tohjima, Bryce F.J. Kelly, Johannes W. Kaiser, Xin Lan, Ivan Mammarella, Tsuneo Matsunaga. Methane emissions from Australia estimated by inverse analysis using in-situ and Satellite (GOSAT) atmospheric observations. GIScience & Remote Sensing 2025, 62 (1) https://doi.org/10.1080/15481603.2025.2488595
  5. Hiroshi Tanimoto, Tsuneo Matsunaga, Yu Someya, Tamaki Fujinawa, Hirofumi Ohyama, Isamu Morino, Hisashi Yashiro, Takafumi Sugita, Satoshi Inomata, Astrid Müller, Tazu Saeki, Yukio Yoshida, Yosuke Niwa, Makoto Saito, Hibiki Noda, Yousuke Yamashita, Kohei Ikeda, Nobuko Saigusa, Toshinobu Machida, Matthias Max Frey, Hyunkwang Lim, Priyanka Srivastava, Yoshitaka Jin, Atsushi Shimizu, Tomoaki Nishizawa, Yugo Kanaya, Takashi Sekiya, Prabir Patra, Masayuki Takigawa, Jagat Bisht, Yasko Kasai, Tomohiro O. Sato. The greenhouse gas observation mission with Global Observing SATellite for Greenhouse gases and Water cycle (GOSAT-GW): objectives, conceptual framework and scientific contributions. Progress in Earth and Planetary Science 2025, 12 (1) https://doi.org/10.1186/s40645-025-00684-9
  6. Fariba Mohammadimanesh, Masoud Mahdianpari, Ali Radman, Daniel Varon, Mohammadali Hemati, Mohammad Marjani. Advancements in satellite-based methane point source monitoring: A systematic review. ISPRS Journal of Photogrammetry and Remote Sensing 2025, 224 , 94-112. https://doi.org/10.1016/j.isprsjprs.2025.03.020
  7. C. Özgen Karacan, Itziar Irakulis-Loitxate, Robert A. Field, Peter D. Warwick. Temporal and spatial comparison of coal mine ventilation methane emissions and mitigation quantified using PRISMA satellite data and on-site measurements. Science of The Total Environment 2025, 975 , 179268. https://doi.org/10.1016/j.scitotenv.2025.179268
  8. Janne Hakkarainen, Iolanda Ialongo, Daniel J. Varon, Gerrit Kuhlmann, Maarten C. Krol. Linear integrated mass enhancement: A method for estimating hotspot emission rates from space-based plume observations. Remote Sensing of Environment 2025, 319 , 114623. https://doi.org/10.1016/j.rse.2025.114623
  9. Zixuan Wang, Linxin Wang, Ding Li, Lingjing Yang, Lixue Cao, Qin He, Kai Qin. Quantifying the Impact of Environmental Factors on the Methane Point-Source Emission Algorithm. Remote Sensing 2025, 17 (5) , 799. https://doi.org/10.3390/rs17050799
  10. Menglei Liang, Ying Zhang, Liangfu Chen, Jinhua Tao, Meng Fan, Chao Yu. An Effective Quantification of Methane Point-Source Emissions with the Multi-Level Matched Filter from Hyperspectral Imagery. Remote Sensing 2025, 17 (5) , 843. https://doi.org/10.3390/rs17050843
  11. Omid Moeini, Ray Nassar, Jon‐Paul Mastrogiacomo, Megan Dawson, Christopher W. O’Dell, Robert R. Nelson, Abhishek Chatterjee. Quantifying CO 2 Emissions From Smaller Anthropogenic Point Sources Using OCO‐2 Target and OCO‐3 Snapshot Area Mapping Mode Observations. Journal of Geophysical Research: Atmospheres 2025, 130 (2) https://doi.org/10.1029/2024JD042333
  12. Alexandre Danjou, Grégoire Broquet, Andrew Schuh, François-Marie Bréon, Thomas Lauvaux. Optimal selection of satellite XCO 2 images for urban CO 2 emission monitoring. Atmospheric Measurement Techniques 2025, 18 (2) , 533-554. https://doi.org/10.5194/amt-18-533-2025
  13. C. Özgen Karacan, Robert A. Field, Maria Olczak, Malgorzata Kasprzak, Felicia A. Ruiz, Stefan Schwietzke. Mitigating climate change by abating coal mine methane: A critical review of status and opportunities. International Journal of Coal Geology 2024, 295 , 104623. https://doi.org/10.1016/j.coal.2024.104623
  14. Mohammad Marjani, Fariba Mohammadimanesh, Daniel J. Varon, Ali Radman, Masoud Mahdianpari. PRISMethaNet: A novel deep learning model for landfill methane detection using PRISMA satellite data. ISPRS Journal of Photogrammetry and Remote Sensing 2024, 218 , 802-818. https://doi.org/10.1016/j.isprsjprs.2024.10.003
  15. Guido Schillaci, Marta Fiorucci, Luigi Bono Bonacchi, Manuel Pencelli, Andrea Politano, Antonino Agostino, Daniele Pau, Giovanni De Magistris, Raman Hanjra, Dheeraj Sachdev, Ilaria Parrella. Analyzing Methane Emissions Using Satellite Imagery and Artificial Intelligence. 2024https://doi.org/10.2118/222006-MS
  16. Minju Kim, Jeongwoo Park, Chang-Uk Hyun. Current Status of Satellite Remote Sensing-Based Methane Emission Monitoring Technologies. Economic and Environmental Geology 2024, 57 (5) , 513-527. https://doi.org/10.9719/EEG.2024.57.5.513
  17. Drew Shindell, Pankaj Sadavarte, Ilse Aben, Tomás de Oliveira Bredariol, Gabrielle Dreyfus, Lena Höglund-Isaksson, Benjamin Poulter, Marielle Saunois, Gavin A. Schmidt, Sophie Szopa, Kendra Rentz, Luke Parsons, Zhen Qu, Gregory Faluvegi, Joannes D. Maasakkers. The methane imperative. Frontiers in Science 2024, 2 https://doi.org/10.3389/fsci.2024.1349770
  18. Daniel J. Varon, Dylan Jervis, Sudhanshu Pandey, Sebastian L. Gallardo, Nicholas Balasus, Laura Hyesung Yang, Daniel J. Jacob. Quantifying NO x point sources with Landsat and Sentinel-2 satellite observations of NO 2 plumes. Proceedings of the National Academy of Sciences 2024, 121 (27) https://doi.org/10.1073/pnas.2317077121
  19. Yinsheng Lv, Pinhua Xie, Jin Xu, Min Qin, Youtao Li, Qiang Zhang, Zhidong Zhang, Xin Tian, Feng Hu, Jiangyi Zheng. Methane measurement method based on F-P angle-dependent correlation spectroscopy. Optics Express 2024, 32 (13) , 23646. https://doi.org/10.1364/OE.526026
  20. Alexandre Danjou, Grégoire Broquet, Jinghui Lian, François-Marie Bréon, Thomas Lauvaux. Evaluation of light atmospheric plume inversion methods using synthetic XCO 2 satellite images to compute Paris CO 2 emissions. Remote Sensing of Environment 2024, 305 , 113900. https://doi.org/10.1016/j.rse.2023.113900
  21. Yuhan Jiang, Lu Zhang, Xingying Zhang, Xifeng Cao. Methane Retrieval Algorithms Based on Satellite: A Review. Atmosphere 2024, 15 (4) , 449. https://doi.org/10.3390/atmos15040449
  22. Seonaid Rapach, Annalisa Riccardi, Bin Liu, James Bowden. A taxonomy of earth observation data for sustainable finance. Journal of Climate Finance 2024, 6 , 100029. https://doi.org/10.1016/j.jclimf.2023.100029
  23. Cristian Rossi, Justin GD. Byrne, Christophe Christiaen. Breaking the ESG rating divergence: An open geospatial framework for environmental scores. Journal of Environmental Management 2024, 349 , 119477. https://doi.org/10.1016/j.jenvman.2023.119477
  24. 李超 Li Chao, 王先华 Wang Xianhua, 叶函函 Ye Hanhan, 吴时超 Wu Shichao, 施海亮 Shi Hailiang, 李大成 Li Dacheng, 孙二昌 Sun Erchang, 安源 An Yuan. 大气CO2成像卫星遥感的点源排放分辨能力影响因素分析. Acta Optica Sinica 2024, 44 (12) , 1201008. https://doi.org/10.3788/AOS231336
  25. Kai Qin, Wei Hu, Qin He, Fan Lu, Jason Blake Cohen. Individual coal mine methane emissions constrained by eddy covariance measurements: low bias and missing sources. Atmospheric Chemistry and Physics 2024, 24 (5) , 3009-3028. https://doi.org/10.5194/acp-24-3009-2024
  26. Marvin Knapp, Ralph Kleinschek, Sanam N. Vardag, Felix Külheim, Helge Haveresch, Moritz Sindram, Tim Siegel, Bruno Burger, André Butz. Quantitative imaging of carbon dioxide plumes using a ground-based shortwave infrared spectral camera. Atmospheric Measurement Techniques 2024, 17 (8) , 2257-2275. https://doi.org/10.5194/amt-17-2257-2024
  27. Jack H. Bruno, Dylan Jervis, Daniel J. Varon, Daniel J. Jacob. U-Plume: automated algorithm for plume detection and source quantification by satellite point-source imagers. Atmospheric Measurement Techniques 2024, 17 (9) , 2625-2636. https://doi.org/10.5194/amt-17-2625-2024
  28. Jean-Philippe W. MacLean, Marianne Girard, Dylan Jervis, David Marshall, Jason McKeever, Antoine Ramier, Mathias Strupler, Ewan Tarrant, David Young. Offshore methane detection and quantification from space using sun glint measurements with the GHGSat constellation. Atmospheric Measurement Techniques 2024, 17 (2) , 863-874. https://doi.org/10.5194/amt-17-863-2024
  29. Evan D. Sherwin, Jeffrey S. Rutherford, Yuanlei Chen, Sam Aminfard, Eric A. Kort, Robert B. Jackson, Adam R. Brandt. Single-blind validation of space-based point-source detection and quantification of onshore methane emissions. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-30761-2
  30. Andrew K. Thorpe, Robert O. Green, David R. Thompson, Philip G. Brodrick, John W. Chapman, Clayton D. Elder, Itziar Irakulis-Loitxate, Daniel H. Cusworth, Alana K. Ayasse, Riley M. Duren, Christian Frankenberg, Luis Guanter, John R. Worden, Philip E. Dennison, Dar A. Roberts, K. Dana Chadwick, Michael L. Eastwood, Jay E. Fahlen, Charles E. Miller. Attribution of individual methane and carbon dioxide emission sources using EMIT observations from space. Science Advances 2023, 9 (46) https://doi.org/10.1126/sciadv.adh2391
  31. Á. E. Esparza, M. Ebbs, N. De Toro Eadie, R. Roffo, L. Monnington. Utilizing Remote Sensing and Data Analytics Techniques to Detect Methane Emissions from the Oil and Gas Industry and Assist with Sustainability Metrics. SPE Production & Operations 2023, 38 (04) , 640-650. https://doi.org/10.2118/215818-PA
  32. Valery E. Karasik, Mikhail L. Belov, Ilya V. Zhivotovsky, Alexei A. Sakharov. Selection and Justification of Optimal Spectral Wavelengths for Control of Methane Emission from an Advanced Nanosatellite. Light & Engineering 2023, (05-2023) , 143-152. https://doi.org/10.33383/2022-123
  33. C. Özgen Karacan. Predicting methane emissions and developing reduction strategies for a Central Appalachian Basin, USA, longwall mine through analysis and modeling of geology and degasification system performance. International Journal of Coal Geology 2023, 270 , 104234. https://doi.org/10.1016/j.coal.2023.104234
  34. Bradley M. Conrad, David R. Tyner, Matthew R. Johnson. Robust probabilities of detection and quantification uncertainty for aerial methane detection: Examples for three airborne technologies. Remote Sensing of Environment 2023, 288 , 113499. https://doi.org/10.1016/j.rse.2023.113499
  35. M Knapp, L Scheidweiler, F Külheim, R Kleinschek, J Necki, P Jagoda, A Butz. Spectrometric imaging of sub-hourly methane emission dynamics from coal mine ventilation. Environmental Research Letters 2023, 18 (4) , 044030. https://doi.org/10.1088/1748-9326/acc346
  36. Janne Hakkarainen, Iolanda Ialongo, Tomohiro Oda, Monika E Szeląg, Christopher W O’Dell, Annmarie Eldering, David Crisp. Building a bridge: characterizing major anthropogenic point sources in the South African Highveld region using OCO-3 carbon dioxide snapshot area maps and Sentinel-5P/TROPOMI nitrogen dioxide columns. Environmental Research Letters 2023, 18 (3) , 035003. https://doi.org/10.1088/1748-9326/acb837
  37. Anuradha Radhakrishnan, David DiCarlo, Raymond L. Orbach. Discrepancies in the current capabilities in measuring upstream flare volumes in the Permian Basin. Upstream Oil and Gas Technology 2023, 10 , 100084. https://doi.org/10.1016/j.upstre.2022.100084
  38. 秦凯 Qin Kai, 何秦 He Qin, 康涵书 Kang Hanshu, 胡玮 Hu Wei, 鹿凡 Lu Fan, 科恩杰森 Jason Cohen. 煤炭行业甲烷排放卫星遥感研究进展与展望. Acta Optica Sinica 2023, 43 (18) , 1899908. https://doi.org/10.3788/AOS231293
  39. Yuchen Wang, Xvli Guo, Yajie Huo, Mengying Li, Yuqing Pan, Shaocai Yu, Alexander Baklanov, Daniel Rosenfeld, John H. Seinfeld, Pengfei Li. Toward a versatile spaceborne architecture for immediate monitoring of the global methane pledge. Atmospheric Chemistry and Physics 2023, 23 (9) , 5233-5249. https://doi.org/10.5194/acp-23-5233-2023
  40. Gijs Leguijt, Joannes D. Maasakkers, Hugo A. C. Denier van der Gon, Arjo J. Segers, Tobias Borsdorff, Ilse Aben. Quantification of carbon monoxide emissions from African cities using TROPOMI. Atmospheric Chemistry and Physics 2023, 23 (15) , 8899-8919. https://doi.org/10.5194/acp-23-8899-2023
  41. Pierre J. Vanderbecken, Joffrey Dumont Le Brazidec, Alban Farchi, Marc Bocquet, Yelva Roustan, Élise Potier, Grégoire Broquet. Accounting for meteorological biases in simulated plumes using smarter metrics. Atmospheric Measurement Techniques 2023, 16 (6) , 1745-1766. https://doi.org/10.5194/amt-16-1745-2023
  42. Yuan Wang, Qiangqiang Yuan, Siqin Zhou, Liangpei Zhang. Global spatiotemporal completion of daily high-resolution TCCO from TROPOMI over land using a swath-based local ensemble learning method. ISPRS Journal of Photogrammetry and Remote Sensing 2022, 194 , 167-180. https://doi.org/10.1016/j.isprsjprs.2022.10.012
  43. Aaron G. Meyer, Rodica Lindenmaier, Sajjan Heerah, Katherine B. Benedict, Eric A. Kort, Jeff Peischl, Manvendra K. Dubey. Using Multiscale Ethane/Methane Observations to Attribute Coal Mine Vent Emissions in the San Juan Basin From 2013 to 2021. Journal of Geophysical Research: Atmospheres 2022, 127 (18) https://doi.org/10.1029/2022JD037092
  44. Ángel Esparza, Michael Ebbs, Jean-François Gauthier. Application of Remote Sensing Techniques to Detect Methane Emissions from the Oil and Gas Sector to Assist Operators with Sustainability Efforts. 2022https://doi.org/10.2118/209980-MS
  45. Joannes D. Maasakkers, Daniel J. Varon, Aldís Elfarsdóttir, Jason McKeever, Dylan Jervis, Gourav Mahapatra, Sudhanshu Pandey, Alba Lorente, Tobias Borsdorff, Lodewijck R. Foorthuis, Berend J. Schuit, Paul Tol, Tim A. van Kempen, Richard van Hees, Ilse Aben. Using satellites to uncover large methane emissions from landfills. Science Advances 2022, 8 (32) https://doi.org/10.1126/sciadv.abn9683
  46. George C Hurtt, Arlyn Andrews, Kevin Bowman, Molly E Brown, Abhishek Chatterjee, Vanessa Escobar, Lola Fatoyinbo, Peter Griffith, Maddie Guy, Sean P Healey, Daniel J Jacob, Robert Kennedy, Steven Lohrenz, Megan E McGroddy, Valeria Morales, Thomas Nehrkorn, Lesley Ott, Sassan Saatchi, Edil Sepulveda Carlo, Shawn P Serbin, Hanqin Tian. The NASA Carbon Monitoring System Phase 2 synthesis: scope, findings, gaps and recommended next steps. Environmental Research Letters 2022, 17 (6) , 063010. https://doi.org/10.1088/1748-9326/ac7407
  47. Pankaj Sadavarte, Sudhanshu Pandey, Joannes D. Maasakkers, Hugo Denier van der Gon, Sander Houweling, Ilse Aben. A high-resolution gridded inventory of coal mine methane emissions for India and Australia. Elementa: Science of the Anthropocene 2022, 10 (1) https://doi.org/10.1525/elementa.2021.00056
  48. Abigail Corbett, Brendan Smith. A Study of a Miniature TDLAS System Onboard Two Unmanned Aircraft to Independently Quantify Methane Emissions from Oil and Gas Production Assets and Other Industrial Emitters. Atmosphere 2022, 13 (5) , 804. https://doi.org/10.3390/atmos13050804
  49. Tianqi Shi, Zeyu Han, Ge Han, Xin Ma, Huilin Chen, Truls Andersen, Huiqin Mao, Cuihong Chen, Haowei Zhang, Wei Gong. Retrieving CH 4 -emission rates from coal mine ventilation shafts using UAV-based AirCore observations and the genetic algorithm–interior point penalty function (GA-IPPF) model. Atmospheric Chemistry and Physics 2022, 22 (20) , 13881-13896. https://doi.org/10.5194/acp-22-13881-2022
  50. Qiansi Tu, Frank Hase, Matthias Schneider, Omaira García, Thomas Blumenstock, Tobias Borsdorff, Matthias Frey, Farahnaz Khosrawi, Alba Lorente, Carlos Alberti, Juan J. Bustos, André Butz, Virgilio Carreño, Emilio Cuevas, Roger Curcoll, Christopher J. Diekmann, Darko Dubravica, Benjamin Ertl, Carme Estruch, Sergio Fabián León-Luis, Carlos Marrero, Josep-Anton Morgui, Ramón Ramos, Christian Scharun, Carsten Schneider, Eliezer Sepúlveda, Carlos Toledano, Carlos Torres. Quantification of CH 4 emissions from waste disposal sites near the city of Madrid using ground- and space-based observations of COCCON, TROPOMI and IASI. Atmospheric Chemistry and Physics 2022, 22 (1) , 295-317. https://doi.org/10.5194/acp-22-295-2022
  51. Joe McNorton, Nicolas Bousserez, Anna Agustí-Panareda, Gianpaolo Balsamo, Luca Cantarello, Richard Engelen, Vincent Huijnen, Antje Inness, Zak Kipling, Mark Parrington, Roberto Ribas. Quantification of methane emissions from hotspots and during COVID-19 using a global atmospheric inversion. Atmospheric Chemistry and Physics 2022, 22 (9) , 5961-5981. https://doi.org/10.5194/acp-22-5961-2022
  52. Daniel J. Jacob, Daniel J. Varon, Daniel H. Cusworth, Philip E. Dennison, Christian Frankenberg, Ritesh Gautam, Luis Guanter, John Kelley, Jason McKeever, Lesley E. Ott, Benjamin Poulter, Zhen Qu, Andrew K. Thorpe, John R. Worden, Riley M. Duren. Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmospheric Chemistry and Physics 2022, 22 (14) , 9617-9646. https://doi.org/10.5194/acp-22-9617-2022
  53. Elena Sánchez-García, Javier Gorroño, Itziar Irakulis-Loitxate, Daniel J. Varon, Luis Guanter. Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite. Atmospheric Measurement Techniques 2022, 15 (6) , 1657-1674. https://doi.org/10.5194/amt-15-1657-2022
  54. Rory A. Barton-Grimley, Amin R. Nehrir, Susan A. Kooi, James E. Collins, David B. Harper, Anthony Notari, Joseph Lee, Joshua P. DiGangi, Yonghoon Choi, Kenneth J. Davis. Evaluation of the High Altitude Lidar Observatory (HALO) methane retrievals during the summer 2019 ACT-America campaign. Atmospheric Measurement Techniques 2022, 15 (15) , 4623-4650. https://doi.org/10.5194/amt-15-4623-2022
  55. Zhan Zhang, Evan D. Sherwin, Daniel J. Varon, Adam R. Brandt. Detecting and quantifying methane emissions from oil and gas production: algorithm development with ground-truth calibration based on Sentinel-2 satellite imagery. Atmospheric Measurement Techniques 2022, 15 (23) , 7155-7169. https://doi.org/10.5194/amt-15-7155-2022
  56. Nicolas Nesme, Rodolphe Marion, Olivier Lezeaux, Stéphanie Doz, Claude Camy-Peyret, Pierre-Yves Foucher. Joint Use of in-Scene Background Radiance Estimation and Optimal Estimation Methods for Quantifying Methane Emissions Using PRISMA Hyperspectral Satellite Data: Application to the Korpezhe Industrial Site. Remote Sensing 2021, 13 (24) , 4992. https://doi.org/10.3390/rs13244992
  57. Luis Guanter, Itziar Irakulis-Loitxate, Javier Gorroño, Elena Sánchez-García, Daniel H. Cusworth, Daniel J. Varon, Sergio Cogliati, Roberto Colombo. Mapping methane point emissions with the PRISMA spaceborne imaging spectrometer. Remote Sensing of Environment 2021, 265 , 112671. https://doi.org/10.1016/j.rse.2021.112671
  58. Wacław Dziurzyński, Andrzej Krach, Teresa Pałka, Stanisław Wasilewski. The Impact of Cutting with a Shearer on the Conditions of Longwall Ventilation. Energies 2021, 14 (21) , 6907. https://doi.org/10.3390/en14216907
  59. Itziar Irakulis-Loitxate, Luis Guanter, Yin-Nian Liu, Daniel J. Varon, Joannes D. Maasakkers, Yuzhong Zhang, Apisada Chulakadabba, Steven C. Wofsy, Andrew K. Thorpe, Riley M. Duren, Christian Frankenberg, David R. Lyon, Benjamin Hmiel, Daniel H. Cusworth, Yongguang Zhang, Karl Segl, Javier Gorroño, Elena Sánchez-García, Melissa P. Sulprizio, Kaiqin Cao, Haijian Zhu, Jian Liang, Xun Li, Ilse Aben, Daniel J. Jacob. Satellite-based survey of extreme methane emissions in the Permian basin. Science Advances 2021, 7 (27) https://doi.org/10.1126/sciadv.abf4507
  60. Evan D. Sherwin, Yuanlei Chen, Arvind P. Ravikumar, Adam R. Brandt. Single-blind test of airplane-based hyperspectral methane detection via controlled releases. Elementa: Science of the Anthropocene 2021, 9 (1) https://doi.org/10.1525/elementa.2021.00063
  61. Dylan Jervis, Jason McKeever, Berke O. A. Durak, James J. Sloan, David Gains, Daniel J. Varon, Antoine Ramier, Mathias Strupler, Ewan Tarrant. The GHGSat-D imaging spectrometer. Atmospheric Measurement Techniques 2021, 14 (3) , 2127-2140. https://doi.org/10.5194/amt-14-2127-2021
  62. Sebastian Wolff, Gerhard Ehret, Christoph Kiemle, Axel Amediek, Mathieu Quatrevalet, Martin Wirth, Andreas Fix. Determination of the emission rates of CO 2 point sources with airborne lidar. Atmospheric Measurement Techniques 2021, 14 (4) , 2717-2736. https://doi.org/10.5194/amt-14-2717-2021
  63. Daniel J. Varon, Dylan Jervis, Jason McKeever, Ian Spence, David Gains, Daniel J. Jacob. High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations. Atmospheric Measurement Techniques 2021, 14 (4) , 2771-2785. https://doi.org/10.5194/amt-14-2771-2021
  64. Carly Staebell, Kang Sun, Jenna Samra, Jonathan Franklin, Christopher Chan Miller, Xiong Liu, Eamon Conway, Kelly Chance, Scott Milligan, Steven Wofsy. Spectral calibration of the MethaneAIR instrument. Atmospheric Measurement Techniques 2021, 14 (5) , 3737-3753. https://doi.org/10.5194/amt-14-3737-2021
  65. Tia R Scarpelli, Daniel J Jacob, Claudia A Octaviano Villasana, Irma F Ramírez Hernández, Paulina R Cárdenas Moreno, Eunice A Cortés Alfaro, Miguel Á García García, Daniel Zavala-Araiza. A gridded inventory of anthropogenic methane emissions from Mexico based on Mexico’s national inventory of greenhouse gases and compounds. Environmental Research Letters 2020, 15 (10) , 105015. https://doi.org/10.1088/1748-9326/abb42b

Environmental Science & Technology

Cite this: Environ. Sci. Technol. 2020, 54, 16, 10246–10253
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.est.0c01213
Published July 16, 2020

Copyright © 2020 American Chemical Society. This publication is licensed under CC-BY-NC-ND.

Article Views

7786

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Instantaneous plumes observed by GHGSat-D over the San Juan mine in New Mexico on (a) November 1st, 2017, and (b) September 18th, 2018. The white “x” symbols mark the location of the coal mine vent (36.7928°N, 108.3890°W) and the white arrows show the instantaneous local wind direction inferred from the orientation of the plumes (see the “Wind Data for Time Averaging” section).

    Figure 2

    Figure 2. Error in estimating 10 m wind direction from the GEOS-FP and DarkSky datasets. (a) Error standard deviations for GEOS-FP and DarkSky hourly average wind direction relative to one month of measurements from 10 U.S. airports (ABQ, ATL, BOS, DFW, LAX, MCI, MSP, PDX, PHL, and PHX) in the MesoWest database, binned by GEOS-FP wind speed. The airport measurements are for daytime June 2017 (15:00–21:00 UTC). (b) Additional uncertainty for estimating 5 min wind direction from 1 h averages, based on 5 min wind direction variability in the MesoWest data.

    Figure 3

    Figure 3. Effective wind speeds Ueff for retrieving time-averaged methane source rates by the IME and CSF methods (eqs 2 and 3) as a function of the time-averaged 10 m wind speed U10. The Ueff = f(U10) relationships are derived from LESs of instantaneous methane plumes, with time averaging and wind rotation corresponding to our measurement conditions for (a) San Juan, (b) Appin, and (c) Bulianta. Each point represents a time-averaged plume assembled from LES instantaneous plumes, with the level of background noise and number of observations adapted to the mine of interest (see Table 1). The functions are fit by robust least squares (see text).

    Figure 4

    Figure 4. Time-averaged methane plumes from the San Juan, Appin, and Bulianta coal mine vents, as observed by GHGSat-D from August 2016 through December 2018. The single-pass observations have been rotated to a northerly wind direction using (a–c) local wind data from GEOS-FP and DarkSky and (d–f) optimized wind directions with GEOS-FP and DarkSky winds as prior estimates (see the “Optimizing Wind Directions” section). The methane column enhancements are overlaid on Google Earth Pro imagery after thresholding and smoothing the plume masks with median and Gaussian filters (see the “Defining Plume Boundaries” section). The white markers show the location of the coal mine vent in the center of each scene.

  • References


    This article references 43 other publications.

    1. 1
      International Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution Of Working Group I to the Fifth Assessment Report Of the Intergovernmental Panel On Climate Change; IPCC, Cambridge University Press: New York , 2013.
    2. 2
      Saunois, M.; Bousquet, P.; Poulter, B.; Peregon, A.; Ciais, P.; Canadell, J. G.; Dlugokencky, E. J.; Etiope, G.; Bastviken, D.; Houweling, S.; Janssens-Maenhout, G.; Tubiello, F. N.; Castaldi, S.; Jackson, R. B.; Alexe, M.; Arora, V. K.; Beerling, D. J.; Bergamaschi, P.; Blake, D. R.; Brailsford, G.; Brovkin, V.; Bruhwiler, L.; Crevoisier, C.; Crill, P.; Covey, K.; Curry, C.; Frankenberg, C.; Gedney, N.; Höglund-Isaksson, L.; Ishizawa, M.; Ito, A.; Joos, F.; Kim, H.-S.; Kleinen, T.; Krummel, P.; Lamarque, J.-F.; Langenfelds, R.; Locatelli, R.; Machida, T.; Maksyutov, S.; McDonald, K. C.; Marshall, J.; Melton, J. R.; Morino, I.; Naik, V.; Patra, S.; Parmentier, F.-J. W.; Patra, P. K.; Peng, C.; Peng, S.; Peters, G. P.; Pison, I.; Prigent, C.; Prinn, R.; Ramonet, M.; Riley, W. J.; Saito, M.; Santini, M.; Schroeder, R.; Simpson, I. J.; Spahni, R.; Steele, P.; Takizawa, A.; Thornton, B. F.; Tian, H.; Tohjima, Y.; Viovy, N.; Voulgarakis, A.; van Weele, M.; van der Werf, G. R.; Weiss, R.; Wiedinmyer, C.; Wilton, D. J.; Wiltshire, A.; Worthy, D.; Wunch, D.; Xu, X.; Yoshida, Y.; Zhang, B.; Zhang, Z.; Zhu, Q. The Global Methane Budget 2000-2012. Earth Syst. Sci. Data 2016, 8, 697751,  DOI: 10.5194/essd-8-697-2016
    3. 3
      Maasakkers, J. D.; Jacob, D. J.; Sulprizio, M. P.; Turner, A. J.; Weitz, M.; Wirth, T.; Hight, C.; DeFigueiredo, M.; Desai, M.; Schmeltz, R.; Hockstad, L.; Bloom, A. A.; Bowman, K. W.; Jeong, S.; Fischer, M. L. Gridded National Inventory of U.S. Methane Emissions. Environ. Sci. Technol. 2016, 50, 1312313133,  DOI: 10.1021/acs.est.6b02878
    4. 4
      Frankenberg, C.; Thorpe, A. K.; Thompson, D. R.; Hulley, G.; Kort, E. A.; Vance, N.; Borchardt, J.; Krings, T.; Gerilowski, K.; Sweeney, C.; Conley, S.; Bue, B. D.; Aubrey, A. D.; Hook, S.; Green, R. O. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 97349739,  DOI: 10.1073/pnas.1605617113
    5. 5
      Jacob, D. J.; Turner, A. J.; Maasakkers, J. D.; Sheng, J.; Sun, K.; Liu, X.; Chance, K.; Aben, I.; McKeever, J.; Frankenberg, C. Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmos. Chem. Phys. 2016, 16, 1437114396,  DOI: 10.5194/acp-16-14371-2016
    6. 6
      Duren, R. M.; Thorpe, A. K.; Foster, K. T.; Rafiq, T.; Hopkins, F. M.; Yadav, V.; Bue, B. D.; Thompson, D. R.; Conley, S.; Colombi, N. K.; Frankenberg, C.; McCubbin, I. B.; Eastwood, M. L.; Falk, M.; Herner, J. D.; Croes, B. E.; Green, R. O.; Miller, C. E. California’s methane super-emitters. Nature 2019, 575, 180184,  DOI: 10.1038/s41586-019-1720-3
    7. 7
      Krings, T.; Gerilowski, K.; Buchwitz, M.; Hartmann, J.; Sachs, T.; Erzinger, J.; Burrows, J. P.; Bovensmann, H. Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data. Atmos. Meas. Tech. 2013, 6, 151166,  DOI: 10.5194/amt-6-151-2013
    8. 8
      Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Lundgren, E.; Andrews, A. E.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; Dubey, M. K.; Griffith, D. W. T.; Hase, F.; Kuze, A.; Notholt, J.; Ohyama, H.; Parker, R.; Payne, V. H.; Sussmann, R.; Sweeney, C.; Velazco, V. A.; Warneke, T.; Wennberg, P. O.; Wunch, D. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data. Atmos. Chem. Phys. 2015, 15, 70497069,  DOI: 10.5194/acp-15-7049-2015
    9. 9
      Maasakkers, J. D.; Jacob, D. J.; Sulprizio, M. P.; Scarpelli, T. R.; Nesser, H.; Sheng, J.-X.; Zhang, Y.; Hersher, M.; Bloom, A. A.; Bowman, K. W.; Worden, J. R.; Janssens-Maenhout, G.; Parker, R. J. Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015. Atmos. Chem. Phys. 2019, 19, 78597881,  DOI: 10.5194/acp-19-7859-2019
    10. 10
      Miller, S. M.; Michalak, A. M.; Detmers, R. G.; Hasekamp, O. P.; Bruhwiler, L. M. P.; Schwietzke, S. China’s coal mine methane regulations have not curbed growing Emissions. Nat. Commun. 2019, 10, 303,  DOI: 10.1038/s41467-018-07891-7
    11. 11
      Pandey, S.; Gautam, R.; Houweling, S.; van der Gon, H. D.; Sadavarte, P.; Borsdorff, T.; Hasekamp, O.; Landgraf, J.; Tol, P.; van Kempen, T.; Hoogeveen, R.; van Hees, R.; Hamburg, S. P.; Maasakkers, J. D.; Aben, I. Satellite observations reveal extreme methane leakage from a natural gas well blowout. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 2637626381,  DOI: 10.1073/pnas.1908712116
    12. 12
      Varon, D. J.; McKeever, J.; Jervis, D.; Maasakkers, J. D.; Pandey, S.; Houweling, S.; Aben, I.; Scarpelli, T.; Jacob, D. J. Satellite discovery of anomalously large methane emissions from oil/gas production. Geophys. Res. Lett. 2019, 46, 1350713516,  DOI: 10.1029/2019GL083798
    13. 13
      Brakeboer, B. N. A. Development of the structural and thermal control subsystems for an Earth observation microsatellite and its payload. M.Sc. Thesis, University of Toronto, 2015.
    14. 14
      Sloan, J. J.; Durak, B.; Gains, D.; Ricci, F.; McKeever, J.; Lamorie, J.; Sdao, M.; Latendresse, V.; Lavoie, J.; Kruzelecky, R. Fabry-Perot interferometer based satellite detection of atmospheric trace gases. U.S. Patent 9,228,897 B2, 2016, United States Patent and Trademark Office. Retrieved from https://patentimages.storage.googleapis.com/85/4e/65/b3f964823f2f3b/US9228897.pdf.
    15. 15
      Smith, M. L.; Gvakharia, A.; Kort, E. A.; Sweeney, C.; Conley, S. A.; Faloona, I.; Newberger, T.; Schnell, R.; Schwietzke, S.; Wolter, S. Airborne Quantification of Methane Emissions over the Four Corners Region. Environ. Sci. Technol. 2017, 51, 58325837,  DOI: 10.1021/acs.est.6b06107
    16. 16
      Pommier, M.; McLinden, C. A.; Deeter, M. Relative changes in CO emissions over megacities based on observations from space. Geophys. Res. Lett. 2013, 40, 37663771,  DOI: 10.1002/grl.50704
    17. 17
      Fioletov, V. E.; McLinden, C. A.; Krotkov, N.; Li, C. Lifetimes and emissions of SO2 from point sources estimated from OMI. Geophys. Res. Lett. 2015, 42, 19691976,  DOI: 10.1002/2015GL063148
    18. 18
      McLinden, C. A.; Fioletov, V.; Shephard, M. W.; Krotkov, N.; Li, C.; Martin, R. V.; Moran, M. D.; Joiner, J. Space-based detection of missing sulfur dioxide sources of global air pollution. Nat. Geosci. 2016, 9, 496500,  DOI: 10.1038/NGEO2724
    19. 19
      Valin, L. C.; Russell, A. R.; Cohen, R. C. Variations of OH radical in an urban plume inferred from NO2 column measurements. Geophys. Res. Lett. 2013, 40, 18561860,  DOI: 10.1002/grl.50267
    20. 20
      De Foy, B.; Lu, Z.; Streets, D. G.; Lamsal, L. N.; Duncan, B. N. Estimates of power plant NOx emissions and lifetimes from OMI NO2 satellite retrievals. Atmos. Environ. 2015, 116, 111,  DOI: 10.1016/j.atmosenv.2015.05.056
    21. 21
      Zhang, Y.; Gautam, R.; Zavala-Araiza, D.; Jacob, D. J.; Zhang, R.; Zhu, L.; Sheng, J. X.; Scarpelli, T. Satellite observed changes in Mexico’s offshore gas flaring activity linked to oil/gas regulations. Geophys. Res. Lett. 2019, 46, 18791888,  DOI: 10.1029/2018GL081145
    22. 22
      Clarisse, L.; Van Damme, M.; Clerbaux, C.; Coheur, P.-F. Tracking down global NH3 point sources with wind-adjusted superresolution. Atmos. Meas. Tech. 2019, 12, 54575473,  DOI: 10.5194/amt-12-5457-2019
    23. 23
      Dammers, E.; McLinden, C. A.; Griffin, D.; Shephard, M. W.; Van Der Graaf, S.; Lutsch, E.; Schaap, M.; Gainairu-Matz, Y.; Fioletov, V.; Van Damme, M.; Whitburn, S.; Clarisse, L.; Cady-Pereira, K.; Clerbaux, C.; Coheur, P. F.; Erisman, J. W. NH3 emissions from large point sources derived from CrIS and IASI satellite observations. Atmos. Chem. Phys. 2019, 19, 1226112293,  DOI: 10.5194/acp-19-12261-2019
    24. 24
      McKeever, J.; Durak, B. O. A.; Gains, D.; Varon, D. J.; Germain, S.; Sloan, J. J. GHGSat-D: Greenhouse Gas Plume Imaging and Quantification from Space Using a Fabry–Perot Imaging Spectrometer. Abstract presented at the American Geophysical Union 2017 Fall Meeting, New Orleans, LA, 2017, Dec 11–15, 2017.
    25. 25
      Rodgers, C. D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific, 2000; Vol. 2.
    26. 26
      Gordon, I. E.; Rothman, L. S.; Hill, C.; Kochanov, R. V.; Tan, Y.; Bernath, P. F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K. V.; Drouin, B. J.; Flaud, J.-M.; Gamache, R. R.; Hodges, J. T.; Jacquemart, D.; Perevalov, V. I.; Perrin, A.; Shine, K. P.; Smith, M.-A. H.; Tennyson, J.; Toon, G. C.; Tran, H.; Tyuterev, V. G.; Barbe, A.; Császár, A. G.; Devi, V. M.; Furtenbacher, T.; Harrison, J. J.; Hartmann, J.-M.; Jolly, A.; Johnson, T. J.; Karman, T.; Kleiner, I.; Kyuberis, A. A.; Loos, J.; Lyulin, O. M.; Massie, S. T.; Mikhailenko, S. N.; Moazzen-Ahmadi, N.; Müller, H. S. P.; Naumenko, O. V.; Nikitin, A. V.; Polyansky, O. L.; Rey, M.; Rotger, M.; Sharpe, S. W.; Sung, K.; Starikova, E.; Tashkun, S. A.; Auwera, J. V.; Wagner, G.; Wilzewski, J.; Wcisło, P.; Yu, S.; Zak, E. J. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transfer 2017, 203, 369,  DOI: 10.1016/j.jqsrt.2017.06.038
    27. 27
      United States National Aeronautics and Space Agency. U.S. Standard Atmosphere , 1976 (Technical Report NASA-TM-X-74335, NASA, 1976). Available at https://ntrs.nasa.gov/search.jsp?R=19770009539.
    28. 28
      China State Administration of Coal Mine Safety. Compilation of National Coal Mine Gas Level Identification for 2011; National Coal Mine Safety Supervision Bureau, 2019.
    29. 29
      Ong, C.; Day, S.; Halliburton, B.; Marvig, P.; White, S. Regional Methane Emissions In NSW CSG Basins Final Report; CSIRO: Australia, 2017.
    30. 30
      Hill, T.; Nassar, R. Pixel size and revisit rate requirements for monitoring power plant CO2 emissions from space. Remote Sens. 2019, 11, 1608,  DOI: 10.3390/rs11131608
    31. 31
      Jongaramrungruang, S.; Frankenberg, C.; Matheou, G.; Thorpe, A.; Thompson, D. R.; Kuai, L.; Duren, R. Towards accurate methane point-source quantification from high-resolution 2-D plume imagery. Atmos. Meas. Tech. 2019, 12, 66676681,  DOI: 10.5194/amt-12-6667-2019
    32. 32
      Varon, D. J.; Jacob, D. J.; McKeever, J.; Jervis, D.; Durak, B. O. A.; Xia, Y.; Huang, Y. Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes. Atmos. Meas. Tech. 2018, 11, 56735686,  DOI: 10.5194/amt-11-5673-2018
    33. 33
      Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J.; In-Sun, S.; Eichmann, A. The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna Technical Report Series on Global Modeling and Data Assimilation; NASA, 2012; Vol. 28.
    34. 34
      DarkSky. DarkSky weather application programming interface (API). https://darksky.net/dev (accessed on May 9, 2019).
    35. 35
      Horel, J.; Splitt, M.; Dunn, L.; Pechmann, J.; White, B.; Ciliberti, C.; Lazarus, S.; Slemmer, J.; Zaff, D.; Burks, J. MesoWest: Cooperative Mesonets in the Western United States. Bull. Am. Meteorol. Soc. 2002, 83, 211225,  DOI: 10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2
    36. 36
      Nelder, J. A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308313,  DOI: 10.1093/comjnl/7.4.308
    37. 37
      Lagarias, J. C.; Reeds, J. A.; Wright, M. H.; Wright, P. E. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112147,  DOI: 10.1137/S1052623496303470
    38. 38
      White, W.; Anderson, J.; Blumenthal, D.; Husar, R.; Gillani, N.; Husar, J.; Wilson, W. Formation and transport of secondary air pollutants: ozone and aerosols in the St. Louis urban plume. Science 1976, 194, 187189,  DOI: 10.1126/science.959846
    39. 39
      Krings, T.; Gerilowski, K.; Buchwitz, M.; Reuter, M.; Tretner, A.; Erzinger, J.; Heinze, D.; Pflüger, U.; Burrows, J. P.; Bovensmann, H. MAMAP – a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates. Atmos. Meas. Tech. 2011, 4, 17351758,  DOI: 10.5194/amt-4-1735-2011
    40. 40
      United States Environmental Protection Agency (EPA). Facility Level Information on Greenhouse Gases Tool (FLIGHT), 2017. https://ghgdata.epa.gov/ghgp/service/html/2017?id=1009342&et=undefined via https://ghgdata.epa.gov/ghgp/main.do (accessed on July 1, 2019).
    41. 41
      Cardno. Environmental Assessment Appin Colliery Area 7 Goaf Gas Drainage Project, 2009. https://www.south32.net/docs/default-source/illawarra-coal/bulli-seam-operations/appin/appin-surface-gas-management-project---enviro-asse/environmental-assessment-appin-surface-gas-management-project.pdf?sfvrsn=321a9200_4 (accessed on Feb 14, 2020).
    42. 42
      Jervis, D.; McKeever, J.; Strupler, M.; Gains, D.; Tarrant, E.; Germain, S. Rapid Design, Build and Characterization Cycle of the GHGSat Constellation. Abstract presented at the American Geophysical Union 2019 Fall Meeting, San Francisco, CA, Dec 9–13, 2019.
    43. 43
      Cusworth, D. H.; Jacob, D. J.; Varon, D. J.; Chan Miller, C.; Liu, X.; Chance, K.; Thorpe, A. K.; Duren, R. M.; Miller, C. E.; Thompson, D. R.; Frankenberg, C.; Guanter, L.; Randles, C. A. Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space. Atmos. Meas. Tech. 2019, 12, 56555668,  DOI: 10.5194/amt-12-5655-2019
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.0c01213.

    • Wind direction optimization null tests and source rate retrieval error analysis (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.