ACS Publications. Most Trusted. Most Cited. Most Read
Mass-Balance-Consistent Geological Stock Accounting: A New Approach toward Sustainable Management of Mineral Resources
My Activity

Figure 1Loading Img
  • Open Access
Review

Mass-Balance-Consistent Geological Stock Accounting: A New Approach toward Sustainable Management of Mineral Resources
Click to copy article linkArticle link copied!

  • Mark U. Simoni*
    Mark U. Simoni
    Geological Survey of Norway, Leiv Eirikssons vei 39, 7040 Trondheim, Norway
    Norwegian University of Science and Technology, Industrial Ecology Programme, Høgskoleringen 5, NO-7034 Trondheim, Norway
    *E-mail: [email protected]; mobile phone: +4746777449.
  • Johannes A. Drielsma
    Johannes A. Drielsma
    Drielsma Resources Europe, 2585 GT The Hague, Netherlands
  • Magnus Ericsson
    Magnus Ericsson
    Luleå University of Technology, Department of Business Administration, Technology and Social Sciences, 97187 Luleå, Sweden
  • Andrew G. Gunn
    Andrew G. Gunn
    British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom
  • Sigurd Heiberg
    Sigurd Heiberg
    Petronavit AS, C/o Heiberg, Stokkahagen 23, 4022 Stavanger, Norway
  • Tom A. Heldal
    Tom A. Heldal
    Geological Survey of Norway, Leiv Eirikssons vei 39, 7040 Trondheim, Norway
  • Nedal T. Nassar
    Nedal T. Nassar
    U.S. Geological Survey, National Mineral Information Center, 12201 Sunrise Valley Dr., MS 988, Reston, Virginia 20192, United States
  • Evi Petavratzi
    Evi Petavratzi
    British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom
  • Daniel B. Müller
    Daniel B. Müller
    Norwegian University of Science and Technology, Industrial Ecology Programme, Høgskoleringen 5, NO-7034 Trondheim, Norway
Open PDFSupporting Information (1)

Environmental Science & Technology

Cite this: Environ. Sci. Technol. 2024, 58, 2, 971–990
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.est.3c03088
Published January 2, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract

Click to copy section linkSection link copied!

Global resource extraction raises concerns about environmental pressures and the security of mineral supply. Strategies to address these concerns depend on robust information on natural resource endowments, and on suitable methods to monitor and model their changes over time. However, current mineral resources and reserves reporting and accounting workflows are poorly suited for addressing mineral depletion or answering questions about the long-term sustainable supply. Our integrative review finds that the lack of a robust theoretical concept and framework for mass-balance (MB)-consistent geological stock accounting hinders systematic industry-government data integration, resource governance, and strategy development. We evaluate the existing literature on geological stock accounting, identify shortcomings of current monitoring of mine production, and outline a conceptual framework for MB-consistent system integration based on material flow analysis (MFA). Our synthesis shows that recent developments in Earth observation, geoinformation management, and sustainability reporting act as catalysts that make MB-consistent geological stock accounting increasingly feasible. We propose first steps for its implementation and anticipate that our perspective as “resource realists” will facilitate the integration of geological and anthropogenic material systems, help secure future mineral supply, and support the global sustainability transition.

This publication is licensed under

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2024 The Authors. Published by American Chemical Society

1. Introduction

Click to copy section linkSection link copied!

Are we running out of mineral resources? Resource optimists embrace the economic perspective of Smith, (1) and others (2−5) in arguing that markets are self-regulating, and that global mineral depletion is a nonissue (6,7) for society. Indeed, while mineral extraction accelerated over the last century, (8) there is little historical indication that physical depletion of individual deposits has impacted the global availability of minerals: inflation-corrected commodity prices remained stable over the past century, (4,9−11) and commodity time-price trends indicate that mineral products became more affordable. (12)
Resource pessimists follow Malthus, (13) Jevons, (14) and Hubbert, (15) in arguing that unconstrained mining will deplete Earth’s finite nonrenewable mineral stocks to the point of constraining future growth. The Club of Rome’s report “Limits to Growth” (16) intensified the discussion about finite stocks. (17−19) While its predictions of physical scarcity have not materialized, (20) the depletion of deposits indeed accelerated together with extraction rates, (21,22) ore grades in production declined, (23,24) and environmental impacts and resource conflicts multiplied and intensified. (22,25−29) Global trends continue to raise broad concerns about future raw material availability and sustainability. (21,30−33)
The mineral depletion and sustainability debate continues unabated, and while neither the optimistic nor the pessimistic perspective is inherently contradictory or incorrect, neither has offered a unifying solution to reconcile the positions. (4,34−39) Notably, both resource optimists and resource pessimists base their claims on the same national and global mineral production statistics and estimates for mineral resources and reserves. (40−42) Whether these data are at all suitable for quantifying long-term mineral depletion is questioned by recent studies. (11,43−46) Various authors highlight significant uncertainties regarding conceptual methods for estimation, classification, and spatial aggregation of mineral resources and reserves across all data sources, particularly for critical raw materials. (47−51) Moreover, the general lack of systematic and standardized granular mine-site-level “bottom-up” information is a key concern for comparing, aggregating, and monitoring mineral resources and mineral reserves. (42,51,52) Poor data availability also hampers environmental, social, and governance (ESG) risk assessments, (53,54) sustainability analysis, (55,56) and raw materials scenario modeling. (47,53,54) Notwithstanding, there are few recommendations on how mineral-related data collection may be streamlined and industry-government integration facilitated to address data gaps and fragmentation. Here, we use material flow analysis (MFA) and mass-balance (MB) principles to review current mineral reserve accounting, mine production monitoring, and industry-government data integration. We use this background to define a MB-consistent geological stock accounting approach and broader framework that can help to establish a coherent language across the relevant research fields. We will illustrate how our approach may be used to address the identified data gaps and data fragmentation, and review its context within recent trends in Earth Systems modeling and policymaking to propose next steps toward physical accounting and material systems integration.

2. A Brief Review of Mass-Balance-Consistent Accounting

Click to copy section linkSection link copied!

Monitoring dynamic changes of physical stocks and flows of materials and energy in the socioeconomic metabolism (57) or physical economy (58) reveals how we as producers and consumers of goods and services depend on, and shape, the anthropogenic and natural environment. The birth of industrial dynamics (59) in the late 1950s, industrial metabolism (60,61) in the 1980s, and industrial ecology (62,63) in the 1990s, have laid the groundwork for using integrated system approaches as tools for natural resource management, circular economy efforts, and sustainable development. (64−66) Since the first formal “materials balance approach” of the U.S. economy was published in 1969, (67) MFA has become a well-established method for modeling anthropogenic and natural physical systems at multiple scales, from single-unit processes at the facility level, to complex global material and energy systems. (68,69) MFA builds on the basic principle of conservation of mass, derived from the First Law of Thermodynamics. (70,71) Throughout history, conservation of mass (MB-consistency) has been recognized as fundamental in chemistry, (72,73) forestry, (74−76) glaciology, (77−79) hydrology, (80−82) climatology, (83,84) as well as in geology, (85−87) petroleum reservoir modeling, (88,89) mineral processing, (90,91) and urban metabolism studies. (92,93) MFA formalizes MB-consistency for physical accounting (materials accounting) by requiring that (i) the system boundary be explicitly defined in space and time, (ii) stocks and flows be expressed in consistent physical (nonmonetary) units, and (iii) mass and energy be in balance across transformation, distribution, and storage processes in the system. (68,69) Materials occupy space and can only be accounted for if the system boundary and the processes are clearly defined in space (3D) and time, (70) e.g., to quantify natural groundwater flows in the Earth’s subsurface, or to model the material stock in houses in the built environment. 2D geospatial data are insufficient, as they can only indicate where materials are on a map but cannot capture their physical characteristics (e.g., 3D shape and extent, mineral distribution, overburden thickness) or their material balance volumes.
For analyzing physical systems, a MB-consistent MFA approach brings diverse benefits: (70,71,94)
  • The system structure of connected flows carries additional information about the origin and destination of the flows.

  • Mass balance equations make the system structure explicit and can close data gaps without requiring additional data collection.

  • The explicit system definition allows for balancing each process for total mass and all chemical elements, and facilitates data harmonization and integration (e.g., to avoid double-counting).

  • The MB principle is useful for sensitivity analysis and data reconciliation. It enables robust accounting and scenario models for physical matter in the “real world”.

Altogether, MFA provides a robust and transparent reference framework to understand, visualize, and transform material and energy systems and their associated value, information, and emission layers toward sustainability. (94−96) Recent applications include a plant-level study for Europe’s biggest aluminum smelter outside of Russia, (97) the International Aluminium Institute’s “Global Aluminium Cycle”, (98) the European Union’s “Material System Analysis” studies, (99) and U.S. Geological Survey publications on tantalum, niobium, and rare earth elements (REEs). (100−102) While there are many examples to demonstrate MFA’s utility, there has not been much discussion about MFA in mineral resource geology, mineral depletion studies, and sustainable mining (cf. Supporting Information, S1.3), partly because of data gaps and a lack of transparency in current industry minerals reporting. Data fragmentation and poor international harmonization (8,41,42,51) impede MB-consistent physical accounting. Here, we address this gap and use MFA principles to discuss three key issues related to (1) geological stock accounting (section 3), (2) monitoring of mine production flows (section 4), and (3) systems integration (sections 5 and 6), as illustrated in Figure 1.

Figure 1

Figure 1. Simplified material flow analysis (MFA) system of the global mineral material cycle. Material flows (arrows) connect material transformation, transport, market, and storage processes (blue boxes) with or without material stocks (white boxes). Highlights in red identify three key issues that require mass-balance-consistent mineral information: geological stock accounting (section 3), monitoring of mine production (section 4), and physical systems integration (sections 5 and 6).

3. The Concept of Geological Stocks

Click to copy section linkSection link copied!

Mineral deposits are nonrenewable in human time scales, and geological exploration and mine project development need to compensate for deposits being depleted. This is increasingly challenging, as global demand for minerals continues to grow, (22) while the probability of exploration projects reaching the mining stage remains notoriously low. (20) Moreover, lead times from prospecting to production often reach 8–11 years for exploration and additional 9–12 years for mine development. (103) Government-industry information flows are crucial in this context. Definitions, methods, and standards for government and industry data collection, sharing, and integration, however, have diverse historical backgrounds and have been developed by different organizations to serve distinct information needs: Government agencies, for instance, collect basic geoscientific and industry data to inform long-term resource management, promote sustainable development, and secure an affordable supply of raw materials at national, regional, and local levels. National- and regional-scale geospatial data sets and mineral resource estimates by government agencies often cover both known and undiscovered mineral deposits, and aim to inform a wide range of users including policy makers, exploration companies, and investors. (42,104−107) These data sets and resource estimates, however, have diverse underlying assumptions, varying uncertainty, and significant data gaps, (41,50,108,109) which make them difficult to compare and integrate. Exploration and mining companies, on the other hand, collect detailed site-scale information for project-specific appraisal (valuation) and operations planning, with the goal of generating revenue though successful mining and refining ventures (Figure 1). As early stage industry exploration projects advance to drilling, permitting, and construction, their costs rapidly grow, (20) and companies may use public disclosure to report promising exploration results and attract capital for project development. The 1997 Bre-X mining fraud, which cost investors US$6 billion, (110) led regulators and professional associations to increasingly require that such industry disclosures follow “resource classification standards” (108,111) (cf. S2) overseen by a certified professional, known as competent person (CP) (112) or qualified expert (QE). (108,111,113) While the definitions of the terms resources and reserves vary across extractive industries (e.g., industrial minerals, metals, oil and gas) and between jurisdictions (e.g., Australia, Canada, China, United States), (108,111,114) they are commonly understood along following lines: (104,115) reserves are the amount of discovered in-ground commodities that are considered to be economically recoverable and marketable at the time of determination through projects that are committed to be realized, while resources comprise both discovered and undiscovered quantities that are not yet economically recoverable at present in this sense, but may, eventually, be extracted. Both definitions presume some degree of recoverability and human intent, which indicates that resources and reserves are a function of exploration efforts, market demand, regulations, and other environmental, socioeconomic and technical variables (collectively often called “modifying factors” (50,112)). Reserves are by definition better constrained than resources, yet both are somewhat uncertain, and inherently dynamic. (108,109) Remembering this commonality, we here simply use “reserves” to refer to reported quantities estimated through national and international (e.g., CRIRSCO-aligned) (112) resource classification standards or through the more generic United Nations Framework Classification for Resources UNFC. (116) In contrast to project- and commodity-specific classification of reserves (i.e., reporting only the amount of commodity x we can mine and sell for profit or by applying subsidies), the scope for MB-consistent geological stock accounting is broader in that it aims to facilitate spatiotemporally explicit and MB-consistent data integration and physical accounting for the entire geological “subsurface” (117) of a geographical region. Using the terms stock, (70,118) intrinsic physical properties, (119,120) spatial compartment, (68,70) and mutually exclusive and collectively exhaustive (MECE), (119) we suggest the following new definitions: the geological stock is the physical content of a natural material compartment that is delimited by a spatiotemporally explicit, georeferenced, and time-invariant 3D system boundary. Geological stock quantification maps the material content in the defined compartment in a mutually exclusive and collectively exhaustive manner at a specified reference point in time, based on purely intrinsic (e.g., physical, chemical, and mechanical) material properties. Intrinsic properties include, for instance, the total mass, elemental composition, mineralogy, and strength. A physical material flow out of the defined compartment occurs when natural material leaves the system boundary during the period of consideration between two reference points in time, independent of whether the material has an economic value, and regardless of whether the flow results from human activity or natural processes. Geological stock accounting tracks physical material stocks and flows and their changes over time based on their purely physical attributes, which makes it conceptually suitable for MB-consistent raw material system modeling and scenario development. To illustrate conceptual differences between mineral resource classification and MB-consistent physical accounting, we use four MFA system definitions (Figure 2), and individually discuss them below.

Figure 2

Figure 2. Different approaches for geological stock accounting: (a) reserves included as fixed stocks within the system boundary; (b) exploration interpreted as a (in)flow of material; (c) geosphere excluded from the system boundary; (d) multidimensional and mass-balance (MB)-consistent geological stock model. Approaches (a) and (b) violate material flow analysis (MFA) principles, (c) is permissible but uninformative, and (d) is the spatiotemporally explicit conceptual approach.

3.1. Using Reserves to Calculate Depletion (Figure 2a)

National and global resources and reserves numbers are often combined with production statistics to calculate mineral depletion rates. (16,35,36,38,39,121) This incorrectly assumes, without explicitly stating so, that reserves are fixed physical quantities, i.e., “all there is”. (111) Accelerating global resource extraction would thus progressively deplete them, aligning with the “fixed-stock paradigm” (4) and pessimistic predictions of impending global exhaustion. However, Zimmermann (122) pointedly stated in 1951: “resources are not, they become; they are not static, but expand and contract in response to human wants and human actions”. Indeed, reported global resources and reserves of many commodities continue to grow, despite accelerating extraction rates. (107,123,124) That reserves are inherently dynamic (125) is illustrated by two examples: first, mine life cycle disruptions such as bankruptcy can unexpectedly and instantaneously “erase” a company’s reserves, reducing national (and global) reserve totals; and second, more efficient technology can turn previously subeconomic parts of a deposit into economic reserves, thus increasing reserve totals. Notably, long-term commodity prices have remained relatively stable (4,9,11) despite declining ore grades in production. (23,24) This was predominantly driven by exploration successes, technological innovation, and economies of scale, which lowered the threshold for economic mining and increased global reserves. (23,126,127) On a project level, reserve calculations commonly use a cutoff grade to estimate recoverable in-ground quantities, defined by a set of assumed operating conditions with variable uncertainty, including technical feasibility, labor and fuel costs, taxes, and projected commodity prices. Changes to any of these may call for adjusting the cutoff grade. Higher market prices, for instance, make it feasible to profitably mine lower-grade and deeper ores. Interestingly, empirical data suggest that there is no specific geological or thermodynamic grade-threshold that may limit this trend. While geologists previously postulated a “mineralogical barrier” for the copper concentration (copper ore grade) in the crust, (128,129) randomly sampled data across all rock types indicate a unimodal continuum. (130) The absence of a clearly identifiable intrinsic (119) ore grade threshold emphasizes that the definition of “ore deposits” (i.e., naturally occurring mineral material “known to be producible to yield a profit) (131) is arbitrary from a physical accounting perspective. Reserve numbers of individual industry projects can thus be understood as a snapshot of a “working inventory” (132) that dynamically evolves in function of socioeconomic (and thus extrinsic (119)) factors. In addition, project owners may choose or be required to selectively disclose only some of their reserves, to the extent that fits their commercial interest and applicable regulations. Arguably, project owners theoretically have the information to “account” for the entire 3D geological stock volume in their concession area in a MB-consistent manner (e.g., by using 3D block models and data reconciliation). (133,134) However, their published reserve numbers only represent those selected individual 3D “blocks” (20,135) that fulfill the reserve classification criteria (i.e., a dynamically evolving subsample of the total geological stock). All 3D information is lost after reporting, which implies that published reserves become decoupled in space and time and do not allow for MB-consistent data integration, reconciliation, and material stock and flow accounting. Government mineral inventories and national reserve totals compiled from these selectively reported industry reserve quantities (plus possibly additional government estimates) are hence poorly suited for MB-consistent physical stock accounting. Altogether, while previous authors have already pointed out that reported reserve numbers should not be misinterpreted as fixed stocks, (7,11,111,122) we here show that doing so violates MFA principles, and that these estimates cannot be used for MB-consistent physical accounting because reserves data (i) lack explicit georeferencing and a time-invariant 3D system boundary (cf. spatial compartment); (ii) are inherently dynamic and co-defined by extrinsic socioeconomic factors (which continuously changes the MFA balance volume); (iii) and are selectively sampled and neither mutually exclusive nor collectively exhaustive across time and space.

3.2. Modeling Exploration as an Inflow (Figure 2b)

To account for the dynamic nature of reserves, it has been suggested to introduce exploration as an imaginary inflow (136) (“exploration” arrow) representing “flows from unknown resources into a reserve inventory”. (7) Geologists commonly categorize exploration projects into greenfields and brownfields exploration, and aim to provide information that helps to “convert” (137) or “upgrade” (125) mineral discoveries into mineable reserves. Conceptually, greenfield exploration expands the system boundary of reserves though new discoveries and classification outside of previously known geological districts or terrains. This changes the balance volume during the accounting period, which makes it impossible to uphold the MB-principle because the 3D system boundary (spatial compartment) is not time-invariant. (70) Brownfields exploration, in contrast, increases the knowledge within previously known terrains that have existing data, often in the vicinity of abandoned or operating mines. New measurements and subsequent (re)classification (20) update the geological knowledge of individual blocks inside the imagined 3D system boundary around the entire brownfields volume, and may increase or decrease reported reserves. Regardless, exploration is no measurable physical flow, and this approach cannot solve the MB-consistency issues inherent to reserves accounting.

3.3. MB-Consistency without Geological Stocks (Figure 2c)

The resource optimist’s view can be framed as geological stocks being so vast and markets and human ingenuity so successful in developing new solutions, that accurate quantification of geological stocks is simply irrelevant. (2−5,138) In other words: “Whatever is left in the ground is unknown, probably unknowable, but surely unimportant; a geological fact of no economic interest”. (7) Indeed, geologists point out that the mineral content of the Earth’s crust is orders of magnitude bigger than reported industry reserves. (111,130) Economists may argue that functioning markets automatically balance production and consumption, and that focusing on production costs and prices, and addressing market failures, is more important than quantifying physical availability. (4,139) Translated to MFA, this approach draws the system boundary such that the geological subsystem (geosphere) is excluded from consideration. While this is indeed a MB-consistent system definition, it does not contribute to tracking how Earth’s natural resources are depleted. Importantly, it does not contribute to data collection and knowledge integration for “physically consistent” (140) modeling and Earth System Science, (141) which we need to evaluate prospective mining localities, develop supply scenarios, and address the ESG issues that are likely to limit mineral production well before any global physical depletion. (132,142,143)

3.4. MB-Consistent Geological Stock Accounting (Figure 2d)

MB-consistent geological stock accounting requires a spatiotemporally explicit system definition to describe and monitor changes in the geological stock volume in the geosphere. Here, we propose to model the geological stock using a full-coverage 3D digital geomodel (cf. section 5) with a georeferenced time-invariant (fixed) spatial system boundary that establishes the model’s initial physical reference state (27) at an initial reference point in time. By recording the intrinsic physical material properties of stocks and separating them from socioeconomic (and thus extrinsic) (119) factors, we can use MFA to track the actual physical changes over time. Combining spatial resolution and MB-equations facilitates both site-specific and regional-scale geological stock quantification and MFA data integration (MFA subsystem modeling approach). (144) Section 5 elaborates how changes in geological stocks due to mining and better knowledge about intrinsic material properties of specific blocks can be represented. Moreover, this method considers the entire 3D distribution of geological materials in the Earth’s crust and its uncertainty, not just the continuously changing reserves in known mineral deposits. Notably, this scope definition also satisfies the stated objective of the UN System of Environmental-Economic Accounting (SEEA) (145) “to include all of the resources that may provide benefits to humanity” (i.e., the entire 3D geological stock), while it also “allows for a full analysis of changes”. (145) Altogether, our geological stock accounting approach aims to facilitate data integration to represent the physical reality as accurately as possible with a continuously increasing resolution.

4. Physical Monitoring of Mine Production

Click to copy section linkSection link copied!

It is widely accepted that granular disclosure of relevant data is a key driver for responsible mining and achieving the Sustainable Development Goals (SDGs), for example decent work and economic growth (SDG 8), and responsible consumption and production (SDG 12). (146,147) However, systematic site-scale information is still “conspicuously missing” (148) from corporate sustainability reporting of mining companies, while corresponding government data sets are often incomplete, fragmented across different agencies, and difficult to integrate, as we show in Figure 3 and the following sections.

Figure 3

Figure 3. Physical monitoring of mine production. (a) Mine planning: The natural characteristics of mineral deposits such as depth and ore grade, combined with mine design and operating efficiency, determine the expected (ex-ante) material flows. Figure not to scale, modified after ref (163). (b) Material flows and sustainability: Material flows of mining are interlinked with environmental, social, and governance (ESG) issues and tracking them is thus crucial for the Social License to Operate (SLO) and Sustainable Development License to Operate (SDLO). (c) Reference system for physical monitoring: A standardized material flow analysis (MFA) system definition with explicit reference points and a mutually agreed-upon terminology facilitates systematic reporting and enables mass-balance-consistent monitoring of mine production flows.

4.1. Industry Reporting of Mine Production Flows

Mining companies routinely collect material flow data at different stages of their mine life cycles to manage their economic efficiency (149) and ESG risks. (150,151) However, public disclosure of data on observed past (ex-post) or expected future (ex-ante) material flows is rare and typically neither systematic nor MB-consistent. The amount and quality of in-house information increases as projects advance along the project-production cycle: (152) during the prefeasibility and feasibility stages, expected sales production and waste flows can be estimated by combining geological information with mine design and scheduling. (153) This makes it necessary to characterize in-ground materials and to calculate total extraction (excavation) volumes and associated flows of topsoil, overburden, below cutoff grade waste rock, and pay-grade ore for further processing (Figure 3a). Besides being essential for mine life cycle costing and environmental optimization at a corporate management level, (154,155) this ex-ante information is also of interest for national mineral resource governance and local stakeholders: Specifically, it could be used to demonstrate compliance with legal, regulatory, contractual, fiscal, and infrastructural requirements, and could facilitate stakeholder negotiations to define the terms of the “Social License to Operate” (SLO) and “Sustainable Development License to Operate” (SDLO). (53,148,156) Ex-ante data could also help exploit synergies (71) between different projects at an early planning stage where design decisions can still be influenced. Yet, these data are rarely systematically reported or updated to reflect changes in planning. During the actual production phase(s), companies routinely monitor material flows along the processing chain to manage operations and ESG risks (Figure 3b). (91,133,134) Many jurisdictions mandate annual reporting of “mine production” or “sold production” quantities to mining authorities. However, reported data (information flows) are typically not defined with MB-consistent reference systems (e.g., Figure 3c). This results in misunderstandings regarding what reported production data refer to (e.g., the total mass with average ore grade, or the total pure metal content of sold products) and allows for “hidden” inconsistencies. Moreover, published industry data generally only cover some selected materials and flows (e.g., omit to report removed waste rock), (40) exclude relevant details (e.g., whole-rock composition including companion or critical metals and deleterious elements; mineralogy; pH; physical product qualities), (50,157) and may be preaggregated across projects to company-levels (i.e., not granular, site-scale). Moreover, depending on the jurisdiction, they may remain entirely undisclosed for entities that are not listed on stock exchanges, or that have revenues below a given threshold. (158,159) Similarly, government communication is a problem. (160) Reporting may for instance be fragmented across agencies: mining directorates, tax authorities, national environmental protection agencies, or local municipal planning offices collect (but not necessarily share) ex-ante or ex-post information on mining-related material flows for environmental impact assessments, license extensions, taxation, and closure procedures. Similarly, information on planned or completed excavation for urban and infrastructure development projects are often poorly integrated with information on mining projects, (161) despite being relevant for construction aggregates (“development minerals”) management and circular economy strategies. (162) Altogether, current production reporting does not provide complete material flow data coverage and lacks a material systems context.

4.2. Government Aggregation of Production Data

Reported mine production data are commonly ingested by geological survey organizations (GSOs), mining directorates, and industry associations. Due to confidentiality concerns, these organizations usually only publish them as aggregated mineral production statistics. (40−42,158) National mine production totals and global production estimates are used by a wide range of stakeholders, e.g., to evaluate markets for project development, assess raw material criticality, (164−168) investigate the long-run availability of metals, (43,105) and develop raw material policies and science-based resource efficiency targets. (169) However, the published production statistics are often misinterpreted by data users that do not know their context. Back-calculations using published production statistics, for instance, systematically underestimate total extraction (46) because the quantities, types, and composition of nonsales material flows are not correctly reported. Historically, the flows of topsoil, over- and interburden, and below-cutoff waste rock, collectively referred to as hidden or indirect flows, (170) unused extraction, (171) or natural resource residuals, (145) were not considered as tradeable commodities with economic value (46,67,172,173) and are thus not reported. Indeed, national accounting systems including Eurostat (cf. “Waste disposal to the environment”) (171) and the UN System of Environmental-Economic Accounting (SEEA) (145) still consider them to be “outside” of the system boundary, assuming they are immediately returned to and part of “the environment”. This scope partly explains why quantitative data on unused extraction are absent from national statistics. (46,174) Yet, this does not lessen their relevance for sustainability-related discussions. Hidden flows exert various pressures on the environment and can contain both potentially harmful and useful material. (175) For open pit mines, hidden flows are commonly two, and occasionally 30 times bigger than the ore retained (used extraction), (176) and orders of magnitude bigger than final sales quantities. (40,177) Globally, the mining industry is the largest “waste” producer, (156) and in 2016 alone the flow of unreported waste rock was estimated to be 72 billion tonnes (Gt). (178) Altogether, the historical flow of nonsales quantities (hidden flows, reported tailings, and other residues) is estimated to have accumulated a total of several hundred Gt of mine wastes. (179) While nonsales quantities raise various ESG issues, they can also offer opportunities for remining of tailings, ecosystem restoration, and higher-value land use (Figure 3b). All countries with important mining histories have legacy mine waste stocks. In the United States alone, there are estimated 550 000 abandoned mines, 4–13% of which may pose a risk to human health and the environment. (180−182) The estimated remediation costs of the 64 priority sites are US$7.8 billion, of which $2.4 billion would come from taxpayers. (183) Notably, many risk-prone historical practices have been superseded, (184) and historical extraction rates used to be much lower than today. The accelerating mineral extraction rates (21,22) and increasing waste-to-ore ratios, (51) on the other hand, spotlight the need to better understand and address future waste flows, including though transparent reporting of tailings storage (178,185) and monitoring of unused extraction (e.g., topsoil, over- and interburden, waste rock; Figure 3b). This emphasizes concepts such as circular economy, (186) zero waste, (187) comprehensive extraction/comprehensive resource recovery, (188,189) in addition to remining, reprocessing, and rehabilitation. (184,190) All require site-scale and MB-consistent data on material flows and stocks to identify ESG risks, (191) facilitate sustainable sourcing, evaluate residual resources and market potentials, (192) and to allow for robust data integration. Still, data gaps on mine waste types, volumes, mineralogy, and composition continue to impede resource recovery from growing waste streams (“miningof flows) and historical waste deposits (193) (remining of legacy stocks). Similarly, Economy-Wide Material Flow Accounts (194) and indicators for Material Footprints, (195) Total Material Requirements, (172,173) Rock-to-Metal Ratios, (40) and project-specific resource efficiency (54,196) are all hindered by the poor availability or lack of relevant, robust, and accessible site-scale material stock and flow data.

4.3. Reference Systems for Consistent Reporting

MB-consistent material systems are useful for defining terms (e.g., stocks, flows), relationships, and indicators (e.g., circularity, efficiency, recovery rate). Mining has a long and diverse history across the world, and conflicting definitions abound. The term ore, for instance, can refer to either crude ore or usable ore. Crude ore is often used for run-of-mine or pithead output material that needs further processing to become a saleable product; useable ore may refer to either high-grade direct-shipping ore, or to finished (beneficiated) ore that has undergone further processing to turn it into a saleable product, such as concentrate or pellets. Without a MB-consistent system definition, there is a risk for calculation errors with potentially far-reaching consequences: the U.S. World iron ore production statistics between 2000 and 2014, for instance, overestimated the global production of useable ore by 10 to 32% (197) because Chinese production numbers were interpreted as useable ore, although they actually reported crude ore.
Such misunderstandings can be avoided by publishing material system diagrams or material flowcharts that define key terms and use explicit reference points to place reported mine production data into a systems context (Figure 3c). Indeed, the Norwegian Directorate of Mining (DMF) recommends material flowsheets as part of permitting procedures for mining activities. (198) Similarly, the Canadian Institute of Mining (CIM) notes that material flow diagrams are of “great assistance” for reconciling long-term models with plant production data, (199) and that mass balances of the major flows should be included for internal as well as public reporting of minerals projects. (199,200) These guidelines are a first step toward, but not sufficient for, systematic physical monitoring and accounting. They acknowledge that material system diagrams are helpful but do not make their use mandatory, and do not discuss how explicit system boundaries, reference points, and MB principles can facilitate transparent regular (e.g., annual) reporting and monitoring of mine production flows.

5. Geomodeling of Material Stocks and Flows

Click to copy section linkSection link copied!

5.1. Geomodels for Stock Accounting and Resource Classification

Geomodels are digital representations of the Earth’s subsurface (201) that are essential for addressing a wide range of societal issues. (202) They can be expressed though gridded volume elements (voxels) and attributes that characterize and quantify continuous physical phenomena such as geological formations, groundwater flows, and other subsurface features. (203) Geomodels have been extensively used in petroleum reservoir engineering since computers became available in the late 1960s. (88) Given our previous definition, geological stocks can be modeled with voxels and analyzed either as a whole or in parts to quantify the total material content together with its average composition and/or that of selected individual voxels, elements, or substances, for any specific point of time, with a certain level of confidence. This may, for instance, be used to calculate the elementary stock of pure copper in tonnes based on the copper grade distribution within a defined volume, or to quantify the total stock of sand and gravel in a region as the sum of sand-containing voxels, for a specific reference point of time. An unlimited number of voxel attributes can be defined to describe stock characteristics. Here, we illustrate geological stock accounting in Figure 4a, using only ore grade and uncertainty. The total extraction flow during the time interval from the initial reference state at t0 to a specified reference state at t1 corresponds to an observed stock reduction. Using prospective geomodeling, further stock reduction may be simulated for a future state t2, subject to probabilistic geomodeling, mine design, and operational planning. (204,205) The extracted material leaves the geological stock subsystem (geosphere) and enters the economy. Notably, natural processes such as erosion move material only within the geological subsystem and do not register as a transfer of material from the geosphere. We deliberately separate the geological stock accounting step (a) from the resource classification (b). Geological stock accounting is necessary to build a robust and MB-consistent full-coverage digital model of the physical reality. Resource classification is conceptualized as an optional and independent additional step that acts as a “filter” to selectively appraise specific stock segments that are thought to be of particular interest for further mineral project development. While we postulate that a MB-consistent geological stock model can always serve as a robust information source for subsequent resource classification and aggregation, earlier sections have outlined that the inverse is impossible: reserve numbers cannot be converted to geospatial models and thus have limited utility for mineral depletion, environmental, and sustainability monitoring and assessments.

Figure 4

Figure 4. Multidimensional geological stock accounting illustrated as a cube with 27 voxels at three reference points (t0, t1, t2). (a) Geological stock accounting monitors changes of the physical domain over time and shows historical extraction as a measured reduction of the total stock S by 0.5 voxels from 27 → 26.5 during t0 → t1 and anticipated further reduction 26.5 → 26 during t1 → t2, assuming stock scenario S1. Exploration activity changes only the attributes (e.g., ore grade) and associated uncertainty of the geological stock characterization (2 voxels from 0% → 25–50% confidence during t0 → t1, and from 25 to 50% →>75% during t1 → t2, assuming stock scenario S1). (b) Resource classification acts as a filter domain that selectively appraises parts of the geological stock to report reserves and resources, while omitting the rest of the geological stock including known but low grade (barren) voxels; Individual geological stock voxels may remain physically unchanged but may nevertheless be reclassified as time passes (1 resources to 1 reserves during t0 → t1) or vice versa (1 reserves to 1 resources during t1 → t2 assuming resource classification scenario S1,ii(t2)). (c) Uncertainty attribution is considered as two separate steps: step c[a] addresses solely the uncertainty of the physical attributes for stock quantification; step c[b] incorporates the additional uncertainty of socioeconomic assumptions of resource classification. Color hue (red, green, blue) represents three ore grade classes relative to average crustal abundance (depleted, average to low grade, enriched); color saturation (0–25, 25–50, 50–75, 75–100) shows the confidence in the results (unknown to complete knowledge). MB, mass-balance.

5.2. Model Uncertainty

Uncertainty is pertinent to the quantification, and visualization of 3D geodata. (206−208) Epistemic uncertainty arises from incomplete knowledge and can be reduced though new exploration, geological mapping, drilling, and sample analysis. (209,210) MB-consistent geological stock accounting presumes that the model’s system boundary (i.e., envelope of all 27 voxels in Figure 4) remains fixed though time. This enables spatially explicit uncertainty attribution for every voxel to capture the evolution of knowledge over time (confidence intervals in Figure 4c). Exploration activity is not considered to be a physical material flow and does not affect the system boundary or the total geological stock volume. Rather, new observations reduce the uncertainty of the attributed physical characteristics of voxels (i.e., increase the confidence in the stock characterization). Conversely, measurements during production can provide a “closed-loop” (133) feedback to validate or reconcile the model and increase the confidence for the remaining in situ material. Both integration of (ex-ante) exploration data and closed-loop (ex-post) analysis and feedback thus make the geological stock model for the remaining stock more accurate, useful, and valuable over time. Reported mineral reserve numbers, in contrast, are valid only at a specific point of time; they have additional uncertainty due to extrinsic socioeconomic assumptions that are difficult to constrain and predict. (211,212) This shortcoming underscores the strategic benefit of allocating research and funding for MB-consistent geological stock accounting and material flow monitoring: information on material systems describes observable real-world phenomena, helps understand physical changes such as resource depletion, and can contribute to building a continuously growing, versatile, robust, and increasingly accurate global geoscientific knowledge base.

6. Framework for Systems Integration

Click to copy section linkSection link copied!

While the credo of the extractive industry has long been “if we can’t grow it, we have to mine it”, (213,214) one may add ‘but we need robust material stock and flow models to know when, where and how to best get it’. The clean energy transition, for instance, requires batteries, solar cells, and wind turbines, but national policies seldom quantify how much lithium, indium and dysprosium will be needed to produce them, and where and how to sustainably source the required minerals, components, or products. (215) Answering these questions is challenging without reliable geospatial information and robust scenario models, which again require systematic mine-site-scale material stock (key issue one) and material flow data (issue two). We argue that a more physical-accounting-centric approach to industry-government data integration is necessary and mutually beneficial.

6.1. The Current Situation: Data Fragmentation and Limited Coordination (Figure 5a)

The mining industry collects detailed 3D geological as well as material flow data for site-specific project planning and operational management. However, these data sets are typically stored in proprietary company data “silos”, (216) and generally not part of public disclosure or formal government reporting (5a, information flow ‘A’). Often, only stock-market-listed mining and exploration companies have public disclosure routines in place. Even in these cases, published data are incompletely georeferenced and lack comparability and consistency both between entities in the same industry and across jurisdictions. (52,114) Moreover, details on intrinsic physical properties for systematic quantification and characterization of relevant material stocks and flows (e.g., mass and volume of waste rock, whole-rock composition, mineralogy, pH of tailings) are commonly missing. Notwithstanding, data providers such as S&P Global or Wood Mackenzie compile comprehensive datasets from the available company data; governments, on the other hand, rarely systematically harvest these data to supplement or validate their own information.

Figure 5

Figure 5. (a) Today’s information flows on nonrenewable mineral resources result in incomplete, fragmented, and inconsistent knowledge that is unsuitable for addressing systemic issues related to sustainable resource management. (b) The proposed monitoring of physical systems is based on an Open Government Data (OGD) framework that supports multidimensional geodata integration, mass-balance (MB) consistent geological stock accounting, and spatiotemporally explicit material systems governance. PPP: Public-Private Partnership; SLO: Social License to Operate; SDLO: Sustainable Development License to Operate; GSO: Geological Survey Organization; EO: Earth Observation; IoT: Internet of Things; BIM/CIM: Building/City Information Modeling; ML: Machine Learning; AI Artificial Intelligence; AR/VR: Augmented/Virtual Reality; G2B, G2G, B2B, B2G: Government-to-Business data sharing, etc.

Governments collect data by different means and manage enormous amounts of multiscale geospatial information. Data provided by geological survey organisations (GSOs), for instance, are sought-after for mineral exploration and project planning (“information flow” arrow ‘B’), and are key drivers for economic development. (217−220) In Western Australia, for instance, GSO data delivered an estimated 31-fold total return on investment. (219) However, the minerals and mining-related datasets are still mostly 2D, have coarse resolution, and mainly cover areas where publicly funded exploration campaigns have been conducted (“mapped areas” labeled ‘B’). National mineral inventories and mineral statistics combine such government data with mandatory company reporting, and occasionally also voluntary public disclosures and information from industry associations and commercial data providers. (41,221) Such data compilation and integration from sources that are poorly standardized, diverse, and can only be selectively sampled is time-consuming and costly. (42) Moreover, nongeospatial “external” data cannot readily be integrated into existing geomodels, but rather only indirectly linked to administrative records (e.g., mapped concession areas ‘A’) or approximate locations of production sites (e.g., ‘ID1’). This entails that national mineral inventories have known and unknown (hidden) spatiotemporal data gaps (e.g., irregularly updated reserves information; areas without geodata ‘C’, NoData or data N/A), irreconcilable data overlaps (e.g., contradictory government-industry geodata), and thematic inconsistencies (e.g., different survey methods, reporting dates, or spatiotemporal resolution). Poor metadata and lack of documentation on data collection, cleaning, and aggregation workflows further increases uncertainty. Altogether, today’s government-industry data integration produces inconsistent 2D maps with hidden gaps and unnecessary overlaps. This results in national spatiotemporal data coverages that are neither mutually exclusive (A∩B∩C:= 0), nor collectively exhaustive (total geological stock:= ΣA + ΣB + ΣC).

6.2. Facilitating Integrated Monitoring of Physical Systems (Figure 5b)

Interdisciplinary, cross-scale, digital Earth science platforms and information infrastructures are needed for environmental monitoring, Big Data analytics and cross-disciplinary Earth science. (222) Such platforms could form the basis for hybrid modeling approaches (140) that obey physical laws, while leveraging data-driven machine learning to better understand the Human–Earth system. (223) The OneGeology initiative, for instance, was established to harmonize global geoscience data, (224) while the EarthServer community wishes to allow users to “ask any question, any time, on any volume”. (225) MB-consistent geological stock accounting aligns with these visions, with Figure 5b showing its role as part of what we call the monitoring of physical systems. Advances in three key domains are particularly favorable for further developments:
(i)

Earth Observation (EO) and Geomodeling. Earth observation (EO) continuously expands our knowledge of an urbanizing planet (226−228) with exponentially increasing amounts of global-scale, multidimensional time-series data. Data acquisition technologies such as satellites and drones that interact the Internet of Things (IoT) facilitate both global mapping of mining land use, (229) and high-resolution mine-site-scale monitoring of production stockpiles and tailings storage facilities. (230,231) Such remote and in situ measurements are key to the extractive industry’s Mining 4.0 vision of smart and connected digital transformation. (232,233) It is estimated that 95% of EO data have never been accessed, partly due to challenges with managing its volume, variety, veracity, velocity, and the difficulty to extract value (the five Vs). (222) This indicates that there is a huge potential for Big Earth Data fusion, (222) geospatial artificial intelligence (GeoAI), (234) and cloud-based computing, which together can help improve data accessibility and support investigative approaches also for users with limited knowledge. (235,236) Simultaneously, free or relatively inexpensive access to open government servers (223) or proprietary platforms such as Google’s Earth Engine (237) and Microsoft’s Planetary Computer, (238) coupled with geodata modeling environments including the Open Data Cube (ODC) (236,239) and advances in data processing (240) and visualization technologies, (241−243) facilitate large-area high-resolution geomodeling. (244−246) Digital twins (247,248) may soon become standard tools for modeling the geological subsurface together with production facilities at mine-site (plant) scale, and may be part of larger models that integrate geological information with urban-scale building- and city information models (BIM/CIM) into regional GeoBIM systems. (249,250) Indeed, two decades after the former Vice President of the USA Al Gore outlined his vision of a “Digital Earth”, (251) the UN-led Coalition for Digital Environmental Sustainability (252) has recently declared the development of a “Planetary Digital Twin” a strategic priority for the sustainability transformation. Given the accelerating rate of innovation, we can imagine multidimensional (e.g., 6D = x,y,z + time + scale/resolution + uncertainty) (253,254) Digital Earth Science Platforms (254−256) that allow us to model historical, monitor ongoing, and simulate future geological and anthropogenic stock changes and material flows through space and time.

(ii)

Multidimensional Geoinformation Management. The value of data is maximized by reuse. (257) Standards and protocols such as the forthcoming ISO 19123-1 on multidimensional “coverages” (256) and the “Spatial Data on the Web Best Practices” (258) facilitate sharing and integration of georeferenced multidimensional data with their original granularity (triple-lined arrows). Standardization can be voluntary or mandatory: the European INSPIRE Directive on establishing an infrastructure for spatial information, (259) for instance, defines legally binding goals for geodata harmonization across European countries, while the International Union of Geological Sciences follows a voluntary “Big Science Initiative” standardization approach. (260,261) Development of a multidimensional “Open Government Data (OGD5.0) Framework for Physical Accounting” can draw on such efforts (cf. Figures 4, 5), while spatiotemporally explicit and MB-consistent reporting can support mutually exclusive and collectively exhaustive (119) data integration and the establishment of digital twins and “cyber-physical systems”. (262) Multistakeholder involvement and Public-Private Partnerships (PPPs) (263) can commit to “co-create” (264) the OGD5.0 for secure, consistent, and integrated Government-to-Government (G2G) and Government-to-Business (G2B) information exchange. (218,265) For governments, which serve as stewards for data and natural resources on behalf of society, a material systems approach can help close data gaps, reduce industry-government information asymmetries, and build public knowledge capital to support long-term sustainable development. The industry can benefit from access to previously unavailable information through the B2B data trade. This would allow partners to exploit the collective data volume though machine learning (ML), artificial intelligence (AI), (234,266,267) and digital laboratories with augmented and virtual reality (AR/VR), (268,269) and can inform mineral systems analysis (270) and exploration, (47,217) process innovation, (266) and supply chain management. (103) Similarly, transdisciplinary stakeholder collaborations (271) can contribute to joint problem solving.

(iii)

Policy Trends and Best Practice Examples. Knowledge sharing between government and industry, and across supply chains, is a key challenge for mineral resource governance. (156,272) The FAIR (273) and OGD (274) principles, OECD Recommendations, (275) and the Integrated Geospatial Information (276) and Global Statistical Geospatial Frameworks (277) provide high-level guidance for addressing “data and organizational silos”. (278) However, additional efforts are needed to ensure more effective data collection (e.g., to avoid data duplication and target key gaps), facilitate better data integration (e.g., georeferencing, MFA system diagrams/flowsheets with explicit data reference points), and promote data reuse (e.g., FAIR principles, PPPs). Various studies have found that voluntary reporting commitments by mining companies emphasized documentation of compliance over actual data disclosure, (159,279) failed to guarantee timely and granular project-by-project level reporting, (280−282) and had limited impact on mine-site level action. (148,279) In response, governments are called upon to use their legislative, regulatory, and policy tools to implement new frameworks that support systematic ESG reporting (cf. S2) (53,56,283) and granular data disclosure. (194,283−288) Governments could use a common physical systems approach to monitor and manage material systems, and to set predictable but yet flexible framework conditions (263) that allow the extractive industries to compete with their best capabilities for securing future mineral supply. By inviting/requiring mining and exploration companies to submit collected geodata into secure public databases, long-term public knowledge and value creation can be maximized. (160) MB-consistent monitoring can promote transparency (e.g., materials certification, traceability) that helps build public trust, contributes to fighting theft, corruption, and tax fraud (e.g., fraudulent transfer pricing) and can ensure that mining activities achieve their project-specific commercial interests, while fulfilling their broader societal obligations toward the SDGs. (94,146,147)

Altogether, we can maximize the robustness and value of reported material stock and flow data by ensuring that they are (a) georeferenced and MB-consistent over consecutive accounting steps, which enables geospatial analytics, bottom-up raw material analysis, and scenario development with MFA; (289) (b) collectively exhaustive regarding spatial coverage and stakeholders including SMEs, (283) which facilitates more representative aggregation across project, enterprise, and jurisdictional levels; and (c) open (FAIR), which supports SLO and SDLO negotiations and digital innovation. Reported site-scale data can be used in sustainability assessments (55) to inform investors about project risks and opportunities, (191,290,291) and to identify trade-offs and synergies across different projects. Overall, MB-consistent data on physical stocks and flows can help to understand decision path dependency (292) (e.g., historical mine production data allow approximation of accumulated mine waste stocks), and help set science-based targets (293) for mineral supply within the “sustainability solution space” (294) or “safe operating space”. (295) Future efforts toward integration can draw on experiences from following three initiatives:
(1)

the European Open Data Directive, which requires from its member States that “public sector bodies and public undertakings shall make their documents available [...] in formats that are open, machine-readable, accessible, findable, and re-usable [...] at the best level of precision and granularity”. (296) Six thematic categories of high-value data sets are highlighted: geospatial, Earth observation and environment, meteorological, statistical, company information and ownership, and mobility. (297) Moreover, the European Commission announced in its European strategy for data (167) that it will explore a regulatory framework to govern the public sector’s reuse of privately held data of public interest, and will launch a strategic “Destination Earth” initiative to develop a very high precision digital model of the Earth.

(2)

the Dutch law on subsurface information, which establishes the Dutch National Key Registry of the Subsurface (BRO) as a central data repository to collect, store, and manage all publicly funded subsurface data. (298) A crucial aspect of the BRO is that it integrates confidential personal and industry information related to licensing and use, and that its stepwise implementation is intended to ultimately include data on all subsurface construction activities including measurements related to exploration, extraction, and storage of minerals and geothermal heat.

(3)

the Norwegian National Data Repository for petroleum exploration and production data (Diskos), which is a public-private partnership established in 1992 as a joint venture between the Norwegian government and the oil companies on the Norwegian Continental Shelf. (299) Diskos ensures secure, efficient, and standardized data management on behalf of its members, with shared overheads and added benefits. The system holds all the data of all licensees including detailed project metrics (i.e., all geological data, time-based forecasts, investment and operating cost schedules, production, emissions, cash flows etc.). (300) This reduces individual data handling costs as company repositories are no longer required, allows business-to-business (B2B) trade of entitlements to confidential data, and facilitates business-to-government (B2G) reporting. Although company data remain confidential, they are accessible for authorized government processes. This decreases the reporting burden, expedites processing, and reduces administrative costs because the government already has access to the information it requires for taxation and resource governance. Diskos also incorporates the information that financial regulators typically require for stock market disclosure, which instills confidence, promotes transparency, and ensures consistency between industry reporting and government inventories. By leveraging the “digital economy” (268) for exploration and minerals development, (301) common repositories can stimulate data reuse, value maximation in mining, and more transparent taxation. Finally, Diskos contributes significantly to expanding Norway’s collective knowledge capital as new data on licensed and unlicensed areas are continuously integrated. This information will eventually be made public as the needs for confidentiality cease or when licenses expire or are relinquished.

All three initiatives make some level of stakeholder coordination and reporting mandatory. They maximize collective value generation from both a business and societal perspective, clarify roles and responsibilities, and advocate data sharing and reuse.

7. Implementing Physical Monitoring

Click to copy section linkSection link copied!

Transdisciplinary (271) research and coordinated efforts can help to ensure that (1) reported data on stocks and stock changes are explicitly georeferenced in space and time, and that documentation includes the original granular data on volume, mass, composition, and relevant intrinsic material properties; (2) reporting mandates cover all relevant stakeholders (including both the formal sector and estimates on artisanal mining) and all relevant material stocks and flows for calculating mass balances across processes; and that (3) reporting workflows use common data standards, MFA system diagrams with explicit reference points and terminology, and multidimensional geodata models that maintain MB-consistency across processing stages through space and time.
Given the increasing momentum toward sustainability reporting, the global appetite for transformative change, and the emergence of Big Earth Data technologies, MB-consistent physical accounting is becoming feasible. Better industry-government coordination and data integration are of mutual benefit, supporting the statement that “without a common framework to organize findings, isolated knowledge does not cumulate.” (302) Governments and industry typically share the risks and rewards of mineral extraction in the monetary economy (e.g., operating surplus, taxes), physical economy (mining waste, material supply), and digital economy (data waste, data reuse). Our definitions and framework for MB-consistent geological stock accounting are designed to guide efforts toward an integration of terminology and data, and sustainable management of human-natural physical systems. For implementation, we suggest the following next steps:
(i)

Review and Adapt Policy Frameworks and Legislation for Physical Accounting. Intergovernmental bodies and governments can review current mineral resource, mine production, and ESG reporting to identify their key gaps and limitations with focus on geodata integration and material stock and flow analysis. To clarify information under their stewardship, they may use their platforms to showcase typical applications and limitations of current data and outline key benefits of mass-balance-consistent accounting. Next steps may include defining roles and responsibilities across stakeholders to formalize data sharing and standardization; assigning explicit mandates to address data fragmentation and promote cross-institutional integration; enacting new policies for systematic monitoring of the physical human-natural system; and developing data-driven scenario models to inform decision-making. International partners may include the UN Statistics Division (UNSD), International Resource Panel (IRP), UNECE Expert Group on Resource Management (EGRM), UN Initiative on Global Geospatial Information Management (UN-GGIM), and UN-led Coalition for Digital Environmental Sustainability (CODES). On a country-level, relevant bodies include GSOs, mining directorates, mapping and planning authorities, environment agencies, and statistical offices, as well as professional associations, NGOs, academia, and industry.

(ii)

Develop Infrastructures for Multidimensional Geoinformation. Through transdisciplinary government mandates and partnerships, appointed agencies and relevant stakeholders can review how technical data standards, reporting workflows and accounting systems (e.g., ISO, (256) INSPIRE, (259) UNFC, (116) SEEA, (145) UNEP (194)) may be adapted to facilitate systematic and granular disclosure in-line with OGD, FAIR, and SDLO principles, and how to automate consistent integration for multidimensional minerals-related material stock and flow information. A first step toward promoting research and development of technical infrastructures could make it mandatory for companies and data providers to map their current reporting of materials-related stock and flow data using MFA system diagrams (flowsheets), standard terminology, and explicit reference points. Funding bodies and relevant stakeholders may consider pilot projects to evaluate this idea, define and map relevant terms, and initiate the development of common data models for physical monitoring, multiscale modeling, and MB-consistent accounting.

8. Conclusions

Click to copy section linkSection link copied!

Finding new ways to understand stock-service-benefit relations and make human interactions with the natural environment more sustainable is a key challenge for Earth System Science. (140,141,303,304) The proposed definition and conceptual approach combines multidimensional geomodeling with MFA to facilitate mass-balance-consistent geological stock accounting as part of efforts to secure a sustainable mineral supply within biophysical planetary boundaries. (66,169,305,306) It marks a paradigm shift for mineral resource governance by (1) enabling integrated monitoring of stock changes and impacts over time; (2) creating a robust basis for on-the-fly calculation of geological and waste stocks, mineral reserves, ESG risks, and asset portfolios; (3) pooling of government-industry information for mineral systems analysis, predictive mapping, and spatial planning to “safeguard” geological deposits for future mining; and by (4) using MFA to inform strategies for mineral supply, circular economy, and on how to balance sustainability trade-offs. While legal and proprietary issues, coordination, and the need to change legacy data systems pose a sizable challenge, investments into integrated physical monitoring and modeling are likely to yield substantial long-term benefits. Data fragmentation, ownership rights to commercial-in-confidence information, as well as diverse definitions, reporting schemes, and institutional responsibilities call for more research on how to standardize terminology, streamline reporting requirements, and collaborate to make mineral information more available and useful for resource management. We expect that industry and professional associations, regulators, and relevant government and international agencies can start with small first steps to promote standardized and granular reporting of site-scale geological stock and material flow data without imposing significant additional burdens on operators, as much of the relevant data are already routinely collected. Further research could help to better understand how the growing momentum of Earth systems monitoring, digital twins, and multistakeholder resource governance dialogue can be combined with FAIR data policies and sustainability efforts to accelerate the buildup of geoscientific knowledge of the “knowns” (showing, e.g., that Europe is not necessarily resource-poor), to better inform efforts on “what needs to be known” (e.g., where to target exploration and direct innovation) for the global public good.
Resource realists play a vital role in research on methods and models to monitor and anticipate physical human-nature interactions, can support initiatives that build the common global Earth System knowledge base, and can help communicate the interconnected challenges of mineral resource depletion and sustainable supply to explore new pathways for satisfying our societal needs within planetary boundaries.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.3c03088.

  • Materials and methods section describing literature selection and bibliometric analysis; timeline of historical events with reference list; notes on mass balance consistency in financial reporting and the UN System of Environmental-Economic Accounting (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Mark U. Simoni - Geological Survey of Norway, Leiv Eirikssons vei 39, 7040 Trondheim, NorwayNorwegian University of Science and Technology, Industrial Ecology Programme, Høgskoleringen 5, NO-7034 Trondheim, NorwayOrcidhttps://orcid.org/0000-0002-9253-9569 Email: [email protected]
  • Authors
    • Johannes A. Drielsma - Drielsma Resources Europe, 2585 GT The Hague, Netherlands
    • Magnus Ericsson - Luleå University of Technology, Department of Business Administration, Technology and Social Sciences, 97187 Luleå, SwedenOrcidhttps://orcid.org/0000-0002-6395-1001
    • Andrew G. Gunn - British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom
    • Sigurd Heiberg - Petronavit AS, C/o Heiberg, Stokkahagen 23, 4022 Stavanger, Norway
    • Tom A. Heldal - Geological Survey of Norway, Leiv Eirikssons vei 39, 7040 Trondheim, Norway
    • Nedal T. Nassar - U.S. Geological Survey, National Mineral Information Center, 12201 Sunrise Valley Dr., MS 988, Reston, Virginia 20192, United StatesOrcidhttps://orcid.org/0000-0001-8758-9732
    • Evi Petavratzi - British Geological Survey, Keyworth, Nottingham NG12 5GG, United Kingdom
    • Daniel B. Müller - Norwegian University of Science and Technology, Industrial Ecology Programme, Høgskoleringen 5, NO-7034 Trondheim, Norway
  • Author Contributions

    M.U.S. conceived, designed, and formalized the research and writing. D.B.M. supervised the work. All authors contributed to authoring the article and provided critical input that helped shape the research, analysis, and paper.

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

We appreciate the insightful comments and valuable feedback provided by our three anonymous reviewers, which greatly contributed to refining this manuscript. We also acknowledge the diligent efforts of the editor, Matthew Eckelman, whose guidance supported the publishing process. M.U.S. thanks the Norwegian University of Science and Technology for funding this research. We gratefully acknowledge support for inputs though the MinFuture project under the European Horizon 2020 Grant Agreement No. 730330. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

Click to copy section linkSection link copied!

This article references 306 other publications.

  1. 1
    Smith, A. The Wealth of Nations; J. M. Dent & Sons LTD: London, 1776; Vol. 1.
  2. 2
    Solow, R. M. Is the End of the World at Hand?. Challenge 1973, 16 (1), 3950,  DOI: 10.1080/05775132.1973.11469961
  3. 3
    Stiglitz, J. E. Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths. Symposium on the economics of exhaustible resources 1974, 41, 123137,  DOI: 10.2307/2296377
  4. 4
    Tilton, J. E.; Crowson, P. C. F.; DeYoung, J. H.; Eggert, R. G.; Ericsson, M.; Guzmán, J. I.; Humphreys, D.; Lagos, G.; Maxwell, P.; Radetzki, M.; Singer, D. A.; Wellmer, F.-W. Public policy and future mineral supplies. Resour. Policy 2018, 57, 5560,  DOI: 10.1016/j.resourpol.2018.01.006
  5. 5
    Castillo, E.; Eggert, R. Reconciling Diverging Views on Mineral Depletion: A Modified Cumulative Availability Curve Applied to Copper Resources. Resour. Conserv. Recycl. 2020, 161, 104896,  DOI: 10.1016/j.resconrec.2020.104896
  6. 6
    Beckerman, W. Economists, Scientists, and Environmental Catastrophe. Oxford Econ. Pap. 1972, 24 (3), 32744,  DOI: 10.1093/oxfordjournals.oep.a041225
  7. 7
    Adelman, M. A. Mineral Depletion, with Special Reference to Petroleum. Rev. Econ. Statist. 1990, 72 (1), 110,  DOI: 10.2307/2109733
  8. 8
    Krausmann, F.; Lauk, C.; Haas, W.; Wiedenhofer, D. From resource extraction to outflows of wastes and emissions: The socioeconomic metabolism of the global economy, 1900–2015. Global Environ. Change 2018, 52, 131140,  DOI: 10.1016/j.gloenvcha.2018.07.003
  9. 9
    Stuermer, M. 150 years of boom and bust: what drives mineral commodity prices?. Macroecon. Dynam. 2018, 22 (03), 702717,  DOI: 10.1017/S136510051600050X
  10. 10
    Stuermer, M. Non-renewable resource extraction over the long term: empirical evidence from global copper production. Miner. Econ. 2022, 35 (3), 617625,  DOI: 10.1007/s13563-022-00352-0
  11. 11
    Wellmer, F.-W. What we have learned from the past and how we should look forward. Miner. Econ. 2022, 35 (3), 765795,  DOI: 10.1007/s13563-021-00296-x
  12. 12
    Pooley, G.; Tupy, M. Simon Abundance Index: A New Way to Measure Availability of Resources; Policy Analysis Number 857; Cato Institute, 2018.
  13. 13
    Malthus, T. R. An Essay on the Principle of Population, As It Affects the Future Improvement of Society; J. Johnson in St Paul’s Church-yard: London, 1798; Vol. 1.
  14. 14
    Jevons, W. S. The Coal Question: An Inquiry Concerning the Progress of the Nation and the Probable Exhaustion of Our Coal-Mines; Macmillan and Co.: London, 1865.
  15. 15
    Hubbert, M. K. Nuclear energy and the fossil fuels. In Drilling and Production Practice; American Petroleum Institute: San Antonio, TX, 1956; p 40.
  16. 16
    Meadows, D. H.; Meadows, D. L.; Randers, J.; Behrens, I. I. I.; W, W. The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind; Universe Books: New York, 1972.
  17. 17
    Georgescu-Roegen, N. Energy and economic myths. Southern Econ. J. 1975, 41, 347381,  DOI: 10.2307/1056148
  18. 18
    Daly, H. E. Reply to Solow/Stiglitz. Ecological Economics 1997, 22 (3), 271273,  DOI: 10.1016/S0921-8009(97)00086-4
  19. 19
    Lawn, P. On the Ehrlich-Simon bet: Both were unskilled and Simon was lucky. Ecological Economics 2010, 69 (11), 20452046,  DOI: 10.1016/j.ecolecon.2010.07.009
  20. 20
    Wellmer, F.-W. Geology and Mining: A Symbiotic Cooperation?!. Mining 2022, 2 (2), 402424,  DOI: 10.3390/mining2020021
  21. 21
    Global Material Resources Outlook to 2060 - Economic Drivers and Environmental Consequences In Organisation for Economic Co-operation and Development Paris; OECD, 2019; p 212.
  22. 22
    Global Resources Outlook 2019: Natural Resources for the Future We Want; United Nations Environment Programme, International Resource Panel: Paris, 2019; DTI/2226/NA.
  23. 23
    Northey, S.; Mohr, S.; Mudd, G. M.; Weng, Z.; Giurco, D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour. Conserv. Recycl. 2014, 83, 190201,  DOI: 10.1016/j.resconrec.2013.10.005
  24. 24
    Calvo, G.; Mudd, G.; Valero, A.; Valero, A. Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?. Resources 2016, 5 (4), 36,  DOI: 10.3390/resources5040036
  25. 25
    Conde, M. Resistance to Mining. A Review. Ecological Economics 2017, 132, 8090,  DOI: 10.1016/j.ecolecon.2016.08.025
  26. 26
    Andrews, T.; Gamu, J.; Billon, P. L.; Oh, C. H.; Reyes, D.; Shin, J. Role of Host Governments in Enabling or Preventing Conflict Associated with Mining, Full-length version; United Nations Development Programme: New York, 2018.
  27. 27
    The IPBES Assessment Report on Land Degradation and Restoration; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES): Bonn, Germany, 2018.  DOI: 10.5281/zenodo.3237392 .
  28. 28
    Rötzer, N.; Schmidt, M. Historical, Current, and Future Energy Demand from Global Copper Production and Its Impact on Climate Change. Resources 2020, 9 (4), 44,  DOI: 10.3390/resources9040044
  29. 29
    Luckeneder, S.; Giljum, S.; Schaffartzik, A.; Maus, V.; Tost, M. Surge in global metal mining threatens vulnerable ecosystems. Global Environ. Change 2021, 69, 102303,  DOI: 10.1016/j.gloenvcha.2021.102303
  30. 30
    Turner, G. Is Global Collapse Imminent? An Updated Comparison of the Limits to Growth with Historical Data; Melbourne Sustainable Society Institute, The University of Melbourne: 2014.
  31. 31
    Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthropocene Review 2015, 2 (1), 8198,  DOI: 10.1177/2053019614564785
  32. 32
    Northey, S. A.; Mudd, G. M.; Werner, T. T.; Jowitt, S. M.; Haque, N.; Yellishetty, M.; Weng, Z. The exposure of global base metal resources to water criticality, scarcity and climate change. Global Environ. Change 2017, 44, 109124,  DOI: 10.1016/j.gloenvcha.2017.04.004
  33. 33
    Savinova, E.; Evans, C.; Lebre, E.; Stringer, M.; Azadi, M.; Valenta, R.K. Will global cobalt supply meet demand? The geological, mineral processing, production and geographic risk profile of cobalt. Resour. Conserv. Recycl. 2023, 190, 106855,  DOI: 10.1016/j.resconrec.2022.106855
  34. 34
    Lusty, P. A. J.; Gunn, A. G. Challenges to global mineral resource security and options for future supply. Geological Society, London, Special Publications 2015, 393 (1), 265276,  DOI: 10.1144/SP393.13
  35. 35
    Calvo, G.; Valero, A.; Valero, A. Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources. Resour. Conserv. Recycl. 2017, 125, 208217,  DOI: 10.1016/j.resconrec.2017.06.009
  36. 36
    Turcheniuk, K.; Bondarev, D.; Singhal, V.; Yushin, G. Ten years left to redesign lithium-ion batteries. Nature 2018, 559 (7715), 467470,  DOI: 10.1038/d41586-018-05752-3
  37. 37
    Schmidt, M. Scarcity and Environmental Impact of Mineral Resources─An Old and Never-Ending Discussion. Resources 2019, 8 (1), 2,  DOI: 10.3390/resources8010002
  38. 38
    Henckens, T. Scarce mineral resources: Extraction, consumption and limits of sustainability. Resour. Conserv. Recycl. 2021, 169, 105511,  DOI: 10.1016/j.resconrec.2021.105511
  39. 39
    Sverdrup, H. U.; Olafsdottir, A. H.; Ragnarsdottir, K. V. Development of a Biophysical Economics Module for the Global Integrated Assessment Model WORLD7. In Feedback Economics: Economic Modeling with System Dynamics; Cavana, R. Y., Dangerfield, B. C., Pavlov, O. V., Radzicki, M. J., Wheat, I. D., Eds.; Springer International Publishing: Cham, 2021; pp 247283.
  40. 40
    Nassar, N. T.; Lederer, G. W.; Brainard, J. L.; Padilla, A. J.; Lessard, J. D. Rock-to-Metal Ratio: A Foundational Metric for Understanding Mine Wastes. Environ. Sci. Technol. 2022, 56 (10), 67106721,  DOI: 10.1021/acs.est.1c07875
  41. 41
    Bide, T.; Brown, T. J.; Gunn, A. G.; Deady, E. Development of decision-making tools to create a harmonised UK national mineral resource inventory using the United Nations Framework Classification. Resources Polym. 2022, 76, 102558,  DOI: 10.1016/j.resourpol.2022.102558
  42. 42
    Jorgensen, L. F.; Wittenberg, A.; Deady, E.; Kumelj, Š.; Tulstrup, J. European mineral intelligence - collecting, harmonizing and sharing data on European raw materials. Geological Society, London, Special Publications 2023, 526 (1), 5167,  DOI: 10.1144/SP526-2022-179
  43. 43
    Graedel, T. E.; Barr, R.; Cordier, D.; Enriquez, M.; Hagelüken, C.; Hammond, N. Q.; Kesler, S.; Mudd, G.; Nassar, N.; Peacey, J.; Reck, B. K.; Robb, L.; Skinner, B. J.; Turnbull, I.; Santos, R. V.; Wall, F.; Wittmer, D. Estimating Long-Run Geological Stocks of Metals; Working Group on Geological Stocks of Metals, UNEP International Panel on Sustainable Resource Management: Paris, 2011.
  44. 44
    Wellmer, F. W.; Scholz, R. W. Peak minerals: What can we learn from the history of mineral economics and the cases of gold and phosphorus?. Miner. Econ. 2017, 30 (2), 7393,  DOI: 10.1007/s13563-016-0094-3
  45. 45
    Weber, L.; Reichl, C. Mineral statistics─useful tool or needless exercise?. Mineral economics: raw materials report 2022, 35 (3–4), 569586,  DOI: 10.1007/s13563-022-00314-6
  46. 46
    West, J.; Lieber, M.; Lutter, S.; Schandl, H. Proposal for a new compilation system for metal ores in economy wide material flow accounting. J. Ind. Ecol. 2020, 24 (6), 12201233,  DOI: 10.1111/jiec.13015
  47. 47
    Northey, S. A.; Klose, S.; Pauliuk, S.; Yellishetty, M.; Giurco, D. Primary Exploration, Mining and Metal Supply Scenario (PEMMSS) model: Towards a stochastic understanding of the mineral discovery, mine development and co-product recovery requirements to meet demand in a low-carbon future. Resources, Conservation & Recycling Advances 2023, 17, 200137,  DOI: 10.1016/j.rcradv.2023.200137
  48. 48
    Singer, D. A. Comparison of expert estimates of number of undiscovered mineral deposits with mineral deposit densities. Ore Geol. Rev. 2018, 99, 235243,  DOI: 10.1016/j.oregeorev.2018.06.019
  49. 49
    Mudd, G. M.; Jowitt, S. M. The New Century for Nickel Resources, Reserves, and Mining: Reassessing the Sustainability of the Devil’s Metal. Econ. Geol. 2022, 117 (8), 19611983,  DOI: 10.5382/econgeo.4950
  50. 50
    Mudd, G. M.; Jowitt, S. M.; Werner, T. T. The world’s by-product and critical metal resources part I: Uncertainties, current reporting practices, implications and grounds for optimizm. Ore Geol. Rev. 2017, 86, 924938,  DOI: 10.1016/j.oregeorev.2016.05.001
  51. 51
    Northey, S. A.; Mudd, G. M.; Werner, T. T. Unresolved Complexity in Assessments of Mineral Resource Depletion and Availability. Nat. Resour. Res. 2018, 27 (2), 241255,  DOI: 10.1007/s11053-017-9352-5
  52. 52
    Simoni, M. U.; Aslaksen Aasly, K.; Eilu, P.; Schjødt, F. Mintell4 EU Deliverable D4.1. Case Study Review with Guidance and Examples for Applying the UNFC to European Mineral Resources; Geological Survey of Norway (NGU): Trondheim, Norway, 2021.
  53. 53
    Sustainability Reporting in the Mining Sector - Current Status and Future Trends; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2020.
  54. 54
    Lebre, E.; Owen, J. R.; Kemp, D.; Valenta, R. K. Complex orebodies and future global metal supply: An introduction. Resour. Policy 2022, 77, 102696,  DOI: 10.1016/j.resourpol.2022.102696
  55. 55
    Sala, S.; Ciuffo, B.; Nijkamp, P. A systemic framework for sustainability assessment. Ecological Economics 2015, 119, 314325,  DOI: 10.1016/j.ecolecon.2015.09.015
  56. 56
    Gorman, M. R.; Dzombak, D. A. A review of sustainable mining and resource management: Transitioning from the life cycle of the mine to the life cycle of the mineral. Resour. Conserv. Recycl. 2018, 137, 281291,  DOI: 10.1016/j.resconrec.2018.06.001
  57. 57
    Schandl, H.; Müller, D. B.; Moriguchi, Y. Socioeconomic Metabolism Takes the Stage in the International Environmental Policy Debate: A Special Issue to Review Research Progress and Policy Impacts. J. Ind. Ecol. 2015, 19 (5), 689694,  DOI: 10.1111/jiec.12357
  58. 58
    Turner, G. M.; Poldy, F. Let’s Get Physical: Creating a Stocks and Flows View of the Australian Economy. In MODSIM 2001, Canberra, Australia, 2001; pp 16371642.
  59. 59
    Forrester, J. W. Industrial Dynamics. A major breakthrough for decision makers. Harvard Bus. Rev. 1958, 36 (4), 3766
  60. 60
    Fischer-Kowalski, M. Society’s Metabolism - The Intellectual History of Materials Flow Analysis, Part I, 1860–1970. J. Ind. Ecol. 1998, 2 (1), 6178,  DOI: 10.1162/jiec.1998.2.1.61
  61. 61
    Ayres, R. U. Industrial metabolism. In Technology and Environment, Ausubel, J. H., Sladovich, H. E., Eds. The National Academies Press: Washington, D..C., 1989; Vol. 1989, pp 2349.
  62. 62
    Frosch, R. A.; Gallopoulos, N. E. Strategies for manufacturing. Sci. Am. 1989, 261 (3), 144152,  DOI: 10.1038/scientificamerican0989-144
  63. 63
    Graedel, T. E.; Allenby, B. R.; Telephone, A.; Company, T. Industrial Ecology; Prentice Hall, 1995.
  64. 64
    Sterman, J. D. Business Dynamics; McGraw-Hill, 2000.
  65. 65
    Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 1132,  DOI: 10.1016/j.jclepro.2015.09.007
  66. 66
    Haberl, H.; Wiedenhofer, D.; Pauliuk, S.; Krausmann, F.; Müller, D. B.; Fischer-Kowalski, M. Contributions of sociometabolic research to sustainability science. Nat. Sustainability 2019, 2 (3), 173184,  DOI: 10.1038/s41893-019-0225-2
  67. 67
    Ayres, R. U.; Kneese, A. V. Production, consumption, and externalities. Am. Econ. Rev. 1969, 59 (3), 282297
  68. 68
    Baccini, P.; Brunner, P. H. Metabolism of the Anthroposphere; Springer: Berlin; New York, 1991.
  69. 69
    Brunner, P. H.; Rechberger, H. Practical Handbook of Material Flow Analysis; CRC Press/LewisPublishers: Boca Raton, FL, 2004.
  70. 70
    Brunner, P. H.; Rechberger, H. Practical Handbook of Material Flow Analysis: For Environmental, Resource, and Waste Engineers, 2nd ed.; CRC Press: Boca Raton, 2017.
  71. 71
    Cullen, J. M.; Cooper, D. R. Material Flows and Efficiency. Annu. Rev. Mater. Res. 2022, 52 (1), 525559,  DOI: 10.1146/annurev-matsci-070218-125903
  72. 72
    de Lavoisier, A.-L. Traité Élémentaire de Chimie; Chez Cuchet, libraire: Paris, 1789; Vol. 1.
  73. 73
    Martins, R. A priori components of science: Lavoisier and the law of conservation of mass in chemical reactions. In Studies in History and Philosophy of Science II; Quamcumque Editum, 2021; pp 571.
  74. 74
    Hartig, G. L. Anweisung zur Taxation der Forste, oder zur Bestimmung des Holzertrags der Wälder; Heyer: Giessen, 1795.
  75. 75
    Kurth, H.; Gerold, D.; Ulbricht, R. Forsteinrichtung: Nachhaltige Regelung des Waldes. DLV-Verlag: Berlin, 1994.
  76. 76
    Müller, D. B.; Bader, H.-P.; Baccini, P. Long-term Coordination of Timber Production and Consumption Using a Dynamic Material and Energy Flow Analysis. J. Ind. Ecol. 2004, 8 (3), 6588,  DOI: 10.1162/1088198042442342
  77. 77
    Anonymous. Mass-Balance Terms. J. Glaciol. 1969, 8 (52), 37. DOI: 10.3189/S0022143000020736
  78. 78
    Cogley, J. G. Mass-balance terms revisited. J. Glaciol. 2010, 56 (200), 9971001,  DOI: 10.3189/002214311796406040
  79. 79
    Mellor, M. Mass balance studies in Antarctica. J. Glaciol. 1959, 3 (26), 522533,  DOI: 10.3189/S0022143000017275
  80. 80
    Korzoun, V. I. World Water Balance and Water Resources of the Earth; USSR Committee for the International Hydrological Decade: Paris, 1978.
  81. 81
    Aeschbach-Hertig, W.; Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 2012, 5 (12), 853861,  DOI: 10.1038/ngeo1617
  82. 82
    Peters-Lidard, C. D.; Hossain, F.; Leung, L. R.; McDowell, N.; Rodell, M.; Tapiador, F. J.; Turk, F. J.; Wood, A. 100 Years of Progress in Hydrology. Meteorological Monographs 2018, 59, 25.125.51,  DOI: 10.1175/AMSMONOGRAPHS-D-18-0019.1
  83. 83
    Le Quéré, C.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Peters, G. P.; Manning, A. C.; Boden, T. A.; Tans, P. P.; Houghton, R. A.; Keeling, R. F.; Alin, S.; Andrews, O. D.; Anthoni, P.; Barbero, L.; Bopp, L.; Chevallier, F.; Chini, L. P.; Ciais, P.; Currie, K.; Delire, C.; Doney, S. C.; Friedlingstein, P.; Gkritzalis, T.; Harris, I.; Hauck, J.; Haverd, V.; Hoppema, M.; Klein Goldewijk, K.; Jain, A. K.; Kato, E.; Körtzinger, A.; Landschützer, P.; Lefèvre, N.; Lenton, A.; Lienert, S.; Lombardozzi, D.; Melton, J. R.; Metzl, N.; Millero, F.; Monteiro, P. M. S.; Munro, D. R.; Nabel, J. E. M. S.; Nakaoka, S.; O’Brien, K.; Olsen, A.; Omar, A. M.; Ono, T.; Pierrot, D.; Poulter, B.; Rödenbeck, C.; Salisbury, J.; Schuster, U.; Schwinger, J.; Séférian, R.; Skjelvan, I.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tian, H.; Tilbrook, B.; van der Laan-Luijkx, I. T.; van der Werf, G. R.; Viovy, N.; Walker, A. P.; Wiltshire, A. J.; Zaehle, S. Global Carbon Budget 2016. Earth Syst. Sci. Data 2016, 8 (2), 605649,  DOI: 10.5194/essd-8-605-2016
  84. 84
    Wiese, D. N.; Bienstock, B.; Blackwood, C.; Chrone, J.; Loomis, B. D.; Sauber, J.; Rodell, M.; Baize, R.; Bearden, D.; Case, K.; Horner, S.; Luthcke, S.; Reager, J. T.; Srinivasan, M.; Tsaoussi, L.; Webb, F.; Whitehurst, A.; Zlotnicki, V. The Mass Change Designated Observable Study: Overview and Results. Earth Space Sci. 2022, 9 (8), e2022EA002311  DOI: 10.1029/2022EA002311
  85. 85
    Lyell, C. Principles of Geology: Being an Inquiry how Far the Former Changes of the Earth’s Surface are Referable to Causes Now in Operation; John Murray: London, 1830; Vol. 1.
  86. 86
    Rudwick, M. J. S. The Strategy of Lyell’s Principles of Geology. Isis 1970, 61 (1), 533,  DOI: 10.1086/350576
  87. 87
    Syvitski, J.; Ángel, J. R.; Saito, Y.; Overeem, I.; Vörösmarty, C. J.; Wang, H.; Olago, D. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 2022, 3 (3), 179196,  DOI: 10.1038/s43017-021-00253-w
  88. 88
    Odeh, A. S. Reservoir Simulation···What Is It. J. Pet. Technol. 1969, 21 (11), 13831388,  DOI: 10.2118/2790-PA
  89. 89
    Magoon, L. B.; Dow, W. G. The Petroleum System─From Source to Trap. AAPG Memoir 1994, 60, 324,  DOI: 10.1306/M60585C1
  90. 90
    Wiegel, R. L. Advances in mineral processing material balances. Can. Metall. Q. 1972, 11 (2), 413424,  DOI: 10.1179/cmq.1972.11.2.413
  91. 91
    Hodouin, D. Methods for automatic control, observation, and optimization in mineral processing plants. Journal of Process Control 2011, 21 (2), 211225,  DOI: 10.1016/j.jprocont.2010.10.016
  92. 92
    Wolman, A. The Metabolism of Cities. Sci. Am. 1965, 213 (3), 178193,  DOI: 10.1038/scientificamerican0965-178
  93. 93
    Kennedy, C.; Pincetl, S.; Bunje, P. The study of urban metabolism and its applications to urban planning and design. Environ. Pollut. 2011, 159 (8), 19651973,  DOI: 10.1016/j.envpol.2010.10.022
  94. 94
    Müller, D. B.; Billy, R.; Simoni, M. U.; Petavratzi, E.; Liu, G.; Rechberger, H.; Lundhaug, M. C.; Cullen, J. M. Maps of the physical economy to inform sustainability strategies. In Handbook of Recycling, 2nd ed.; Meskers, C., Worrell, E., Reuter, M. A., Eds.; Elsevier: Waltham, USA, 2023; pp 118.
  95. 95
    Gonzalez Hernandez, A.; Lupton, R. C.; Williams, C.; Cullen, J. M. Control data, Sankey diagrams, and exergy: Assessing the resource efficiency of industrial plants. Appl. Energy 2018, 218, 232245,  DOI: 10.1016/j.apenergy.2018.02.181
  96. 96
    Lupton, R. C.; Allwood, J. M. Hybrid Sankey diagrams: Visual analysis of multidimensional data for understanding resource use. Resour. Conserv. Recycl. 2017, 124, 141151,  DOI: 10.1016/j.resconrec.2017.05.002
  97. 97
    Billy, R. G.; Monnier, L.; Nybakke, E.; Isaksen, M.; Müller, D. B. Systemic Approaches for Emission Reduction in Industrial Plants Based on Physical Accounting: Example for an Aluminum Smelter. Environ. Sci. Technol. 2022, 56 (3), 19731982,  DOI: 10.1021/acs.est.1c05681
  98. 98
    IAI. The Global Aluminium Cycle - Aluminium Stocks and Flows Visualization, 2023. https://alucycle.international-aluminium.org/. (accessed 14.08.2023).
  99. 99
    Torres De Matos, C.; Wittmer, D.; Mathieux, F.; Pennington, D. Revision of the Material System Analyses Specifications; JRC118827; European Commission: Luxembourg, 2020. DOI: 10.2760/374178 .
  100. 100
    Padilla, A. J.; Nassar, N. T. Dynamic material flow analysis of tantalum in the United States from 2002 to 2020. Resour. Conserv. Recycl. 2023, 190, 106783,  DOI: 10.1016/j.resconrec.2022.106783
  101. 101
    McCaffrey, D. M.; Nassar, N. T.; Jowitt, S. M.; Padilla, A. J.; Bird, L. R. Embedded critical material flow: The case of niobium, the United States, and China. Resour. Conserv. Recycl. 2023, 188, 106698,  DOI: 10.1016/j.resconrec.2022.106698
  102. 102
    Alonso, E.; Pineault, D. G.; Gambogi, J.; Nassar, N. T. Mapping first to final uses for rare earth elements, globally and in the United States. J. Ind. Ecol. 2023, 27 (1), 312322,  DOI: 10.1111/jiec.13354
  103. 103
    Petavratzi, E.; Gunn, G. Decarbonising the automotive sector: a primary raw material perspective on targets and timescales. Miner. Econ. 2023. 36 545 DOI: 10.1007/s13563-022-00334-2
  104. 104
    McKelvey, V. E. Mineral Resource Estimates and Public Policy: Better methods for estimating the magnitude of potential mineral resources are needed to provide the knowledge that should guide the design of many key public policies. Am. Sci. 1972, 60 (1), 3240
  105. 105
    Skinner, B. J. Earth resources. Proc. Nat. Acad. Sci. U.S.A. 1979, 76 (9), 42124217,  DOI: 10.1073/pnas.76.9.4212
  106. 106
    Kesler, S. E. Geological Stocks and Prospects for Nonrenewable Resources. In Linkages of Sustainability; Graedel, T. E.; van der Voet, E., Eds. The MIT Press: Cambridge, Mass., 2009.
  107. 107
    NEA, IAEA. Uranium 2020: Resources, Production and Demand; NEA No. 7413; OECD Publishing: Paris, 2021. DOI: 10.1787/d82388ab-en .
  108. 108
    Arndt, N. T.; Fontboté, L.; Hedenquist, J. W.; Kesler, S. E.; Thompson, J. F. H.; Wood, D. G. Metals and Minerals, Now and in The Future. Geochem. Perspect. 2017, 6 (1), 317
  109. 109
    West, J. Extractable global resources and the future availability of metal stocks: “Known Unknowns” for the foreseeable future. Resour. Policy 2020, 65, 101574,  DOI: 10.1016/j.resourpol.2019.101574
  110. 110
    Andrews, G. C.; Shaw, P.; McPhee, J. Canadian Professional Engineering and Geoscience: Practice and Ethics, 6 ed.; Nelson: Toronto, 2019.
  111. 111
    Meinert, L. D.; Robinson, G. R., Jr; Nassar, N. T. Mineral resources: Reserves, peak production and the future. Resources 2016, 5 (1), 14,  DOI: 10.3390/resources5010014
  112. 112
    International Reporting Template for the Public Reporting of Exploration Results, Mineral Resources and Mineral Reserves; Committee for Mineral Reserves International Reporting Standards (CRIRSCO) and International Council on Mining & Metals (ICMM): London, 2013.
  113. 113
    Guidance Note on Competency Requirements for the Estimation, Classification and Management of Resources; ECE/ENERGY/GE.3/2022/4; United Nations Economic Commission for Europe, 2022.
  114. 114
    IFRS. Extractive Activities - Reserve and Resource Reporting; International Accounting Standards Board (IASB), 2020.
  115. 115
    Mineral Commodity Summaries 2019 - Appendix C - Reserves and Resources; U.S. Geological Survey: Reston, VA, 2023. DOI: 10.3133/mcs2023 .
  116. 116
    UNECE. United Nations Framework Classification for Resources Update 2019; ECE/ENERGY/125; United Nations Economic Commission for Europe: Geneva, Switzerland, 2019.
  117. 117
    Volchko, Y.; Norrman, J.; Ericsson, L. O.; Nilsson, K. L.; Markstedt, A.; Öberg, M.; Mossmark, F.; Bobylev, N.; Tengborg, P. Subsurface planning: Towards a common understanding of the subsurface as a multifunctional resource. Land Use Policy 2020, 90, 104316,  DOI: 10.1016/j.landusepol.2019.104316
  118. 118
    Faber, M.; Frank, K.; Klauer, B.; Manstetten, R.; Schiller, J.; Wissel, C. On the foundation of a general theory of stocks. Ecological Economics 2005, 55 (2), 155172,  DOI: 10.1016/j.ecolecon.2005.06.006
  119. 119
    Pauliuk, S.; Majeau-Bettez, G.; Müller, D. B.; Hertwich, E. G. Toward a Practical Ontology for Socioeconomic Metabolism. J. Ind. Ecol. 2016, 20 (6), 12601272,  DOI: 10.1111/jiec.12386
  120. 120
    USGS. NADM Conceptual Model 1.0 - A Conceptual Model for Geologic Map Information; 2004–1334; U.S. Geological Survey: Reston, VA, 2004. DOI: 10.3133/ofr20041334 .
  121. 121
    Cohen, D. Earth’s natural wealth: an audit. New Scientist 2007, 194, 3441, 23 May 2007  DOI: 10.1016/S0262-4079(07)61315-3
  122. 122
    Zimmermann, E. W. World Resources and Industries: A Functional Appraisal of the Availability of Agricultural and Industrial Materials, revised ed.; Harper & Row: New York, 1951.
  123. 123
    Mudd, G. M. Assessing the Availability of Global Metals and Minerals for the Sustainable Century: From Aluminium to Zirconium. Sustainability 2021, 13 (19), 10855,  DOI: 10.3390/su131910855
  124. 124
    Zeng, X. Win-Win: Anthropogenic circularity for metal criticality and carbon neutrality. Frontiers of Environmental Science & Engineering 2023, 17 (2), 23,  DOI: 10.1007/s11783-023-1623-2
  125. 125
    Ray, G. F. Mineral reserves: Projected lifetimes and security of supply. Resour. Policy 1984, 10 (2), 7580,  DOI: 10.1016/0301-4207(84)90016-3
  126. 126
    Mudd, G. M.; Jowitt, S. M. Growing Global Copper Resources, Reserves and Production: Discovery Is Not the Only Control on Supply. Econ. Geol. 2018, 113 (6), 12351267,  DOI: 10.5382/econgeo.2018.4590
  127. 127
    Ericsson, M.; Drielsma, J.; Humphreys, D.; Storm, P.; Weihed, P. Why current assessments of ‘future efforts’ are no basis for establishing policies on material use─a response to research on ore grades. Miner. Econ. 2019, 32 (1), 111121,  DOI: 10.1007/s13563-019-00175-6
  128. 128
    Skinner, B. J. Exploring the resource base. In Resources for the Future (RFF) Workshop on “The Long-Run Availability of Minerals”; Resources for the Future (RFF) and the Mining, Minerals and Sustainable Development Project (MMSD): Washington, D.C., 2001; p 25.
  129. 129
    Skinner, B. J. A Second Iron Age Ahead? The distribution of chemical elements in the earth’s crust sets natural limits to man’s supply of metals that are much more important to the future of society than limits on energy. Am. Sci. 1976, 64 (3), 258269
  130. 130
    Arndt, N.; Fontboté, L.; Hedenquist, J.; Kesler, S.; Thompson, J.; Wood, D. Future Global Mineral Resources. Geochem. Perspect. 2017, 6 (1), 1171,  DOI: 10.7185/geochempersp.6.1
  131. 131
    United States Bureau of Mines. Dictionary of Mining, Mineral, and Related Terms, 2nd ed.; American Geological Institute: Alexandria, VA, 1997.
  132. 132
    Jowitt, S. M.; Mudd, G. M.; Thompson, J. F. H. Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. Commun. Earth Environ. 2020, 1 (1), 13,  DOI: 10.1038/s43247-020-0011-0
  133. 133
    Benndorf, J. A Closed-Loop Approach for Mineral Resource Extraction. In Closed Loop Management in Mineral Resource Extraction: Turning Online Geo-Data into Mining Intelligence; Springer International Publishing: Cham, 2020; pp 517.
  134. 134
    Ghorbani, Y.; Nwaila, G. T.; Chirisa, M. Systematic Framework toward a Highly Reliable Approach in Metal Accounting. Miner. Process. Extr. Metall. Rev. 2022, 43 (5), 664678,  DOI: 10.1080/08827508.2020.1784164
  135. 135
    Emery, X.; Ortiz, J. M.; Rodríguez, J. J. Quantifying Uncertainty in Mineral Resources by Use of Classification Schemes and Conditional Simulations. Math. Geol. 2006, 38 (4), 445464,  DOI: 10.1007/s11004-005-9021-9
  136. 136
    Sonderegger, T.; Berger, M.; Alvarenga, R.; Bach, V.; Cimprich, A.; Dewulf, J.; Frischknecht, R.; Guinée, J.; Helbig, C.; Huppertz, T.; Jolliet, O.; Motoshita, M.; Northey, S.; Rugani, B.; Schrijvers, D.; Schulze, R.; Sonnemann, G.; Valero, A.; Weidema, B. P.; Young, S. B. Mineral resources in life cycle impact assessment─part I: a critical review of existing methods. Int. J. Life Cycle Assess. 2020, 25 (4), 784797,  DOI: 10.1007/s11367-020-01736-6
  137. 137
    Whiting, T. H.; Schodde, R. C. Why do brownfields exploration? In International Mine Management 2006; Australasian Institute of Mining and Metallurgy: Melbourne, 2006; pp 4150.
  138. 138
    Solow, R. M. Resources and Economic Growth. American Economist 1978, 22 (2), 511,  DOI: 10.1177/056943457802200201
  139. 139
    Tilton, J. E. The Hubbert peak model and assessing the threat of mineral depletion. Resour. Conserv. Recycl. 2018, 139, 280286,  DOI: 10.1016/j.resconrec.2018.08.026
  140. 140
    Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566 (7743), 195204,  DOI: 10.1038/s41586-019-0912-1
  141. 141
    Steffen, W.; Richardson, K.; Rockström, J.; Schellnhuber, H. J.; Dube, O. P.; Dutreuil, S.; Lenton, T. M.; Lubchenco, J. The emergence and evolution of Earth System Science. Nat. Rev. Earth Environ. 2020, 1 (1), 5463,  DOI: 10.1038/s43017-019-0005-6
  142. 142
    Prior, T.; Giurco, D.; Mudd, G.; Mason, L.; Behrisch, J. Resource depletion, peak minerals and the implications for sustainable resource management. Global Environ. Change 2012, 22 (3), 577587,  DOI: 10.1016/j.gloenvcha.2011.08.009
  143. 143
    Dewulf, J.; Hellweg, S.; Pfister, S.; León, M. F. G.; Sonderegger, T.; de Matos, C. T.; Blengini, G. A.; Mathieux, F. Towards sustainable resource management: identification and quantification of human actions that compromise the accessibility of metal resources. Resour. Conserv. Recycl. 2021, 167, 105403,  DOI: 10.1016/j.resconrec.2021.105403
  144. 144
    Tanzer, J.; Rechberger, H. Setting the Common Ground: A Generic Framework for Material Flow Analysis of Complex Systems. Recycling 2019, 4 (2), 23,  DOI: 10.3390/recycling4020023
  145. 145
    United Nations; European Commission; Food and Agricultural Organization of the United Nations; International Monetary Fund; Organization for Economic Co-operation and Development; World Bank. System of Environmental-Economic Accounting 2012: Central Framework; United Nations: Washington, 2014. DOI: 10.5089/9789211615630.069 .
  146. 146
    Sonesson, C.; Davidson, G.; Sachs, L. Mapping Mining to the Sustainable Development Goals: An Atlas; Geneva, Switzerland, 2016.
  147. 147
    Mining and the SDGs: A 2020 Status Update; RMF, CCS: Nyon, Switzerland, 2020. DOI: 10.2139/ssrn.3726386 .
  148. 148
    RMI Report 2022 - Summary; Responsible Mining Foundation (RMF): Ontwerp, NL, 2022.
  149. 149
    Steiner, G.; Geissler, B.; Watson, I.; Mew, M. C. Efficiency developments in phosphate rock mining over the last three decades. Resour. Conserv. Recycl. 2015, 105, 235245,  DOI: 10.1016/j.resconrec.2015.10.004
  150. 150
    Lèbre, C.; Owen, J. R.; Corder, G. D.; Kemp, D.; Stringer, M.; Valenta, R. K. Source Risks As Constraints to Future Metal Supply. Environ. Sci. Technol. 2019, 53 (18), 1057110579,  DOI: 10.1021/acs.est.9b02808
  151. 151
    Mine-Site Study 2019: Mine-Site ESG Data Disclosure by Small and Mid-Tier Mining Companies; Responsible Mining Foundation (RMF): Antwerp, NL, 2019.
  152. 152
    McLellan, B. C.; Corder, G. D. Risk reduction through early assessment and integration of sustainability in design in the minerals industry. J. Clean. Prod. 2013, 53 (0), 3746,  DOI: 10.1016/j.jclepro.2012.02.014
  153. 153
    Noble, A. C. Mineral resource estimation. In SME Mining Engineering Handbook, 3rd ed.; Darling, P., Ed.; Society for Mining, Metallurgy, and Exploration: Englewood, CO, 2011; pp 203217.
  154. 154
    Pell, R.; Tijsseling, L.; Palmer, L. W.; Glass, H. J.; Yan, X.; Wall, F.; Zeng, X.; Li, J. Environmental optimization of mine scheduling through life cycle assessment integration. Resour. Conserv. Recycl. 2019, 142, 267276,  DOI: 10.1016/j.resconrec.2018.11.022
  155. 155
    Hustrulid, W. A.; Kuchta, M.; Martin, R. K. Open Pit Mine Planning and Design. 3rd ed.; CRC Press: London, 2013.
  156. 156
    Mineral Resource Governance in the 21st Century: Gearing Extractive Industries Towards Sustainable Development; International Resource Panel, United Nations Environment Programme: Nairobi, Kenya, 2020.
  157. 157
    Dehaine, Q.; Tijsseling, L. T.; Glass, H. J.; Törmänen, T.; Butcher, A. R. Geometallurgy of cobalt ores: A review. Miner. Eng. 2021, 160, 106656,  DOI: 10.1016/j.mineng.2020.106656
  158. 158
    Bide, T.; Horvath, Z.; Brown, T.; Idoine, N.; Lauko, A.; Sores, L.; Petavratzi, E.; McGrath, E.; Bavec, S.; Rokavec, D.; Eloranta, T.; Aasly, K. ORAMA Project Deliverable 1.2. Final Analysis and Recommendations for the Improvement of Statistical Data Collection Methods in Europe for Primary Raw Materials; Brussels, 2018.
  159. 159
    Current Non-Financial Reporting Formats and Practices; European Financial Reporting Advisory Group (EFRAG): Brussels, Belgium, 2021.
  160. 160
    Minerals and Economic Development. In Breaking New Ground: Mining, Minerals and Sustainable Development; Mining, Minerals and Sustainable Development; International Institute for Environment and Development (IIED): London, 2002; pp 172196.
  161. 161
    Torres, A.; Simoni, M. U.; Keiding, J. K.; Müller, D. B.; zu Ermgassen, S. O. S. E.; Liu, J.; Jaeger, J. A. G.; Winter, M.; Lambin, E. F. Sustainability of the global sand system in the Anthropocene. One Earth 2021, 4 (5), 639650,  DOI: 10.1016/j.oneear.2021.04.011
  162. 162
    Franks, D. M.; Keenan, J.; Hailu, D. Mineral security essential to achieving the Sustainable Development Goals. Nat. Sustainability 2023, 6 (1), 2127,  DOI: 10.1038/s41893-022-00967-9
  163. 163
    European Commission. Reference Document on Best Available Techniques for Management of Tailings and Waste-Rock in Mining Activities; ST/EIPPCB/MTWR_BREF_FINAL; European Integrated Pollution Prevention and Control Bureau (EIPPCB): Seville, Spain, 2009.
  164. 164
    Graedel, T. E.; Nassar, N. T. The criticality of metals: a perspective for geologists. Geological Society, London, Special Publications 2015, 393 (1), 291302,  DOI: 10.1144/SP393.4
  165. 165
    Hayes, S. M.; McCullough, E. A. Critical minerals: A review of elemental trends in comprehensive criticality studies. Resour. Policy 2018, 59, 192199,  DOI: 10.1016/j.resourpol.2018.06.015
  166. 166
    Yan, W.; Wang, Z.; Cao, H.; Zhang, Y.; Sun, Z. Criticality assessment of metal resources in China. iScience 2021, 24 (6), 102524,  DOI: 10.1016/j.isci.2021.102524
  167. 167
    McNulty, B. A.; Jowitt, S. M. Barriers to and uncertainties in understanding and quantifying global critical mineral and element supply. iScience 2021, 24 (7), 102809,  DOI: 10.1016/j.isci.2021.102809
  168. 168
    Schrijvers, D.; Hool, A.; Blengini, G. A.; Chen, W.-Q.; Dewulf, J.; Eggert, R.; van Ellen, L.; Gauss, R.; Goddin, J.; Habib, K.; Hagelüken, C.; Hirohata, A.; Hofmann-Amtenbrink, M.; Kosmol, J.; Le Gleuher, M.; Grohol, M.; Ku, A.; Lee, M.-H.; Liu, G.; Nansai, K.; Nuss, P.; Peck, D.; Reller, A.; Sonnemann, G.; Tercero, L.; Thorenz, A.; Wäger, P. A. A review of methods and data to determine raw material criticality. Resour. Conserv. Recycl. 2020, 155, 104617,  DOI: 10.1016/j.resconrec.2019.104617
  169. 169
    Bringezu, S. Toward science-based and knowledge-based targets for global sustainable resource use. Resources 2019, 8 (3), 140,  DOI: 10.3390/resources8030140
  170. 170
    United Nations; European Commission; International Monetary Fund; Organization for Economic Co-operation and Development; World Bank. Handbook of National Accounting: Integrated Environmental and Economic Accounting; United Nations: New York, 2003.
  171. 171
    EUROSTAT. Economy-wide Material Flow Accounts. Handbook 2018 ed.; Eurostat: Luxembourg, 2018. DOI: 10.2785/158567 .
  172. 172
    Adriaanse, A.; Bringezu, S.; Hammond, A.; Moriguchi, Y.; Rodenburg, E.; Rogich, D.; Schütz, H. Resource Flows: The Material Basis of Industrial Economies; World Resources Inst.: WA, 1997.
  173. 173
    Watari, T.; McLellan, B. C.; Giurco, D.; Dominish, E.; Yamasue, E.; Nansai, K. Total material requirement for the global energy transition to 2050: A focus on transport and electricity. Resour. Conserv. Recycl. 2019, 148, 91103,  DOI: 10.1016/j.resconrec.2019.05.015
  174. 174
    Global Economy Wide Material Flow Accounting Manual; UN Environment: Nairobi, 2019.
  175. 175
    Bringezu, S. Possible Target Corridor for Sustainable Use of Global Material Resources. Resources 2015, 4 (1), 2554,  DOI: 10.3390/resources4010025
  176. 176
    Zamorano, S. Surface ore movement, storage, and recovery systems. In SME Mining Engineering Handbook, 3rd ed.; Darling, P., Ed.; Society for Mining, Metallurgy, and Exploration (SME), 2011; pp 977985.
  177. 177
    European Commission. Best Available Techniques (BAT) Reference Document for the Management of Waste from Extractive Industries in Accordance with Directive 2006/21/EC; EU Publications Office: Luxembourg, 2018. DOI: 10.2760/35297 .
  178. 178
    Baker, E.; Davies, M.; Fourie, A.; Mudd, G.; Thygesen, K. Mine Tailings Facilities: Overview and Industry Trends. In Towards Zero Harm: A Compendium of Papers Prepared for the Global Tailings Review; Global Tailings Review: London, 2020; pp 1423.
  179. 179
    Lottermoser, B. G. Mine Wastes: Characterization, Treatment and Environmental Impacts, 3rd ed.; Springer Berlin Heidelberg: Berlin, 2010.
  180. 180
    Fields, S. The earth’s open wounds: abandoned and orphaned mines. Environ. Health Perspect. 2003, 111 (3), A154A161,  DOI: 10.1289/ehp.111-a154
  181. 181
    Seymour, J. F. Hardrock Mining and the Environment: Issues of Federal Enforcement and Liability. Ecol. Law Q. 2004, 31 (4), 795956
  182. 182
    Hudson-Edwards, K. A.; Jamieson, H. E.; Lottermoser, B. G. Mine Wastes: Past, Present, Future. Elements 2011, 7 (6), 375380,  DOI: 10.2113/gselements.7.6.375
  183. 183
    Mittal, A. K. Abandoned Mines: Information on the Number of Hardrock Mines, Cost of Cleanup, and Value of Financial Assurances; Testimony Before the Subcommittee on Energy and Mineral Resources, Committee on Natural Resources, House of Representatives; US Government Accountability Office: Washington, D.C., 14.07.2011, 2011.
  184. 184
    Lottermoser, B. G. Recycling, Reuse and Rehabilitation of Mine Wastes. Elements 2011, 7 (6), 405410,  DOI: 10.2113/gselements.7.6.405
  185. 185
    Franks, D. M.; Stringer, M.; Torres-Cruz, L. A.; Baker, E.; Valenta, R.; Thygesen, K.; Matthews, A.; Howchin, J.; Barrie, S. Tailings facility disclosures reveal stability risks. Sci. Rep. 2021, 11 (1), 5353,  DOI: 10.1038/s41598-021-84897-0
  186. 186
    Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221232,  DOI: 10.1016/j.resconrec.2017.09.005
  187. 187
    Song, Q.; Li, J.; Zeng, X. Minimizing the increasing solid waste through zero waste strategy. J. Clean. Prod. 2015, 104, 199210,  DOI: 10.1016/j.jclepro.2014.08.027
  188. 188
    Hilton, J.; Moussaid, M.; Birky, B. In Comprehensive Extraction: A Key Requirement for Social Licensing of NORM Industries?; Seventh International Symposium on Naturally Occurring Radioactive Material (NORM VII); International Atomic Energy Agency, 22-26.04.2013; Beijing, China, 2013; pp 129141.
  189. 189
    MacDonald, D.; Hilton, J.; Elliott, D.; Heiberg, S.; Tulsidas, H.; Griffiths, C. In Transforming Natural Resource Management for a Sustainable Planet; SPE Annual Technical Conference and Exhibition 2018, ATCE 2018; Dallas, U.S.A., 2018; p 10.
  190. 190
    Blengini, G.; Mathieux, F.; Mancini, L.; Nyberg, M.; Viegas, H. Recovery of Critical and Other Raw Materials from Mining Waste and Landfills; Publications Office of the European Union: Luxembourg, 2019.  DOI: 10.2760/600775 .
  191. 191
    Lebre, E.; Stringer, M.; Svobodova, K.; Owen, J. R.; Kemp, D.; Cote, C.; Arratia-Solar, A.; Valenta, R. K. The social and environmental complexities of extracting energy transition metals. Nat. Commun. 2020, 11 (1), 4823,  DOI: 10.1038/s41467-020-18661-9
  192. 192
    Suppes, R.; Heuss-Aßbichler, S. Resource potential of mine wastes: A conventional and sustainable perspective on a case study tailings mining project. J. Clean. Prod. 2021, 297, 126446,  DOI: 10.1016/j.jclepro.2021.126446
  193. 193
    Žibret, G.; Lemiere, B.; Mendez, A.-M.; Cormio, C.; Sinnett, D.; Cleall, P.; Szabó, K.; Carvalho, M. T. National Mineral Waste Databases as an Information Source for Assessing Material Recovery Potential from Mine Waste, Tailings and Metallurgical Waste. Minerals 2020, 10 (5), 446,  DOI: 10.3390/min10050446
  194. 194
    The Use of Natural Resources in the Economy: A Global Manual on Economy Wide Material Flow Accounting; DEW/2356/NA; United Nations Environment Programme: Nairobi, Kenya, 2023.
  195. 195
    Lenzen, M.; Geschke, A.; West, J.; Fry, J.; Malik, A.; Giljum, S.; Milài Canals, L.; Piñero, P.; Lutter, S.; Wiedmann, T.; Li, M.; Sevenster, M.; Potočnik, J.; Teixeira, I.; Van Voore, M.; Nansai, K.; Schandl, H. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustainability 2022, 5 (2), 157166,  DOI: 10.1038/s41893-021-00811-6
  196. 196
    Lebre, E.; Corder, G. D.; Golev, A. Sustainable practices in the management of mining waste: A focus on the mineral resource. Miner. Eng. 2017, 107, 3442,  DOI: 10.1016/j.mineng.2016.12.004
  197. 197
    Tuck, C. A.; Xun, S.; Singerling, S. A. Global Iron Ore Production Data; Clarification of Reporting from USGS. Mining Eng. 2017, 69 (2), 2023
  198. 198
    Driftsplanveileder Fast fjell; Direktoratet for mineralforvaltning med Bergmesteren for Svalbard: Trondheim, 2021.
  199. 199
    CIM Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines; CIM: Quebec, Canada, 2019.
  200. 200
    CIM Leading Practice Guidelines for Mineral Processing; CIM: Quebec, Canada, 2022.
  201. 201
    Apel, M. From 3d geomodelling systems towards 3d geoscience information systems: Data model, query functionality, and data management. Comput. Geosci. 2006, 32 (2), 222229,  DOI: 10.1016/j.cageo.2005.06.016
  202. 202
    Berg, R. C.; Kessler, H.; MacCormack, K. E.; Russell, H. A.; Thorleifson, L. H. Future of 3D Geological Mapping and Modelling at Geological Survey Organizations. 2019 Synopsis of Three-dimensional Geological Mapping and Modelling at Geological Survey Organizations 2019, 302305
  203. 203
    Stafleu, J.; Maljers, D.; Busschers, F. S.; Schokker, J.; Gunnink, J. L.; Dambrink, R. M. Models Created as 3-D Cellular Voxel Arrays. Applied Multidimensional Geological Modeling 2021, 247271,  DOI: 10.1002/9781119163091.ch11
  204. 204
    Dimitrakopoulos, R. Stochastic optimization for strategic mine planning: A decade of developments. J. Min. Sci. 2011, 47 (2), 138150,  DOI: 10.1134/S1062739147020018
  205. 205
    Goodfellow, R. C.; Dimitrakopoulos, R. Global optimization of open pit mining complexes with uncertainty. Appl. Soft Comput. 2016, 40, 292304,  DOI: 10.1016/j.asoc.2015.11.038
  206. 206
    Lindsay, M. D.; Aillères, L.; Jessell, M. W.; de Kemp, E. A.; Betts, P. G. Locating and quantifying geological uncertainty in three-dimensional models: Analysis of the Gippsland Basin, southeastern Australia. Tectonophysics 2012, 546–547, 1027,  DOI: 10.1016/j.tecto.2012.04.007
  207. 207
    Krajnovich, A.; Zhou, W.; Gutierrez, M. Uncertainty assessment for 3D geologic modeling of fault zones based on geologic inputs and prior knowledge. Solid Earth 2020, 11 (4), 14571474,  DOI: 10.5194/se-11-1457-2020
  208. 208
    Bianchi, M.; Turner, A. K.; Lark, M.; Courrioux, G. Uncertainty in 3-D Geological Models. In Applied Multidimensional Geological Modeling; John Wiley & Sons Ltd: West Sussex, UK, 2021; pp 357382.
  209. 209
    Dowd, P. Quantifying the Impacts of Uncertainty. In Handbook of Mathematical Geosciences: Fifty Years of IAMG; Daya Sagar, B. S., Cheng, Q., Agterberg, F., Eds.; Springer International Publishing: Cham, 2018; pp 349373.
  210. 210
    Abdulai, M.; Sharifzadeh, M. Uncertainty and Reliability Analysis of Open Pit Rock Slopes: A Critical Review of Methods of Analysis. Geotech. Geol. Eng. 2019, 37 (3), 12231247,  DOI: 10.1007/s10706-018-0680-y
  211. 211
    Speirs, J.; McGlade, C.; Slade, R. Uncertainty in the availability of natural resources: Fossil fuels, critical metals and biomass. Energy Policy 2015, 87, 654664,  DOI: 10.1016/j.enpol.2015.02.031
  212. 212
    McManus, S.; Rahman, A.; Coombes, J.; Horta, A. Uncertainty assessment of spatial domain models in early stage mining projects - A review. Ore Geol. Rev. 2021, 133, 104098,  DOI: 10.1016/j.oregeorev.2021.104098
  213. 213
    Bloodworth, A. J.; Gunn, A. G. The future of the global minerals and metals sector: issues and challenges out to 2050. Geosciences: BRGM’s Journal for a Sustainable Earth 2012, 15, 9097
  214. 214
    Cole, L. How ending mining would change the world. 2022. https://www.bbc.com/future/article/20220413-how-ending-mining-would-change-the-world (accessed 18.04.2023).
  215. 215
    Liang, Y.; Kleijn, R.; Tukker, A.; van der Voet, E. Material requirements for low-carbon energy technologies: A quantitative review. Renew. Sust. Energy Rev. 2022, 161, 112334,  DOI: 10.1016/j.rser.2022.112334
  216. 216
    More, K. S.; Wolkersdorfer, C.; Kang, N.; Elmaghraby, A. S. Automated measurement systems in mine water management and mine workings - A review of potential methods. Water Resour. Ind. 2020, 24, 100136,  DOI: 10.1016/j.wri.2020.100136
  217. 217
    Yousefi, M.; Carranza, E. J. M.; Kreuzer, O. P.; Nykänen, V.; Hronsky, J. M. A.; Mihalasky, M. J. Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. J. Geochem. Explor. 2021, 229, 106839,  DOI: 10.1016/j.gexplo.2021.106839
  218. 218
    Nurmi, P. A. The Geological Survey of Finland strengthening its role as a key player in mineral raw materials innovation ecosystems. Geological Society, London, Special Publications 2020, 499 (1), 149163,  DOI: 10.1144/SP499-2019-83
  219. 219
    Fogarty, J. J. An Economic Assessment of the Exploration Incentive Scheme: 10 years from 2009 to 2020; Prepared for the Department of Mines, Industry Regulation and Safety: Geological Survey of Western Australia: Perth, Australia, 2021.
  220. 220
    Wittenberg, A.; Oliveira, D. d.; Jorgensen, L. F.; Gonzalez, F. J.; Heldal, T.; Aasly, K. A.; Deady, E.; Kumelj, Š.; Sievers, H.; Horvath, Z.; McGrath, E. GeoERA Raw Materials Monograph - The Past and the Future; Federal Institute for Geosciences and Natural Resources (BGR): Hannover, Germany, 2022. DOI: 10.25928/geoera_rawmat22_1 .
  221. 221
    Bide, T.; Brown, T. J.; Gunn, A. G.; Mankelow, J. M. Utilisation of multiple current and legacy datasets to create a national minerals inventory: A UK case study. Resour. Policy 2020, 66, 101654,  DOI: 10.1016/j.resourpol.2020.101654
  222. 222
    van Genderen, J.; Goodchild, M. F.; Guo, H.; Yang, C.; Nativi, S.; Wang, L.; Wang, C. Digital Earth Challenges and Future Trends. In Manual of Digital Earth; Guo, H., Goodchild, M. F., Annoni, A., Eds.; Springer: Singapore, 2020; pp 811827.
  223. 223
    Sudmanns, M.; Tiede, D.; Lang, S.; Bergstedt, H.; Trost, G.; Augustin, H.; Baraldi, A.; Blaschke, T. Big Earth data: disruptive changes in Earth observation data management and analysis?. International Journal of Digital Earth 2020, 13 (7), 832850,  DOI: 10.1080/17538947.2019.1585976
  224. 224
    OneGelogy Consortium. OneGelogy - Providing geoscience data globally 2022. https://onegeology.org/ (accessed 18.04.2023).
  225. 225
    Baumann, P.; Rossi, A. P.; Bell, B.; Clements, O.; Evans, B.; Hoenig, H.; Hogan, P.; Kakaletris, G.; Koltsida, P.; Mantovani, S.; Marco Figuera, R.; Merticariu, V.; Misev, D.; Pham, H. B.; Siemen, S.; Wagemann, J. Fostering Cross-Disciplinary Earth Science Through Datacube Analytics. In Earth Observation Open Science and Innovation, Mathieu, P.-P.; Aubrecht, C., Eds.; Springer International Publishing: Cham, 2018; pp 91119.
  226. 226
    O’Sullivan, C.; Wise, N.; Mathieu, P.-P. The Changing Landscape of Geospatial Information Markets. In Earth Observation Open Science and Innovation; Mathieu, P.-P., Aubrecht, C., Eds.; Springer International Publishing: Cham, 2018; pp 323.
  227. 227
    Zhu, Z.; Zhou, Y.; Seto, K. C.; Stokes, E. C.; Deng, C.; Pickett, S. T. A.; Taubenböck, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens. Environ. 2019, 228, 164182,  DOI: 10.1016/j.rse.2019.04.020
  228. 228
    Prakash, M.; Ramage, S.; Kavvada, A.; Goodman, S. Open Earth Observations for Sustainable Urban Development. Remote Sens. 2020, 12 (10), 1646,  DOI: 10.3390/rs12101646
  229. 229
    Maus, V.; Giljum, S.; da Silva, D. M.; Gutschlhofer, J.; da Rosa, R. P.; Luckeneder, S.; Gass, S. L. B.; Lieber, M.; McCallum, I. An update on global mining land use. Sci. Data 2022, 9 (1), 433,  DOI: 10.1038/s41597-022-01547-4
  230. 230
    Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: current status and future perspectives. Int. J. Coal Sci. 2019, 6 (3), 320333,  DOI: 10.1007/s40789-019-00264-5
  231. 231
    Tucci, G.; Gebbia, A.; Conti, A.; Fiorini, L.; Lubello, C. Monitoring and Computation of the Volumes of Stockpiles of Bulk Material by Means of UAV Photogrammetric Surveying. Remote Sens. 2019, 11 (12), 1471,  DOI: 10.3390/rs11121471
  232. 232
    New Tech, new deal - Technology Impacts Review; Intergovernmental Forum on Mining, Minerals, Metals and Sustainable Development (IGF). International Institute for Sustainable Development (IISD): Winnipeg, Canada, 2019.
  233. 233
    Jang, H.; Topal, E. Transformation of the Australian mining industry and future prospects. Mining Technology 2020, 129 (3), 120134,  DOI: 10.1080/25726668.2020.1786298
  234. 234
    Li, W.; Hsu, C.-Y. GeoAI for Large-Scale Image Analysis and Machine Vision: Recent Progress of Artificial Intelligence in Geography. ISPRS International Journal of Geo-Information 2022, 11 (7), 385,  DOI: 10.3390/ijgi11070385
  235. 235
    Smith, W. D.; Maier, W. D. The geotectonic setting, age and mineral deposit inventory of global layered intrusions. Earth-Sci. Rev. 2021, 220, 103736,  DOI: 10.1016/j.earscirev.2021.103736
  236. 236
    Dong, J.; Metternicht, G.; Hostert, P.; Fensholt, R.; Chowdhury, R. R. Remote sensing and geospatial technologies in support of a normative land system science: status and prospects. COSUST 2019, 38, 4452,  DOI: 10.1016/j.cosust.2019.05.003
  237. 237
    Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 1827,  DOI: 10.1016/j.rse.2017.06.031
  238. 238
    Planetary Computer; Microsoft, 2022.
  239. 239
    Kopp, S.; Becker, P.; Doshi, A.; Wright, D. J.; Zhang, K.; Xu, H. Achieving the Full Vision of Earth Observation Data Cubes. Data 2019, 4 (3), 94,  DOI: 10.3390/data4030094
  240. 240
    Bauer, P.; Dueben, P. D.; Hoefler, T.; Quintino, T.; Schulthess, T. C.; Wedi, N. P. The digital revolution of Earth-system science. Nature Computational Science 2021, 1 (2), 104113,  DOI: 10.1038/s43588-021-00023-0
  241. 241
    Graciano, A.; Rueda, A. J.; Feito, F. R. Real-time visualization of 3D terrains and subsurface geological structures. Adv. Eng. Software 2018, 115, 314326,  DOI: 10.1016/j.advengsoft.2017.10.002
  242. 242
    Schokker, J.; Sandersen, P.; de Beer, J.; Eriksson, I.; Kallio, H.; Kearsey, T.; Pfleiderer, S.; Seither, A. 3D Urban Subsurface Modelling and Visualisation - A Review of Good Practices and Techniques to Ensure Optimal Use of Geological Information in Urban Planning; COST Action Sub-Urban, 2017.
  243. 243
    Baumberger, R.; Oesterling, N. The National Geological Model: Towards mastering the Digital Transformation in Switzerland. In Three-Dimensional Geological Mapping and Modeling; Vancouver, BC, 2018; pp 1923.
  244. 244
    Guo, J.; Wang, X.; Wang, J.; Dai, X.; Wu, L.; Li, C.; Li, F.; Liu, S.; Jessell, M. W. Three-dimensional geological modeling and spatial analysis from geotechnical borehole data using an implicit surface and marching tetrahedra algorithm. Eng. Geol. 2021, 284, 106047,  DOI: 10.1016/j.enggeo.2021.106047
  245. 245
    Guo, H.; Li, X.; Wang, W.; Lv, Z.; Wu, C.; Xu, W. An event-driven dynamic updating method for 3D geo-databases. Geo-Spat. Inf. Sci. 2016, 19 (2), 140147,  DOI: 10.1080/10095020.2016.1182808
  246. 246
    Marker, B.; Turner, A. K. Legislation, regulation and management. In Applied Multidimensional Geological Modeling; Turner, A. K., Kessler, H., Van der Meulen, M., Eds.; John Wiley & Sons, 2021; pp 3568.
  247. 247
    Grieves, M. Virtually Intelligent Product Systems: Digital and Physical Twins. In Complex Systems Engineering: Theory and Practice; Flumerfelt, S., Schwartz, K. G., Mavris, D., Briceno, S., Eds. American Institute of Aeronautics and Astronautics: Reston, VA, 2019; pp 175200.
  248. 248
    Rasheed, A.; San, O.; Kvamsdal, T. Digital Twin: Values, Challenges and Enablers From a Modeling Perspective. IEEE Access 2020, 8, 2198022012,  DOI: 10.1109/ACCESS.2020.2970143
  249. 249
    Zobl, F.; Marschallinger, R. GeoBIM - Subsurface Building Information Modelling. GEOinformatics 2008, 8 (11), 4043
  250. 250
    Huang, M. Q.; Ninić, J.; Zhang, Q. B. BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives. Tunnel. Underground Space Technol. 2021, 108, 103677,  DOI: 10.1016/j.tust.2020.103677
  251. 251
    Gore, A. The digital earth: understanding our planet in the 21st century. Australian surveyor 1998, 43 (2), 8991,  DOI: 10.1080/00050348.1998.10558728
  252. 252
    Coalition for Digital Environmental Sustainability. Action Plan for a Sustainable Planet in the Digital Age ; United Nations: 2022. DOI: 10.5281/zenodo.6573509 .
  253. 253
    Van Oosterom, P.; Stoter, J. 5D data modelling: full integration of 2D/3D space, time and scale dimensions; International Conference on Geographic Information Science, 2010; Springer: 2010; pp 310324.
  254. 254
    Turner, A. K.; Kessler, H.; Van der Meulen, M. Introduction to modeling terminology and concepts. In Applied Multidimensional Geological Modeling, Turner, A. K.; Kessler, H.; Van der Meulen, M., Eds.; John Wiley & Sons, 2021; pp 333.
  255. 255
    Breunig, M.; Bradley, P. E.; Jahn, M.; Kuper, P.; Mazroob, N.; Rösch, N.; Al-Doori, M.; Stefanakis, E.; Jadidi, M. Geospatial Data Management Research: Progress and Future Directions. ISPRS International Journal of Geo-Information 2020, 9 (2), 95,  DOI: 10.3390/ijgi9020095
  256. 256
    Baumann, P. A General Conceptual Framework for Multi-Dimensional Spatio-Temporal Data Sets. Environ. Model. Software 2021, 143, 105096,  DOI: 10.1016/j.envsoft.2021.105096
  257. 257
    European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - A European strategy for data. Official Journal of the European Union, COM/2020/66 final, 2020.
  258. 258
    van den Brink, L.; Barnaghi, P.; Tandy, J.; Atemezing, G.; Atkinson, R.; Cochrane, B.; Fathy, Y.; Garcia Castro, R.; Haller, A.; Harth, A.; Janowicz, K.; Kolozali, S.; van Leeuwen, B.; Lefrancois, M.; Lieberman, J.; Perego, A.; Le-Phuoc, D.; Roberts, B.; Taylor, K.; Troncy, R. Best practices for publishing, retrieving, and using spatial data on the web. Semantic Web 2018, 10 (1), 95114,  DOI: 10.3233/SW-180305
  259. 259
    European Commission. Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). Official Journal of the European Union, L 108, 1–14, 2007.
  260. 260
    Deep-time Digital Earth (DDE) 2020–2030; International Union of Geological Sciences IUGS: Yangcheng, China, 2022.
  261. 261
    Wang, C.; Hazen, R. M.; Cheng, Q.; Stephenson, M. H.; Zhou, C.; Fox, P.; Shen, S.-z.; Oberhänsli, R.; Hou, Z.; Ma, X.; Feng, Z.; Fan, J.; Ma, C.; Hu, X.; Luo, B.; Wang, J.; Schiffries, C. M. The Deep-Time Digital Earth program: data-driven discovery in geosciences. Natl. Sci. Rev. 2021, 8 (9), nwab027,  DOI: 10.1093/nsr/nwab027
  262. 262
    Xu, L. D. The contribution of systems science to Industry 4.0. Systems Research and Behavioral Science 2020, 37 (4), 618631,  DOI: 10.1002/sres.2705
  263. 263
    Åm, K.; Heiberg, S. Public-private partnership for improved hydrocarbon recovery - Lessons from Norway’s major development programs. Energy Strategy Reviews 2014, 3, 3048,  DOI: 10.1016/j.esr.2014.06.003
  264. 264
    Prahalad, C. K.; Ramaswamy, V. Co-creation experiences: The next practice in value creation. J. Interact. Mark. 2004, 18 (3), 514,  DOI: 10.1002/dir.20015
  265. 265
    Scott, M.; Jones, M. Management of Public Geoscience Data; International Mining for Development Centre (IM4DC): Perth, Australia, 2014.
  266. 266
    Nad, A.; Jooshaki, M.; Tuominen, E.; Michaux, S.; Kirpala, A.; Newcomb, J. Digitalization Solutions in the Mineral Processing Industry: The Case of GTK Mintec, Finland. Minerals 2022, 12 (2), 210,  DOI: 10.3390/min12020210
  267. 267
    Sun, Z.; Sandoval, L.; Crystal-Ornelas, R.; Mousavi, S. M.; Wang, J.; Lin, C.; Cristea, N.; Tong, D.; Carande, W. H.; Ma, X.; Rao, Y.; Bednar, J. A.; Tan, A.; Wang, J.; Purushotham, S.; Gill, T. E.; Chastang, J.; Howard, D.; Holt, B.; Gangodagamage, C.; Zhao, P.; Rivas, P.; Chester, Z.; Orduz, J.; John, A. A review of Earth Artificial Intelligence. Comput. Geosci. 2022, 159, 105034,  DOI: 10.1016/j.cageo.2022.105034
  268. 268
    Litvinenko, V. S. Digital Economy as a Factor in the Technological Development of the Mineral Sector. Nat. Resour. Res. 2020, 29 (3), 15211541,  DOI: 10.1007/s11053-019-09568-4
  269. 269
    Ghorbani, Y.; Zhang, S. E.; Nwaila, G. T.; Bourdeau, J. E. Framework components for data-centric dry laboratories in the minerals industry: A path to science-and-technology-led innovation. Extr. Ind. Soc. 2022, 10, 101089,  DOI: 10.1016/j.exis.2022.101089
  270. 270
    McCuaig, T. C.; Hronsky, J. M. A.; Kelley, K. D.; Golden, H. C. The Mineral System Concept: The Key to Exploration Targeting. In Building Exploration Capability for the 21st Century; Society of Economic Geologists: 2014; Vol. 18, p 0.
  271. 271
    Lawrence, M. G.; Williams, S.; Nanz, P.; Renn, O. Characteristics, potentials, and challenges of transdisciplinary research. One Earth 2022, 5 (1), 4461,  DOI: 10.1016/j.oneear.2021.12.010
  272. 272
    UNEA. Mineral Resource Governance. United Nations Environment Programme, 2019.
  273. 273
    Wilkinson, M. D.; Dumontier, M.; Aalbersberg, I. J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L. B.; Bourne, P. E.; Bouwman, J.; Brookes, A. J.; Clark, T.; Crosas, M.; Dillo, I.; Dumon, O.; Edmunds, S.; Evelo, C. T.; Finkers, R.; Gonzalez-Beltran, A.; Gray, A. J. G.; Groth, P.; Goble, C.; Grethe, J. S.; Heringa, J.; ’t Hoen, P. A. C.; Hooft, R.; Kuhn, T.; Kok, R.; Kok, J.; Lusher, S. J.; Martone, M. E.; Mons, A.; Packer, A. L.; Persson, B.; Rocca-Serra, P.; Roos, M.; van Schaik, R.; Sansone, S.-A.; Schultes, E.; Sengstag, T.; Slater, T.; Strawn, G.; Swertz, M. A.; Thompson, M.; van der Lei, J.; van Mulligen, E.; Velterop, J.; Waagmeester, A.; Wittenburg, P.; Wolstencroft, K.; Zhao, J.; Mons, B. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3 (1), 160018,  DOI: 10.1038/sdata.2016.18
  274. 274
    Ubaldi, B. Open Government Data: Towards Empirical Analysis of Open Government Data Initiatives; Organisation for Economic Cooperation and Development: 2013. DOI: 10.1787/5k46bj4f03s7-en .
  275. 275
    Recommendation of the Council on Enhancing Access to and Sharing of Data; Organisation for Economic Co-operation and Development, 2022.
  276. 276
    Integrated Geospatial Information Framework: A Strategic Guide to Develop and Strengthen National Geospatial Information Management - Part 1: Overarching Strategic Framework; World Bank, United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM): New York, 2018.
  277. 277
    UN-GGIM. The Global Statistical Geospatial Framework; United Nations: New York, 2019.
  278. 278
    Tate, M.; Bongiovanni, I.; Kowalkiewicz, M.; Townson, P. Managing the “Fuzzy front end” of open digital service innovation in the public sector: A methodology. IJIM 2018, 39, 186198,  DOI: 10.1016/j.ijinfomgt.2017.11.008
  279. 279
    Gray, S. J.; Hellman, N.; Ivanova, M. N. Extractive Industries Reporting: A Review of Accounting Challenges and the Research Literature. Abacus 2019, 55 (1), 4291,  DOI: 10.1111/abac.12147
  280. 280
    2017 Resource Governance Index; Natural Resource Governance Institute (NRGI): New York, 2017.
  281. 281
    Van Alstine, J. Critical reflections on 15 years of the Extractive Industries Transparency Initiative (EITI). Extr. Ind. Soc. 2017, 4 (4), 766770,  DOI: 10.1016/j.exis.2017.10.010
  282. 282
    EITI Progress Report 2022; Extractive Industries Transparency Initiative (EITI): Oslo, Norway, 2022.
  283. 283
    Proposals for a Relevant and Dynamic EU Sustainability Reporting Standard-Setting; European Financial Reporting Advisory Group (EFRAG): Brussels, Belgium, 2021.
  284. 284
    Geels, F. W.; Schwanen, T.; Sorrell, S.; Jenkins, K.; Sovacool, B. K. Reducing energy demand through low carbon innovation: A sociotechnical transitions perspective and thirteen research debates. ERSS 2018, 40, 2335,  DOI: 10.1016/j.erss.2017.11.003
  285. 285
    IGF Guidance for Governments: Environmental Management and Mining Governance; Intergovernmental Forum on Mining, Minerals, Metals and Sustainable Development (IGF): Winnipeg, 2021.
  286. 286
    Vision 2050 - Time to Transform: How business can lead the transformations the world needs; World Business Council for Sustainable Development (WBCSD): Geneva, Switzerland, 2021.
  287. 287
    Transforming Extractive Industries for Sustainable Development; United Nations Executive Office of the Secretary-General (EOSG): New York, 2021. DOI:  DOI: 10.18356/27082245-22 .
  288. 288
    Berg, F.; Koelbel, J. F.; Rigobon, R. Aggregate confusion: The divergence of ESG ratings. Rev. Financ. 2022, 26 (6), 13151344,  DOI: 10.1093/rof/rfac033
  289. 289
    Petravatzi, E.; Müller, D. B.; Lundhaug, M.; Liu, G.; Cullen, J.; Simoni, M. U.; Dittrich, M.; Cao, Z.; Murguía, D.; Hirschnitz-Garbers, M.; Hamadová, B. MinFuture Roadmap - A Roadmap Towards Monitoring the Physical Economy; Nottingham, UK, 2018.
  290. 290
    Fonseca, A.; McAllister, M. L.; Fitzpatrick, P. Measuring what? A comparative anatomy of five mining sustainability frameworks. Miner. Eng. 2013, 46–47, 180186,  DOI: 10.1016/j.mineng.2013.04.008
  291. 291
    General Requirements for Disclosure of Sustainability-related Financial Information. General Requirements Exposure Draft; Exposure Draft IFRS S1 International Sustainability Standards Board (ISSB): London, 2022.
  292. 292
    Haasnoot, M.; Biesbroek, R.; Lawrence, J.; Muccione, V.; Lempert, R.; Glavovic, B. Defining the solution space to accelerate climate change adaptation. Reg. Environ. Change 2020, 20 (2), 37,  DOI: 10.1007/s10113-020-01623-8
  293. 293
    Giesekam, J.; Norman, J.; Garvey, A.; Betts-Davies, S. Science-Based Targets: On Target?. Sustainability 2021, 13 (4), 1657,  DOI: 10.3390/su13041657
  294. 294
    Wiek, A.; Binder, C. Solution spaces for decision-making─a sustainability assessment tool for city-regions. Environ. Impact Assess. Rev. 2005, 25 (6), 589608,  DOI: 10.1016/j.eiar.2004.09.009
  295. 295
    Rockström, J.; Gupta, J.; Lenton, T. M.; Qin, D.; Lade, S. J.; Abrams, J. F.; Jacobson, L.; Rocha, J. C.; Zimm, C.; Bai, X.; Bala, G.; Bringezu, S.; Broadgate, W.; Bunn, S. E.; DeClerck, F.; Ebi, K. L.; Gong, P.; Gordon, C.; Kanie, N.; Liverman, D. M.; Nakicenovic, N.; Obura, D.; Ramanathan, V.; Verburg, P. H.; van Vuuren, D. P.; Winkelmann, R. Identifying a Safe and Just Corridor for People and the Planet. Earth's Future 2021, 9 (4), e2020EF001866  DOI: 10.1029/2020EF001866
  296. 296
    European Commission. Directive 2019/1024 of the European Parliament and of the Council of 20 June 2019 on open data and the re-use of public sector information. Official Journal of the European Union, L 172, 56–83, 2019.
  297. 297
    European Commission. Commission Implementing Regulation (EU) 2023/138 of 21 December 2022 laying down a list of specific high-value datasets and the arrangements for their publication and re-use. Official Journal of the European Union, L 19, 43–75, 2023.
  298. 298
    Koninkrijk der Nederlanden. Regulation on the National Key Registry for the Subsurface (Regeling basisregistratie ondergrond, BRO). Minister van Binnenlandse Zaken en Koninkrijksrelaties, Nederlande, 2021.
  299. 299
    Norwegian Petroleum Directorate. Diskos Handbook , Version 2.0; May 2019; Norwegian Petroleum Directorate: Stavanger, Norway, 2019.
  300. 300
    Olje-og energidepartementet. Forskrift om ressursforvaltning i petroleumsvirksomheten (ressursforskriften). 2021.
  301. 301
    Kolbjørnsen, O.; Hammer, E.; Pruno, S.; Wellsbury, P.; Kusak, M. In Norwegian Released Wells Project: Study Design, Material Preparation, Measurements and Data Analysis; SPWLA 63rd Annual Logging Symposium, 2022; 2022.
  302. 302
    Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325 (5939), 419422,  DOI: 10.1126/science.1172133
  303. 303
    Steffen, W.; Crutzen, P. J.; McNeill, J. R. The Anthropocene: are humans now overwhelming the great forces of nature. Ambio 2007, 36 (8), 614621,  DOI: 10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2
  304. 304
    Bateman, I. J.; Mace, G. M. The natural capital framework for sustainably efficient and equitable decision making. Nat. Sustainability 2020, 3 (10), 776783,  DOI: 10.1038/s41893-020-0552-3
  305. 305
    Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T. M.; Folke, C.; Liverman, D.; Summerhayes, C. P.; Barnosky, A. D.; Cornell, S. E.; Crucifix, M.; Donges, J. F.; Fetzer, I.; Lade, S. J.; Scheffer, M.; Winkelmann, R.; Schellnhuber, H. J. Trajectories of the Earth System in the Anthropocene. Proc. Nat. Acad. Sci. U.S.A. 2018, 115 (33), 82528259,  DOI: 10.1073/pnas.1810141115
  306. 306
    Wackernagel, M.; Hanscom, L.; Jayasinghe, P.; Lin, D.; Murthy, A.; Neill, E.; Raven, P. The importance of resource security for poverty eradication. Nat. Sustainability 2021, 4 (8), 731738,  DOI: 10.1038/s41893-021-00708-4

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 4 publications.

  1. Titouan Greffe, Max Frenzel, Tim T. Werner, Gavin Mudd, Peng Wang, Manuele Margni, Cécile Bulle. Byproduct-to-Host Ratios for Assessing the Accessibility of Mineral Resources. Environmental Science & Technology 2024, 58 (50) , 22213-22223. https://doi.org/10.1021/acs.est.4c05293
  2. Ryosuke Yokoi, Masaharu Motoshita, Takeshi Matsuda, Norihiro Itsubo. Country-Specific External Costs of Abiotic Resource Use Based on User Cost Model in Life Cycle Impact Assessment. Environmental Science & Technology 2024, 58 (18) , 7849-7859. https://doi.org/10.1021/acs.est.4c00100
  3. Liyuan Liu, Juan Jin, Jiandong Liu, Wei Cheng, Minghui Zhao, Shengwen Luo, Yifan Luo, Tao Wang. Mechanical properties of sandstone under in-situ high-temperature and confinement conditions. International Journal of Minerals, Metallurgy and Materials 2025, 58 https://doi.org/10.1007/s12613-024-3047-9
  4. Mark U. Simoni, Jonna Ljunge, Daniel B. Müller. Seven principles for monitoring the physical economy. Resources, Conservation and Recycling 2025, 212 , 107902. https://doi.org/10.1016/j.resconrec.2024.107902

Environmental Science & Technology

Cite this: Environ. Sci. Technol. 2024, 58, 2, 971–990
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.est.3c03088
Published January 2, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

2672

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Simplified material flow analysis (MFA) system of the global mineral material cycle. Material flows (arrows) connect material transformation, transport, market, and storage processes (blue boxes) with or without material stocks (white boxes). Highlights in red identify three key issues that require mass-balance-consistent mineral information: geological stock accounting (section 3), monitoring of mine production (section 4), and physical systems integration (sections 5 and 6).

    Figure 2

    Figure 2. Different approaches for geological stock accounting: (a) reserves included as fixed stocks within the system boundary; (b) exploration interpreted as a (in)flow of material; (c) geosphere excluded from the system boundary; (d) multidimensional and mass-balance (MB)-consistent geological stock model. Approaches (a) and (b) violate material flow analysis (MFA) principles, (c) is permissible but uninformative, and (d) is the spatiotemporally explicit conceptual approach.

    Figure 3

    Figure 3. Physical monitoring of mine production. (a) Mine planning: The natural characteristics of mineral deposits such as depth and ore grade, combined with mine design and operating efficiency, determine the expected (ex-ante) material flows. Figure not to scale, modified after ref (163). (b) Material flows and sustainability: Material flows of mining are interlinked with environmental, social, and governance (ESG) issues and tracking them is thus crucial for the Social License to Operate (SLO) and Sustainable Development License to Operate (SDLO). (c) Reference system for physical monitoring: A standardized material flow analysis (MFA) system definition with explicit reference points and a mutually agreed-upon terminology facilitates systematic reporting and enables mass-balance-consistent monitoring of mine production flows.

    Figure 4

    Figure 4. Multidimensional geological stock accounting illustrated as a cube with 27 voxels at three reference points (t0, t1, t2). (a) Geological stock accounting monitors changes of the physical domain over time and shows historical extraction as a measured reduction of the total stock S by 0.5 voxels from 27 → 26.5 during t0 → t1 and anticipated further reduction 26.5 → 26 during t1 → t2, assuming stock scenario S1. Exploration activity changes only the attributes (e.g., ore grade) and associated uncertainty of the geological stock characterization (2 voxels from 0% → 25–50% confidence during t0 → t1, and from 25 to 50% →>75% during t1 → t2, assuming stock scenario S1). (b) Resource classification acts as a filter domain that selectively appraises parts of the geological stock to report reserves and resources, while omitting the rest of the geological stock including known but low grade (barren) voxels; Individual geological stock voxels may remain physically unchanged but may nevertheless be reclassified as time passes (1 resources to 1 reserves during t0 → t1) or vice versa (1 reserves to 1 resources during t1 → t2 assuming resource classification scenario S1,ii(t2)). (c) Uncertainty attribution is considered as two separate steps: step c[a] addresses solely the uncertainty of the physical attributes for stock quantification; step c[b] incorporates the additional uncertainty of socioeconomic assumptions of resource classification. Color hue (red, green, blue) represents three ore grade classes relative to average crustal abundance (depleted, average to low grade, enriched); color saturation (0–25, 25–50, 50–75, 75–100) shows the confidence in the results (unknown to complete knowledge). MB, mass-balance.

    Figure 5

    Figure 5. (a) Today’s information flows on nonrenewable mineral resources result in incomplete, fragmented, and inconsistent knowledge that is unsuitable for addressing systemic issues related to sustainable resource management. (b) The proposed monitoring of physical systems is based on an Open Government Data (OGD) framework that supports multidimensional geodata integration, mass-balance (MB) consistent geological stock accounting, and spatiotemporally explicit material systems governance. PPP: Public-Private Partnership; SLO: Social License to Operate; SDLO: Sustainable Development License to Operate; GSO: Geological Survey Organization; EO: Earth Observation; IoT: Internet of Things; BIM/CIM: Building/City Information Modeling; ML: Machine Learning; AI Artificial Intelligence; AR/VR: Augmented/Virtual Reality; G2B, G2G, B2B, B2G: Government-to-Business data sharing, etc.

  • References


    This article references 306 other publications.

    1. 1
      Smith, A. The Wealth of Nations; J. M. Dent & Sons LTD: London, 1776; Vol. 1.
    2. 2
      Solow, R. M. Is the End of the World at Hand?. Challenge 1973, 16 (1), 3950,  DOI: 10.1080/05775132.1973.11469961
    3. 3
      Stiglitz, J. E. Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths. Symposium on the economics of exhaustible resources 1974, 41, 123137,  DOI: 10.2307/2296377
    4. 4
      Tilton, J. E.; Crowson, P. C. F.; DeYoung, J. H.; Eggert, R. G.; Ericsson, M.; Guzmán, J. I.; Humphreys, D.; Lagos, G.; Maxwell, P.; Radetzki, M.; Singer, D. A.; Wellmer, F.-W. Public policy and future mineral supplies. Resour. Policy 2018, 57, 5560,  DOI: 10.1016/j.resourpol.2018.01.006
    5. 5
      Castillo, E.; Eggert, R. Reconciling Diverging Views on Mineral Depletion: A Modified Cumulative Availability Curve Applied to Copper Resources. Resour. Conserv. Recycl. 2020, 161, 104896,  DOI: 10.1016/j.resconrec.2020.104896
    6. 6
      Beckerman, W. Economists, Scientists, and Environmental Catastrophe. Oxford Econ. Pap. 1972, 24 (3), 32744,  DOI: 10.1093/oxfordjournals.oep.a041225
    7. 7
      Adelman, M. A. Mineral Depletion, with Special Reference to Petroleum. Rev. Econ. Statist. 1990, 72 (1), 110,  DOI: 10.2307/2109733
    8. 8
      Krausmann, F.; Lauk, C.; Haas, W.; Wiedenhofer, D. From resource extraction to outflows of wastes and emissions: The socioeconomic metabolism of the global economy, 1900–2015. Global Environ. Change 2018, 52, 131140,  DOI: 10.1016/j.gloenvcha.2018.07.003
    9. 9
      Stuermer, M. 150 years of boom and bust: what drives mineral commodity prices?. Macroecon. Dynam. 2018, 22 (03), 702717,  DOI: 10.1017/S136510051600050X
    10. 10
      Stuermer, M. Non-renewable resource extraction over the long term: empirical evidence from global copper production. Miner. Econ. 2022, 35 (3), 617625,  DOI: 10.1007/s13563-022-00352-0
    11. 11
      Wellmer, F.-W. What we have learned from the past and how we should look forward. Miner. Econ. 2022, 35 (3), 765795,  DOI: 10.1007/s13563-021-00296-x
    12. 12
      Pooley, G.; Tupy, M. Simon Abundance Index: A New Way to Measure Availability of Resources; Policy Analysis Number 857; Cato Institute, 2018.
    13. 13
      Malthus, T. R. An Essay on the Principle of Population, As It Affects the Future Improvement of Society; J. Johnson in St Paul’s Church-yard: London, 1798; Vol. 1.
    14. 14
      Jevons, W. S. The Coal Question: An Inquiry Concerning the Progress of the Nation and the Probable Exhaustion of Our Coal-Mines; Macmillan and Co.: London, 1865.
    15. 15
      Hubbert, M. K. Nuclear energy and the fossil fuels. In Drilling and Production Practice; American Petroleum Institute: San Antonio, TX, 1956; p 40.
    16. 16
      Meadows, D. H.; Meadows, D. L.; Randers, J.; Behrens, I. I. I.; W, W. The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind; Universe Books: New York, 1972.
    17. 17
      Georgescu-Roegen, N. Energy and economic myths. Southern Econ. J. 1975, 41, 347381,  DOI: 10.2307/1056148
    18. 18
      Daly, H. E. Reply to Solow/Stiglitz. Ecological Economics 1997, 22 (3), 271273,  DOI: 10.1016/S0921-8009(97)00086-4
    19. 19
      Lawn, P. On the Ehrlich-Simon bet: Both were unskilled and Simon was lucky. Ecological Economics 2010, 69 (11), 20452046,  DOI: 10.1016/j.ecolecon.2010.07.009
    20. 20
      Wellmer, F.-W. Geology and Mining: A Symbiotic Cooperation?!. Mining 2022, 2 (2), 402424,  DOI: 10.3390/mining2020021
    21. 21
      Global Material Resources Outlook to 2060 - Economic Drivers and Environmental Consequences In Organisation for Economic Co-operation and Development Paris; OECD, 2019; p 212.
    22. 22
      Global Resources Outlook 2019: Natural Resources for the Future We Want; United Nations Environment Programme, International Resource Panel: Paris, 2019; DTI/2226/NA.
    23. 23
      Northey, S.; Mohr, S.; Mudd, G. M.; Weng, Z.; Giurco, D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour. Conserv. Recycl. 2014, 83, 190201,  DOI: 10.1016/j.resconrec.2013.10.005
    24. 24
      Calvo, G.; Mudd, G.; Valero, A.; Valero, A. Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?. Resources 2016, 5 (4), 36,  DOI: 10.3390/resources5040036
    25. 25
      Conde, M. Resistance to Mining. A Review. Ecological Economics 2017, 132, 8090,  DOI: 10.1016/j.ecolecon.2016.08.025
    26. 26
      Andrews, T.; Gamu, J.; Billon, P. L.; Oh, C. H.; Reyes, D.; Shin, J. Role of Host Governments in Enabling or Preventing Conflict Associated with Mining, Full-length version; United Nations Development Programme: New York, 2018.
    27. 27
      The IPBES Assessment Report on Land Degradation and Restoration; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES): Bonn, Germany, 2018.  DOI: 10.5281/zenodo.3237392 .
    28. 28
      Rötzer, N.; Schmidt, M. Historical, Current, and Future Energy Demand from Global Copper Production and Its Impact on Climate Change. Resources 2020, 9 (4), 44,  DOI: 10.3390/resources9040044
    29. 29
      Luckeneder, S.; Giljum, S.; Schaffartzik, A.; Maus, V.; Tost, M. Surge in global metal mining threatens vulnerable ecosystems. Global Environ. Change 2021, 69, 102303,  DOI: 10.1016/j.gloenvcha.2021.102303
    30. 30
      Turner, G. Is Global Collapse Imminent? An Updated Comparison of the Limits to Growth with Historical Data; Melbourne Sustainable Society Institute, The University of Melbourne: 2014.
    31. 31
      Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthropocene Review 2015, 2 (1), 8198,  DOI: 10.1177/2053019614564785
    32. 32
      Northey, S. A.; Mudd, G. M.; Werner, T. T.; Jowitt, S. M.; Haque, N.; Yellishetty, M.; Weng, Z. The exposure of global base metal resources to water criticality, scarcity and climate change. Global Environ. Change 2017, 44, 109124,  DOI: 10.1016/j.gloenvcha.2017.04.004
    33. 33
      Savinova, E.; Evans, C.; Lebre, E.; Stringer, M.; Azadi, M.; Valenta, R.K. Will global cobalt supply meet demand? The geological, mineral processing, production and geographic risk profile of cobalt. Resour. Conserv. Recycl. 2023, 190, 106855,  DOI: 10.1016/j.resconrec.2022.106855
    34. 34
      Lusty, P. A. J.; Gunn, A. G. Challenges to global mineral resource security and options for future supply. Geological Society, London, Special Publications 2015, 393 (1), 265276,  DOI: 10.1144/SP393.13
    35. 35
      Calvo, G.; Valero, A.; Valero, A. Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources. Resour. Conserv. Recycl. 2017, 125, 208217,  DOI: 10.1016/j.resconrec.2017.06.009
    36. 36
      Turcheniuk, K.; Bondarev, D.; Singhal, V.; Yushin, G. Ten years left to redesign lithium-ion batteries. Nature 2018, 559 (7715), 467470,  DOI: 10.1038/d41586-018-05752-3
    37. 37
      Schmidt, M. Scarcity and Environmental Impact of Mineral Resources─An Old and Never-Ending Discussion. Resources 2019, 8 (1), 2,  DOI: 10.3390/resources8010002
    38. 38
      Henckens, T. Scarce mineral resources: Extraction, consumption and limits of sustainability. Resour. Conserv. Recycl. 2021, 169, 105511,  DOI: 10.1016/j.resconrec.2021.105511
    39. 39
      Sverdrup, H. U.; Olafsdottir, A. H.; Ragnarsdottir, K. V. Development of a Biophysical Economics Module for the Global Integrated Assessment Model WORLD7. In Feedback Economics: Economic Modeling with System Dynamics; Cavana, R. Y., Dangerfield, B. C., Pavlov, O. V., Radzicki, M. J., Wheat, I. D., Eds.; Springer International Publishing: Cham, 2021; pp 247283.
    40. 40
      Nassar, N. T.; Lederer, G. W.; Brainard, J. L.; Padilla, A. J.; Lessard, J. D. Rock-to-Metal Ratio: A Foundational Metric for Understanding Mine Wastes. Environ. Sci. Technol. 2022, 56 (10), 67106721,  DOI: 10.1021/acs.est.1c07875
    41. 41
      Bide, T.; Brown, T. J.; Gunn, A. G.; Deady, E. Development of decision-making tools to create a harmonised UK national mineral resource inventory using the United Nations Framework Classification. Resources Polym. 2022, 76, 102558,  DOI: 10.1016/j.resourpol.2022.102558
    42. 42
      Jorgensen, L. F.; Wittenberg, A.; Deady, E.; Kumelj, Š.; Tulstrup, J. European mineral intelligence - collecting, harmonizing and sharing data on European raw materials. Geological Society, London, Special Publications 2023, 526 (1), 5167,  DOI: 10.1144/SP526-2022-179
    43. 43
      Graedel, T. E.; Barr, R.; Cordier, D.; Enriquez, M.; Hagelüken, C.; Hammond, N. Q.; Kesler, S.; Mudd, G.; Nassar, N.; Peacey, J.; Reck, B. K.; Robb, L.; Skinner, B. J.; Turnbull, I.; Santos, R. V.; Wall, F.; Wittmer, D. Estimating Long-Run Geological Stocks of Metals; Working Group on Geological Stocks of Metals, UNEP International Panel on Sustainable Resource Management: Paris, 2011.
    44. 44
      Wellmer, F. W.; Scholz, R. W. Peak minerals: What can we learn from the history of mineral economics and the cases of gold and phosphorus?. Miner. Econ. 2017, 30 (2), 7393,  DOI: 10.1007/s13563-016-0094-3
    45. 45
      Weber, L.; Reichl, C. Mineral statistics─useful tool or needless exercise?. Mineral economics: raw materials report 2022, 35 (3–4), 569586,  DOI: 10.1007/s13563-022-00314-6
    46. 46
      West, J.; Lieber, M.; Lutter, S.; Schandl, H. Proposal for a new compilation system for metal ores in economy wide material flow accounting. J. Ind. Ecol. 2020, 24 (6), 12201233,  DOI: 10.1111/jiec.13015
    47. 47
      Northey, S. A.; Klose, S.; Pauliuk, S.; Yellishetty, M.; Giurco, D. Primary Exploration, Mining and Metal Supply Scenario (PEMMSS) model: Towards a stochastic understanding of the mineral discovery, mine development and co-product recovery requirements to meet demand in a low-carbon future. Resources, Conservation & Recycling Advances 2023, 17, 200137,  DOI: 10.1016/j.rcradv.2023.200137
    48. 48
      Singer, D. A. Comparison of expert estimates of number of undiscovered mineral deposits with mineral deposit densities. Ore Geol. Rev. 2018, 99, 235243,  DOI: 10.1016/j.oregeorev.2018.06.019
    49. 49
      Mudd, G. M.; Jowitt, S. M. The New Century for Nickel Resources, Reserves, and Mining: Reassessing the Sustainability of the Devil’s Metal. Econ. Geol. 2022, 117 (8), 19611983,  DOI: 10.5382/econgeo.4950
    50. 50
      Mudd, G. M.; Jowitt, S. M.; Werner, T. T. The world’s by-product and critical metal resources part I: Uncertainties, current reporting practices, implications and grounds for optimizm. Ore Geol. Rev. 2017, 86, 924938,  DOI: 10.1016/j.oregeorev.2016.05.001
    51. 51
      Northey, S. A.; Mudd, G. M.; Werner, T. T. Unresolved Complexity in Assessments of Mineral Resource Depletion and Availability. Nat. Resour. Res. 2018, 27 (2), 241255,  DOI: 10.1007/s11053-017-9352-5
    52. 52
      Simoni, M. U.; Aslaksen Aasly, K.; Eilu, P.; Schjødt, F. Mintell4 EU Deliverable D4.1. Case Study Review with Guidance and Examples for Applying the UNFC to European Mineral Resources; Geological Survey of Norway (NGU): Trondheim, Norway, 2021.
    53. 53
      Sustainability Reporting in the Mining Sector - Current Status and Future Trends; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2020.
    54. 54
      Lebre, E.; Owen, J. R.; Kemp, D.; Valenta, R. K. Complex orebodies and future global metal supply: An introduction. Resour. Policy 2022, 77, 102696,  DOI: 10.1016/j.resourpol.2022.102696
    55. 55
      Sala, S.; Ciuffo, B.; Nijkamp, P. A systemic framework for sustainability assessment. Ecological Economics 2015, 119, 314325,  DOI: 10.1016/j.ecolecon.2015.09.015
    56. 56
      Gorman, M. R.; Dzombak, D. A. A review of sustainable mining and resource management: Transitioning from the life cycle of the mine to the life cycle of the mineral. Resour. Conserv. Recycl. 2018, 137, 281291,  DOI: 10.1016/j.resconrec.2018.06.001
    57. 57
      Schandl, H.; Müller, D. B.; Moriguchi, Y. Socioeconomic Metabolism Takes the Stage in the International Environmental Policy Debate: A Special Issue to Review Research Progress and Policy Impacts. J. Ind. Ecol. 2015, 19 (5), 689694,  DOI: 10.1111/jiec.12357
    58. 58
      Turner, G. M.; Poldy, F. Let’s Get Physical: Creating a Stocks and Flows View of the Australian Economy. In MODSIM 2001, Canberra, Australia, 2001; pp 16371642.
    59. 59
      Forrester, J. W. Industrial Dynamics. A major breakthrough for decision makers. Harvard Bus. Rev. 1958, 36 (4), 3766
    60. 60
      Fischer-Kowalski, M. Society’s Metabolism - The Intellectual History of Materials Flow Analysis, Part I, 1860–1970. J. Ind. Ecol. 1998, 2 (1), 6178,  DOI: 10.1162/jiec.1998.2.1.61
    61. 61
      Ayres, R. U. Industrial metabolism. In Technology and Environment, Ausubel, J. H., Sladovich, H. E., Eds. The National Academies Press: Washington, D..C., 1989; Vol. 1989, pp 2349.
    62. 62
      Frosch, R. A.; Gallopoulos, N. E. Strategies for manufacturing. Sci. Am. 1989, 261 (3), 144152,  DOI: 10.1038/scientificamerican0989-144
    63. 63
      Graedel, T. E.; Allenby, B. R.; Telephone, A.; Company, T. Industrial Ecology; Prentice Hall, 1995.
    64. 64
      Sterman, J. D. Business Dynamics; McGraw-Hill, 2000.
    65. 65
      Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 1132,  DOI: 10.1016/j.jclepro.2015.09.007
    66. 66
      Haberl, H.; Wiedenhofer, D.; Pauliuk, S.; Krausmann, F.; Müller, D. B.; Fischer-Kowalski, M. Contributions of sociometabolic research to sustainability science. Nat. Sustainability 2019, 2 (3), 173184,  DOI: 10.1038/s41893-019-0225-2
    67. 67
      Ayres, R. U.; Kneese, A. V. Production, consumption, and externalities. Am. Econ. Rev. 1969, 59 (3), 282297
    68. 68
      Baccini, P.; Brunner, P. H. Metabolism of the Anthroposphere; Springer: Berlin; New York, 1991.
    69. 69
      Brunner, P. H.; Rechberger, H. Practical Handbook of Material Flow Analysis; CRC Press/LewisPublishers: Boca Raton, FL, 2004.
    70. 70
      Brunner, P. H.; Rechberger, H. Practical Handbook of Material Flow Analysis: For Environmental, Resource, and Waste Engineers, 2nd ed.; CRC Press: Boca Raton, 2017.
    71. 71
      Cullen, J. M.; Cooper, D. R. Material Flows and Efficiency. Annu. Rev. Mater. Res. 2022, 52 (1), 525559,  DOI: 10.1146/annurev-matsci-070218-125903
    72. 72
      de Lavoisier, A.-L. Traité Élémentaire de Chimie; Chez Cuchet, libraire: Paris, 1789; Vol. 1.
    73. 73
      Martins, R. A priori components of science: Lavoisier and the law of conservation of mass in chemical reactions. In Studies in History and Philosophy of Science II; Quamcumque Editum, 2021; pp 571.
    74. 74
      Hartig, G. L. Anweisung zur Taxation der Forste, oder zur Bestimmung des Holzertrags der Wälder; Heyer: Giessen, 1795.
    75. 75
      Kurth, H.; Gerold, D.; Ulbricht, R. Forsteinrichtung: Nachhaltige Regelung des Waldes. DLV-Verlag: Berlin, 1994.
    76. 76
      Müller, D. B.; Bader, H.-P.; Baccini, P. Long-term Coordination of Timber Production and Consumption Using a Dynamic Material and Energy Flow Analysis. J. Ind. Ecol. 2004, 8 (3), 6588,  DOI: 10.1162/1088198042442342
    77. 77
      Anonymous. Mass-Balance Terms. J. Glaciol. 1969, 8 (52), 37. DOI: 10.3189/S0022143000020736
    78. 78
      Cogley, J. G. Mass-balance terms revisited. J. Glaciol. 2010, 56 (200), 9971001,  DOI: 10.3189/002214311796406040
    79. 79
      Mellor, M. Mass balance studies in Antarctica. J. Glaciol. 1959, 3 (26), 522533,  DOI: 10.3189/S0022143000017275
    80. 80
      Korzoun, V. I. World Water Balance and Water Resources of the Earth; USSR Committee for the International Hydrological Decade: Paris, 1978.
    81. 81
      Aeschbach-Hertig, W.; Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 2012, 5 (12), 853861,  DOI: 10.1038/ngeo1617
    82. 82
      Peters-Lidard, C. D.; Hossain, F.; Leung, L. R.; McDowell, N.; Rodell, M.; Tapiador, F. J.; Turk, F. J.; Wood, A. 100 Years of Progress in Hydrology. Meteorological Monographs 2018, 59, 25.125.51,  DOI: 10.1175/AMSMONOGRAPHS-D-18-0019.1
    83. 83
      Le Quéré, C.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Peters, G. P.; Manning, A. C.; Boden, T. A.; Tans, P. P.; Houghton, R. A.; Keeling, R. F.; Alin, S.; Andrews, O. D.; Anthoni, P.; Barbero, L.; Bopp, L.; Chevallier, F.; Chini, L. P.; Ciais, P.; Currie, K.; Delire, C.; Doney, S. C.; Friedlingstein, P.; Gkritzalis, T.; Harris, I.; Hauck, J.; Haverd, V.; Hoppema, M.; Klein Goldewijk, K.; Jain, A. K.; Kato, E.; Körtzinger, A.; Landschützer, P.; Lefèvre, N.; Lenton, A.; Lienert, S.; Lombardozzi, D.; Melton, J. R.; Metzl, N.; Millero, F.; Monteiro, P. M. S.; Munro, D. R.; Nabel, J. E. M. S.; Nakaoka, S.; O’Brien, K.; Olsen, A.; Omar, A. M.; Ono, T.; Pierrot, D.; Poulter, B.; Rödenbeck, C.; Salisbury, J.; Schuster, U.; Schwinger, J.; Séférian, R.; Skjelvan, I.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tian, H.; Tilbrook, B.; van der Laan-Luijkx, I. T.; van der Werf, G. R.; Viovy, N.; Walker, A. P.; Wiltshire, A. J.; Zaehle, S. Global Carbon Budget 2016. Earth Syst. Sci. Data 2016, 8 (2), 605649,  DOI: 10.5194/essd-8-605-2016
    84. 84
      Wiese, D. N.; Bienstock, B.; Blackwood, C.; Chrone, J.; Loomis, B. D.; Sauber, J.; Rodell, M.; Baize, R.; Bearden, D.; Case, K.; Horner, S.; Luthcke, S.; Reager, J. T.; Srinivasan, M.; Tsaoussi, L.; Webb, F.; Whitehurst, A.; Zlotnicki, V. The Mass Change Designated Observable Study: Overview and Results. Earth Space Sci. 2022, 9 (8), e2022EA002311  DOI: 10.1029/2022EA002311
    85. 85
      Lyell, C. Principles of Geology: Being an Inquiry how Far the Former Changes of the Earth’s Surface are Referable to Causes Now in Operation; John Murray: London, 1830; Vol. 1.
    86. 86
      Rudwick, M. J. S. The Strategy of Lyell’s Principles of Geology. Isis 1970, 61 (1), 533,  DOI: 10.1086/350576
    87. 87
      Syvitski, J.; Ángel, J. R.; Saito, Y.; Overeem, I.; Vörösmarty, C. J.; Wang, H.; Olago, D. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 2022, 3 (3), 179196,  DOI: 10.1038/s43017-021-00253-w
    88. 88
      Odeh, A. S. Reservoir Simulation···What Is It. J. Pet. Technol. 1969, 21 (11), 13831388,  DOI: 10.2118/2790-PA
    89. 89
      Magoon, L. B.; Dow, W. G. The Petroleum System─From Source to Trap. AAPG Memoir 1994, 60, 324,  DOI: 10.1306/M60585C1
    90. 90
      Wiegel, R. L. Advances in mineral processing material balances. Can. Metall. Q. 1972, 11 (2), 413424,  DOI: 10.1179/cmq.1972.11.2.413
    91. 91
      Hodouin, D. Methods for automatic control, observation, and optimization in mineral processing plants. Journal of Process Control 2011, 21 (2), 211225,  DOI: 10.1016/j.jprocont.2010.10.016
    92. 92
      Wolman, A. The Metabolism of Cities. Sci. Am. 1965, 213 (3), 178193,  DOI: 10.1038/scientificamerican0965-178
    93. 93
      Kennedy, C.; Pincetl, S.; Bunje, P. The study of urban metabolism and its applications to urban planning and design. Environ. Pollut. 2011, 159 (8), 19651973,  DOI: 10.1016/j.envpol.2010.10.022
    94. 94
      Müller, D. B.; Billy, R.; Simoni, M. U.; Petavratzi, E.; Liu, G.; Rechberger, H.; Lundhaug, M. C.; Cullen, J. M. Maps of the physical economy to inform sustainability strategies. In Handbook of Recycling, 2nd ed.; Meskers, C., Worrell, E., Reuter, M. A., Eds.; Elsevier: Waltham, USA, 2023; pp 118.
    95. 95
      Gonzalez Hernandez, A.; Lupton, R. C.; Williams, C.; Cullen, J. M. Control data, Sankey diagrams, and exergy: Assessing the resource efficiency of industrial plants. Appl. Energy 2018, 218, 232245,  DOI: 10.1016/j.apenergy.2018.02.181
    96. 96
      Lupton, R. C.; Allwood, J. M. Hybrid Sankey diagrams: Visual analysis of multidimensional data for understanding resource use. Resour. Conserv. Recycl. 2017, 124, 141151,  DOI: 10.1016/j.resconrec.2017.05.002
    97. 97
      Billy, R. G.; Monnier, L.; Nybakke, E.; Isaksen, M.; Müller, D. B. Systemic Approaches for Emission Reduction in Industrial Plants Based on Physical Accounting: Example for an Aluminum Smelter. Environ. Sci. Technol. 2022, 56 (3), 19731982,  DOI: 10.1021/acs.est.1c05681
    98. 98
      IAI. The Global Aluminium Cycle - Aluminium Stocks and Flows Visualization, 2023. https://alucycle.international-aluminium.org/. (accessed 14.08.2023).
    99. 99
      Torres De Matos, C.; Wittmer, D.; Mathieux, F.; Pennington, D. Revision of the Material System Analyses Specifications; JRC118827; European Commission: Luxembourg, 2020. DOI: 10.2760/374178 .
    100. 100
      Padilla, A. J.; Nassar, N. T. Dynamic material flow analysis of tantalum in the United States from 2002 to 2020. Resour. Conserv. Recycl. 2023, 190, 106783,  DOI: 10.1016/j.resconrec.2022.106783
    101. 101
      McCaffrey, D. M.; Nassar, N. T.; Jowitt, S. M.; Padilla, A. J.; Bird, L. R. Embedded critical material flow: The case of niobium, the United States, and China. Resour. Conserv. Recycl. 2023, 188, 106698,  DOI: 10.1016/j.resconrec.2022.106698
    102. 102
      Alonso, E.; Pineault, D. G.; Gambogi, J.; Nassar, N. T. Mapping first to final uses for rare earth elements, globally and in the United States. J. Ind. Ecol. 2023, 27 (1), 312322,  DOI: 10.1111/jiec.13354
    103. 103
      Petavratzi, E.; Gunn, G. Decarbonising the automotive sector: a primary raw material perspective on targets and timescales. Miner. Econ. 2023. 36 545 DOI: 10.1007/s13563-022-00334-2
    104. 104
      McKelvey, V. E. Mineral Resource Estimates and Public Policy: Better methods for estimating the magnitude of potential mineral resources are needed to provide the knowledge that should guide the design of many key public policies. Am. Sci. 1972, 60 (1), 3240
    105. 105
      Skinner, B. J. Earth resources. Proc. Nat. Acad. Sci. U.S.A. 1979, 76 (9), 42124217,  DOI: 10.1073/pnas.76.9.4212
    106. 106
      Kesler, S. E. Geological Stocks and Prospects for Nonrenewable Resources. In Linkages of Sustainability; Graedel, T. E.; van der Voet, E., Eds. The MIT Press: Cambridge, Mass., 2009.
    107. 107
      NEA, IAEA. Uranium 2020: Resources, Production and Demand; NEA No. 7413; OECD Publishing: Paris, 2021. DOI: 10.1787/d82388ab-en .
    108. 108
      Arndt, N. T.; Fontboté, L.; Hedenquist, J. W.; Kesler, S. E.; Thompson, J. F. H.; Wood, D. G. Metals and Minerals, Now and in The Future. Geochem. Perspect. 2017, 6 (1), 317
    109. 109
      West, J. Extractable global resources and the future availability of metal stocks: “Known Unknowns” for the foreseeable future. Resour. Policy 2020, 65, 101574,  DOI: 10.1016/j.resourpol.2019.101574
    110. 110
      Andrews, G. C.; Shaw, P.; McPhee, J. Canadian Professional Engineering and Geoscience: Practice and Ethics, 6 ed.; Nelson: Toronto, 2019.
    111. 111
      Meinert, L. D.; Robinson, G. R., Jr; Nassar, N. T. Mineral resources: Reserves, peak production and the future. Resources 2016, 5 (1), 14,  DOI: 10.3390/resources5010014
    112. 112
      International Reporting Template for the Public Reporting of Exploration Results, Mineral Resources and Mineral Reserves; Committee for Mineral Reserves International Reporting Standards (CRIRSCO) and International Council on Mining & Metals (ICMM): London, 2013.
    113. 113
      Guidance Note on Competency Requirements for the Estimation, Classification and Management of Resources; ECE/ENERGY/GE.3/2022/4; United Nations Economic Commission for Europe, 2022.
    114. 114
      IFRS. Extractive Activities - Reserve and Resource Reporting; International Accounting Standards Board (IASB), 2020.
    115. 115
      Mineral Commodity Summaries 2019 - Appendix C - Reserves and Resources; U.S. Geological Survey: Reston, VA, 2023. DOI: 10.3133/mcs2023 .
    116. 116
      UNECE. United Nations Framework Classification for Resources Update 2019; ECE/ENERGY/125; United Nations Economic Commission for Europe: Geneva, Switzerland, 2019.
    117. 117
      Volchko, Y.; Norrman, J.; Ericsson, L. O.; Nilsson, K. L.; Markstedt, A.; Öberg, M.; Mossmark, F.; Bobylev, N.; Tengborg, P. Subsurface planning: Towards a common understanding of the subsurface as a multifunctional resource. Land Use Policy 2020, 90, 104316,  DOI: 10.1016/j.landusepol.2019.104316
    118. 118
      Faber, M.; Frank, K.; Klauer, B.; Manstetten, R.; Schiller, J.; Wissel, C. On the foundation of a general theory of stocks. Ecological Economics 2005, 55 (2), 155172,  DOI: 10.1016/j.ecolecon.2005.06.006
    119. 119
      Pauliuk, S.; Majeau-Bettez, G.; Müller, D. B.; Hertwich, E. G. Toward a Practical Ontology for Socioeconomic Metabolism. J. Ind. Ecol. 2016, 20 (6), 12601272,  DOI: 10.1111/jiec.12386
    120. 120
      USGS. NADM Conceptual Model 1.0 - A Conceptual Model for Geologic Map Information; 2004–1334; U.S. Geological Survey: Reston, VA, 2004. DOI: 10.3133/ofr20041334 .
    121. 121
      Cohen, D. Earth’s natural wealth: an audit. New Scientist 2007, 194, 3441, 23 May 2007  DOI: 10.1016/S0262-4079(07)61315-3
    122. 122
      Zimmermann, E. W. World Resources and Industries: A Functional Appraisal of the Availability of Agricultural and Industrial Materials, revised ed.; Harper & Row: New York, 1951.
    123. 123
      Mudd, G. M. Assessing the Availability of Global Metals and Minerals for the Sustainable Century: From Aluminium to Zirconium. Sustainability 2021, 13 (19), 10855,  DOI: 10.3390/su131910855
    124. 124
      Zeng, X. Win-Win: Anthropogenic circularity for metal criticality and carbon neutrality. Frontiers of Environmental Science & Engineering 2023, 17 (2), 23,  DOI: 10.1007/s11783-023-1623-2
    125. 125
      Ray, G. F. Mineral reserves: Projected lifetimes and security of supply. Resour. Policy 1984, 10 (2), 7580,  DOI: 10.1016/0301-4207(84)90016-3
    126. 126
      Mudd, G. M.; Jowitt, S. M. Growing Global Copper Resources, Reserves and Production: Discovery Is Not the Only Control on Supply. Econ. Geol. 2018, 113 (6), 12351267,  DOI: 10.5382/econgeo.2018.4590
    127. 127
      Ericsson, M.; Drielsma, J.; Humphreys, D.; Storm, P.; Weihed, P. Why current assessments of ‘future efforts’ are no basis for establishing policies on material use─a response to research on ore grades. Miner. Econ. 2019, 32 (1), 111121,  DOI: 10.1007/s13563-019-00175-6
    128. 128
      Skinner, B. J. Exploring the resource base. In Resources for the Future (RFF) Workshop on “The Long-Run Availability of Minerals”; Resources for the Future (RFF) and the Mining, Minerals and Sustainable Development Project (MMSD): Washington, D.C., 2001; p 25.
    129. 129
      Skinner, B. J. A Second Iron Age Ahead? The distribution of chemical elements in the earth’s crust sets natural limits to man’s supply of metals that are much more important to the future of society than limits on energy. Am. Sci. 1976, 64 (3), 258269
    130. 130
      Arndt, N.; Fontboté, L.; Hedenquist, J.; Kesler, S.; Thompson, J.; Wood, D. Future Global Mineral Resources. Geochem. Perspect. 2017, 6 (1), 1171,  DOI: 10.7185/geochempersp.6.1
    131. 131
      United States Bureau of Mines. Dictionary of Mining, Mineral, and Related Terms, 2nd ed.; American Geological Institute: Alexandria, VA, 1997.
    132. 132
      Jowitt, S. M.; Mudd, G. M.; Thompson, J. F. H. Future availability of non-renewable metal resources and the influence of environmental, social, and governance conflicts on metal production. Commun. Earth Environ. 2020, 1 (1), 13,  DOI: 10.1038/s43247-020-0011-0
    133. 133
      Benndorf, J. A Closed-Loop Approach for Mineral Resource Extraction. In Closed Loop Management in Mineral Resource Extraction: Turning Online Geo-Data into Mining Intelligence; Springer International Publishing: Cham, 2020; pp 517.
    134. 134
      Ghorbani, Y.; Nwaila, G. T.; Chirisa, M. Systematic Framework toward a Highly Reliable Approach in Metal Accounting. Miner. Process. Extr. Metall. Rev. 2022, 43 (5), 664678,  DOI: 10.1080/08827508.2020.1784164
    135. 135
      Emery, X.; Ortiz, J. M.; Rodríguez, J. J. Quantifying Uncertainty in Mineral Resources by Use of Classification Schemes and Conditional Simulations. Math. Geol. 2006, 38 (4), 445464,  DOI: 10.1007/s11004-005-9021-9
    136. 136
      Sonderegger, T.; Berger, M.; Alvarenga, R.; Bach, V.; Cimprich, A.; Dewulf, J.; Frischknecht, R.; Guinée, J.; Helbig, C.; Huppertz, T.; Jolliet, O.; Motoshita, M.; Northey, S.; Rugani, B.; Schrijvers, D.; Schulze, R.; Sonnemann, G.; Valero, A.; Weidema, B. P.; Young, S. B. Mineral resources in life cycle impact assessment─part I: a critical review of existing methods. Int. J. Life Cycle Assess. 2020, 25 (4), 784797,  DOI: 10.1007/s11367-020-01736-6
    137. 137
      Whiting, T. H.; Schodde, R. C. Why do brownfields exploration? In International Mine Management 2006; Australasian Institute of Mining and Metallurgy: Melbourne, 2006; pp 4150.
    138. 138
      Solow, R. M. Resources and Economic Growth. American Economist 1978, 22 (2), 511,  DOI: 10.1177/056943457802200201
    139. 139
      Tilton, J. E. The Hubbert peak model and assessing the threat of mineral depletion. Resour. Conserv. Recycl. 2018, 139, 280286,  DOI: 10.1016/j.resconrec.2018.08.026
    140. 140
      Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566 (7743), 195204,  DOI: 10.1038/s41586-019-0912-1
    141. 141
      Steffen, W.; Richardson, K.; Rockström, J.; Schellnhuber, H. J.; Dube, O. P.; Dutreuil, S.; Lenton, T. M.; Lubchenco, J. The emergence and evolution of Earth System Science. Nat. Rev. Earth Environ. 2020, 1 (1), 5463,  DOI: 10.1038/s43017-019-0005-6
    142. 142
      Prior, T.; Giurco, D.; Mudd, G.; Mason, L.; Behrisch, J. Resource depletion, peak minerals and the implications for sustainable resource management. Global Environ. Change 2012, 22 (3), 577587,  DOI: 10.1016/j.gloenvcha.2011.08.009
    143. 143
      Dewulf, J.; Hellweg, S.; Pfister, S.; León, M. F. G.; Sonderegger, T.; de Matos, C. T.; Blengini, G. A.; Mathieux, F. Towards sustainable resource management: identification and quantification of human actions that compromise the accessibility of metal resources. Resour. Conserv. Recycl. 2021, 167, 105403,  DOI: 10.1016/j.resconrec.2021.105403
    144. 144
      Tanzer, J.; Rechberger, H. Setting the Common Ground: A Generic Framework for Material Flow Analysis of Complex Systems. Recycling 2019, 4 (2), 23,  DOI: 10.3390/recycling4020023
    145. 145
      United Nations; European Commission; Food and Agricultural Organization of the United Nations; International Monetary Fund; Organization for Economic Co-operation and Development; World Bank. System of Environmental-Economic Accounting 2012: Central Framework; United Nations: Washington, 2014. DOI: 10.5089/9789211615630.069 .
    146. 146
      Sonesson, C.; Davidson, G.; Sachs, L. Mapping Mining to the Sustainable Development Goals: An Atlas; Geneva, Switzerland, 2016.
    147. 147
      Mining and the SDGs: A 2020 Status Update; RMF, CCS: Nyon, Switzerland, 2020. DOI: 10.2139/ssrn.3726386 .
    148. 148
      RMI Report 2022 - Summary; Responsible Mining Foundation (RMF): Ontwerp, NL, 2022.
    149. 149
      Steiner, G.; Geissler, B.; Watson, I.; Mew, M. C. Efficiency developments in phosphate rock mining over the last three decades. Resour. Conserv. Recycl. 2015, 105, 235245,  DOI: 10.1016/j.resconrec.2015.10.004
    150. 150
      Lèbre, C.; Owen, J. R.; Corder, G. D.; Kemp, D.; Stringer, M.; Valenta, R. K. Source Risks As Constraints to Future Metal Supply. Environ. Sci. Technol. 2019, 53 (18), 1057110579,  DOI: 10.1021/acs.est.9b02808
    151. 151
      Mine-Site Study 2019: Mine-Site ESG Data Disclosure by Small and Mid-Tier Mining Companies; Responsible Mining Foundation (RMF): Antwerp, NL, 2019.
    152. 152
      McLellan, B. C.; Corder, G. D. Risk reduction through early assessment and integration of sustainability in design in the minerals industry. J. Clean. Prod. 2013, 53 (0), 3746,  DOI: 10.1016/j.jclepro.2012.02.014
    153. 153
      Noble, A. C. Mineral resource estimation. In SME Mining Engineering Handbook, 3rd ed.; Darling, P., Ed.; Society for Mining, Metallurgy, and Exploration: Englewood, CO, 2011; pp 203217.
    154. 154
      Pell, R.; Tijsseling, L.; Palmer, L. W.; Glass, H. J.; Yan, X.; Wall, F.; Zeng, X.; Li, J. Environmental optimization of mine scheduling through life cycle assessment integration. Resour. Conserv. Recycl. 2019, 142, 267276,  DOI: 10.1016/j.resconrec.2018.11.022
    155. 155
      Hustrulid, W. A.; Kuchta, M.; Martin, R. K. Open Pit Mine Planning and Design. 3rd ed.; CRC Press: London, 2013.
    156. 156
      Mineral Resource Governance in the 21st Century: Gearing Extractive Industries Towards Sustainable Development; International Resource Panel, United Nations Environment Programme: Nairobi, Kenya, 2020.
    157. 157
      Dehaine, Q.; Tijsseling, L. T.; Glass, H. J.; Törmänen, T.; Butcher, A. R. Geometallurgy of cobalt ores: A review. Miner. Eng. 2021, 160, 106656,  DOI: 10.1016/j.mineng.2020.106656
    158. 158
      Bide, T.; Horvath, Z.; Brown, T.; Idoine, N.; Lauko, A.; Sores, L.; Petavratzi, E.; McGrath, E.; Bavec, S.; Rokavec, D.; Eloranta, T.; Aasly, K. ORAMA Project Deliverable 1.2. Final Analysis and Recommendations for the Improvement of Statistical Data Collection Methods in Europe for Primary Raw Materials; Brussels, 2018.
    159. 159
      Current Non-Financial Reporting Formats and Practices; European Financial Reporting Advisory Group (EFRAG): Brussels, Belgium, 2021.
    160. 160
      Minerals and Economic Development. In Breaking New Ground: Mining, Minerals and Sustainable Development; Mining, Minerals and Sustainable Development; International Institute for Environment and Development (IIED): London, 2002; pp 172196.
    161. 161
      Torres, A.; Simoni, M. U.; Keiding, J. K.; Müller, D. B.; zu Ermgassen, S. O. S. E.; Liu, J.; Jaeger, J. A. G.; Winter, M.; Lambin, E. F. Sustainability of the global sand system in the Anthropocene. One Earth 2021, 4 (5), 639650,  DOI: 10.1016/j.oneear.2021.04.011
    162. 162
      Franks, D. M.; Keenan, J.; Hailu, D. Mineral security essential to achieving the Sustainable Development Goals. Nat. Sustainability 2023, 6 (1), 2127,  DOI: 10.1038/s41893-022-00967-9
    163. 163
      European Commission. Reference Document on Best Available Techniques for Management of Tailings and Waste-Rock in Mining Activities; ST/EIPPCB/MTWR_BREF_FINAL; European Integrated Pollution Prevention and Control Bureau (EIPPCB): Seville, Spain, 2009.
    164. 164
      Graedel, T. E.; Nassar, N. T. The criticality of metals: a perspective for geologists. Geological Society, London, Special Publications 2015, 393 (1), 291302,  DOI: 10.1144/SP393.4
    165. 165
      Hayes, S. M.; McCullough, E. A. Critical minerals: A review of elemental trends in comprehensive criticality studies. Resour. Policy 2018, 59, 192199,  DOI: 10.1016/j.resourpol.2018.06.015
    166. 166
      Yan, W.; Wang, Z.; Cao, H.; Zhang, Y.; Sun, Z. Criticality assessment of metal resources in China. iScience 2021, 24 (6), 102524,  DOI: 10.1016/j.isci.2021.102524
    167. 167
      McNulty, B. A.; Jowitt, S. M. Barriers to and uncertainties in understanding and quantifying global critical mineral and element supply. iScience 2021, 24 (7), 102809,  DOI: 10.1016/j.isci.2021.102809
    168. 168
      Schrijvers, D.; Hool, A.; Blengini, G. A.; Chen, W.-Q.; Dewulf, J.; Eggert, R.; van Ellen, L.; Gauss, R.; Goddin, J.; Habib, K.; Hagelüken, C.; Hirohata, A.; Hofmann-Amtenbrink, M.; Kosmol, J.; Le Gleuher, M.; Grohol, M.; Ku, A.; Lee, M.-H.; Liu, G.; Nansai, K.; Nuss, P.; Peck, D.; Reller, A.; Sonnemann, G.; Tercero, L.; Thorenz, A.; Wäger, P. A. A review of methods and data to determine raw material criticality. Resour. Conserv. Recycl. 2020, 155, 104617,  DOI: 10.1016/j.resconrec.2019.104617
    169. 169
      Bringezu, S. Toward science-based and knowledge-based targets for global sustainable resource use. Resources 2019, 8 (3), 140,  DOI: 10.3390/resources8030140
    170. 170
      United Nations; European Commission; International Monetary Fund; Organization for Economic Co-operation and Development; World Bank. Handbook of National Accounting: Integrated Environmental and Economic Accounting; United Nations: New York, 2003.
    171. 171
      EUROSTAT. Economy-wide Material Flow Accounts. Handbook 2018 ed.; Eurostat: Luxembourg, 2018. DOI: 10.2785/158567 .
    172. 172
      Adriaanse, A.; Bringezu, S.; Hammond, A.; Moriguchi, Y.; Rodenburg, E.; Rogich, D.; Schütz, H. Resource Flows: The Material Basis of Industrial Economies; World Resources Inst.: WA, 1997.
    173. 173
      Watari, T.; McLellan, B. C.; Giurco, D.; Dominish, E.; Yamasue, E.; Nansai, K. Total material requirement for the global energy transition to 2050: A focus on transport and electricity. Resour. Conserv. Recycl. 2019, 148, 91103,  DOI: 10.1016/j.resconrec.2019.05.015
    174. 174
      Global Economy Wide Material Flow Accounting Manual; UN Environment: Nairobi, 2019.
    175. 175
      Bringezu, S. Possible Target Corridor for Sustainable Use of Global Material Resources. Resources 2015, 4 (1), 2554,  DOI: 10.3390/resources4010025
    176. 176
      Zamorano, S. Surface ore movement, storage, and recovery systems. In SME Mining Engineering Handbook, 3rd ed.; Darling, P., Ed.; Society for Mining, Metallurgy, and Exploration (SME), 2011; pp 977985.
    177. 177
      European Commission. Best Available Techniques (BAT) Reference Document for the Management of Waste from Extractive Industries in Accordance with Directive 2006/21/EC; EU Publications Office: Luxembourg, 2018. DOI: 10.2760/35297 .
    178. 178
      Baker, E.; Davies, M.; Fourie, A.; Mudd, G.; Thygesen, K. Mine Tailings Facilities: Overview and Industry Trends. In Towards Zero Harm: A Compendium of Papers Prepared for the Global Tailings Review; Global Tailings Review: London, 2020; pp 1423.
    179. 179
      Lottermoser, B. G. Mine Wastes: Characterization, Treatment and Environmental Impacts, 3rd ed.; Springer Berlin Heidelberg: Berlin, 2010.
    180. 180
      Fields, S. The earth’s open wounds: abandoned and orphaned mines. Environ. Health Perspect. 2003, 111 (3), A154A161,  DOI: 10.1289/ehp.111-a154
    181. 181
      Seymour, J. F. Hardrock Mining and the Environment: Issues of Federal Enforcement and Liability. Ecol. Law Q. 2004, 31 (4), 795956
    182. 182
      Hudson-Edwards, K. A.; Jamieson, H. E.; Lottermoser, B. G. Mine Wastes: Past, Present, Future. Elements 2011, 7 (6), 375380,  DOI: 10.2113/gselements.7.6.375
    183. 183
      Mittal, A. K. Abandoned Mines: Information on the Number of Hardrock Mines, Cost of Cleanup, and Value of Financial Assurances; Testimony Before the Subcommittee on Energy and Mineral Resources, Committee on Natural Resources, House of Representatives; US Government Accountability Office: Washington, D.C., 14.07.2011, 2011.
    184. 184
      Lottermoser, B. G. Recycling, Reuse and Rehabilitation of Mine Wastes. Elements 2011, 7 (6), 405410,  DOI: 10.2113/gselements.7.6.405
    185. 185
      Franks, D. M.; Stringer, M.; Torres-Cruz, L. A.; Baker, E.; Valenta, R.; Thygesen, K.; Matthews, A.; Howchin, J.; Barrie, S. Tailings facility disclosures reveal stability risks. Sci. Rep. 2021, 11 (1), 5353,  DOI: 10.1038/s41598-021-84897-0
    186. 186
      Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221232,  DOI: 10.1016/j.resconrec.2017.09.005
    187. 187
      Song, Q.; Li, J.; Zeng, X. Minimizing the increasing solid waste through zero waste strategy. J. Clean. Prod. 2015, 104, 199210,  DOI: 10.1016/j.jclepro.2014.08.027
    188. 188
      Hilton, J.; Moussaid, M.; Birky, B. In Comprehensive Extraction: A Key Requirement for Social Licensing of NORM Industries?; Seventh International Symposium on Naturally Occurring Radioactive Material (NORM VII); International Atomic Energy Agency, 22-26.04.2013; Beijing, China, 2013; pp 129141.
    189. 189
      MacDonald, D.; Hilton, J.; Elliott, D.; Heiberg, S.; Tulsidas, H.; Griffiths, C. In Transforming Natural Resource Management for a Sustainable Planet; SPE Annual Technical Conference and Exhibition 2018, ATCE 2018; Dallas, U.S.A., 2018; p 10.
    190. 190
      Blengini, G.; Mathieux, F.; Mancini, L.; Nyberg, M.; Viegas, H. Recovery of Critical and Other Raw Materials from Mining Waste and Landfills; Publications Office of the European Union: Luxembourg, 2019.  DOI: 10.2760/600775 .
    191. 191
      Lebre, E.; Stringer, M.; Svobodova, K.; Owen, J. R.; Kemp, D.; Cote, C.; Arratia-Solar, A.; Valenta, R. K. The social and environmental complexities of extracting energy transition metals. Nat. Commun. 2020, 11 (1), 4823,  DOI: 10.1038/s41467-020-18661-9
    192. 192
      Suppes, R.; Heuss-Aßbichler, S. Resource potential of mine wastes: A conventional and sustainable perspective on a case study tailings mining project. J. Clean. Prod. 2021, 297, 126446,  DOI: 10.1016/j.jclepro.2021.126446
    193. 193
      Žibret, G.; Lemiere, B.; Mendez, A.-M.; Cormio, C.; Sinnett, D.; Cleall, P.; Szabó, K.; Carvalho, M. T. National Mineral Waste Databases as an Information Source for Assessing Material Recovery Potential from Mine Waste, Tailings and Metallurgical Waste. Minerals 2020, 10 (5), 446,  DOI: 10.3390/min10050446
    194. 194
      The Use of Natural Resources in the Economy: A Global Manual on Economy Wide Material Flow Accounting; DEW/2356/NA; United Nations Environment Programme: Nairobi, Kenya, 2023.
    195. 195
      Lenzen, M.; Geschke, A.; West, J.; Fry, J.; Malik, A.; Giljum, S.; Milài Canals, L.; Piñero, P.; Lutter, S.; Wiedmann, T.; Li, M.; Sevenster, M.; Potočnik, J.; Teixeira, I.; Van Voore, M.; Nansai, K.; Schandl, H. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustainability 2022, 5 (2), 157166,  DOI: 10.1038/s41893-021-00811-6
    196. 196
      Lebre, E.; Corder, G. D.; Golev, A. Sustainable practices in the management of mining waste: A focus on the mineral resource. Miner. Eng. 2017, 107, 3442,  DOI: 10.1016/j.mineng.2016.12.004
    197. 197
      Tuck, C. A.; Xun, S.; Singerling, S. A. Global Iron Ore Production Data; Clarification of Reporting from USGS. Mining Eng. 2017, 69 (2), 2023
    198. 198
      Driftsplanveileder Fast fjell; Direktoratet for mineralforvaltning med Bergmesteren for Svalbard: Trondheim, 2021.
    199. 199
      CIM Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines; CIM: Quebec, Canada, 2019.
    200. 200
      CIM Leading Practice Guidelines for Mineral Processing; CIM: Quebec, Canada, 2022.
    201. 201
      Apel, M. From 3d geomodelling systems towards 3d geoscience information systems: Data model, query functionality, and data management. Comput. Geosci. 2006, 32 (2), 222229,  DOI: 10.1016/j.cageo.2005.06.016
    202. 202
      Berg, R. C.; Kessler, H.; MacCormack, K. E.; Russell, H. A.; Thorleifson, L. H. Future of 3D Geological Mapping and Modelling at Geological Survey Organizations. 2019 Synopsis of Three-dimensional Geological Mapping and Modelling at Geological Survey Organizations 2019, 302305
    203. 203
      Stafleu, J.; Maljers, D.; Busschers, F. S.; Schokker, J.; Gunnink, J. L.; Dambrink, R. M. Models Created as 3-D Cellular Voxel Arrays. Applied Multidimensional Geological Modeling 2021, 247271,  DOI: 10.1002/9781119163091.ch11
    204. 204
      Dimitrakopoulos, R. Stochastic optimization for strategic mine planning: A decade of developments. J. Min. Sci. 2011, 47 (2), 138150,  DOI: 10.1134/S1062739147020018
    205. 205
      Goodfellow, R. C.; Dimitrakopoulos, R. Global optimization of open pit mining complexes with uncertainty. Appl. Soft Comput. 2016, 40, 292304,  DOI: 10.1016/j.asoc.2015.11.038
    206. 206
      Lindsay, M. D.; Aillères, L.; Jessell, M. W.; de Kemp, E. A.; Betts, P. G. Locating and quantifying geological uncertainty in three-dimensional models: Analysis of the Gippsland Basin, southeastern Australia. Tectonophysics 2012, 546–547, 1027,  DOI: 10.1016/j.tecto.2012.04.007
    207. 207
      Krajnovich, A.; Zhou, W.; Gutierrez, M. Uncertainty assessment for 3D geologic modeling of fault zones based on geologic inputs and prior knowledge. Solid Earth 2020, 11 (4), 14571474,  DOI: 10.5194/se-11-1457-2020
    208. 208
      Bianchi, M.; Turner, A. K.; Lark, M.; Courrioux, G. Uncertainty in 3-D Geological Models. In Applied Multidimensional Geological Modeling; John Wiley & Sons Ltd: West Sussex, UK, 2021; pp 357382.
    209. 209
      Dowd, P. Quantifying the Impacts of Uncertainty. In Handbook of Mathematical Geosciences: Fifty Years of IAMG; Daya Sagar, B. S., Cheng, Q., Agterberg, F., Eds.; Springer International Publishing: Cham, 2018; pp 349373.
    210. 210
      Abdulai, M.; Sharifzadeh, M. Uncertainty and Reliability Analysis of Open Pit Rock Slopes: A Critical Review of Methods of Analysis. Geotech. Geol. Eng. 2019, 37 (3), 12231247,  DOI: 10.1007/s10706-018-0680-y
    211. 211
      Speirs, J.; McGlade, C.; Slade, R. Uncertainty in the availability of natural resources: Fossil fuels, critical metals and biomass. Energy Policy 2015, 87, 654664,  DOI: 10.1016/j.enpol.2015.02.031
    212. 212
      McManus, S.; Rahman, A.; Coombes, J.; Horta, A. Uncertainty assessment of spatial domain models in early stage mining projects - A review. Ore Geol. Rev. 2021, 133, 104098,  DOI: 10.1016/j.oregeorev.2021.104098
    213. 213
      Bloodworth, A. J.; Gunn, A. G. The future of the global minerals and metals sector: issues and challenges out to 2050. Geosciences: BRGM’s Journal for a Sustainable Earth 2012, 15, 9097
    214. 214
      Cole, L. How ending mining would change the world. 2022. https://www.bbc.com/future/article/20220413-how-ending-mining-would-change-the-world (accessed 18.04.2023).
    215. 215
      Liang, Y.; Kleijn, R.; Tukker, A.; van der Voet, E. Material requirements for low-carbon energy technologies: A quantitative review. Renew. Sust. Energy Rev. 2022, 161, 112334,  DOI: 10.1016/j.rser.2022.112334
    216. 216
      More, K. S.; Wolkersdorfer, C.; Kang, N.; Elmaghraby, A. S. Automated measurement systems in mine water management and mine workings - A review of potential methods. Water Resour. Ind. 2020, 24, 100136,  DOI: 10.1016/j.wri.2020.100136
    217. 217
      Yousefi, M.; Carranza, E. J. M.; Kreuzer, O. P.; Nykänen, V.; Hronsky, J. M. A.; Mihalasky, M. J. Data analysis methods for prospectivity modelling as applied to mineral exploration targeting: State-of-the-art and outlook. J. Geochem. Explor. 2021, 229, 106839,  DOI: 10.1016/j.gexplo.2021.106839
    218. 218
      Nurmi, P. A. The Geological Survey of Finland strengthening its role as a key player in mineral raw materials innovation ecosystems. Geological Society, London, Special Publications 2020, 499 (1), 149163,  DOI: 10.1144/SP499-2019-83
    219. 219
      Fogarty, J. J. An Economic Assessment of the Exploration Incentive Scheme: 10 years from 2009 to 2020; Prepared for the Department of Mines, Industry Regulation and Safety: Geological Survey of Western Australia: Perth, Australia, 2021.
    220. 220
      Wittenberg, A.; Oliveira, D. d.; Jorgensen, L. F.; Gonzalez, F. J.; Heldal, T.; Aasly, K. A.; Deady, E.; Kumelj, Š.; Sievers, H.; Horvath, Z.; McGrath, E. GeoERA Raw Materials Monograph - The Past and the Future; Federal Institute for Geosciences and Natural Resources (BGR): Hannover, Germany, 2022. DOI: 10.25928/geoera_rawmat22_1 .
    221. 221
      Bide, T.; Brown, T. J.; Gunn, A. G.; Mankelow, J. M. Utilisation of multiple current and legacy datasets to create a national minerals inventory: A UK case study. Resour. Policy 2020, 66, 101654,  DOI: 10.1016/j.resourpol.2020.101654
    222. 222
      van Genderen, J.; Goodchild, M. F.; Guo, H.; Yang, C.; Nativi, S.; Wang, L.; Wang, C. Digital Earth Challenges and Future Trends. In Manual of Digital Earth; Guo, H., Goodchild, M. F., Annoni, A., Eds.; Springer: Singapore, 2020; pp 811827.
    223. 223
      Sudmanns, M.; Tiede, D.; Lang, S.; Bergstedt, H.; Trost, G.; Augustin, H.; Baraldi, A.; Blaschke, T. Big Earth data: disruptive changes in Earth observation data management and analysis?. International Journal of Digital Earth 2020, 13 (7), 832850,  DOI: 10.1080/17538947.2019.1585976
    224. 224
      OneGelogy Consortium. OneGelogy - Providing geoscience data globally 2022. https://onegeology.org/ (accessed 18.04.2023).
    225. 225
      Baumann, P.; Rossi, A. P.; Bell, B.; Clements, O.; Evans, B.; Hoenig, H.; Hogan, P.; Kakaletris, G.; Koltsida, P.; Mantovani, S.; Marco Figuera, R.; Merticariu, V.; Misev, D.; Pham, H. B.; Siemen, S.; Wagemann, J. Fostering Cross-Disciplinary Earth Science Through Datacube Analytics. In Earth Observation Open Science and Innovation, Mathieu, P.-P.; Aubrecht, C., Eds.; Springer International Publishing: Cham, 2018; pp 91119.
    226. 226
      O’Sullivan, C.; Wise, N.; Mathieu, P.-P. The Changing Landscape of Geospatial Information Markets. In Earth Observation Open Science and Innovation; Mathieu, P.-P., Aubrecht, C., Eds.; Springer International Publishing: Cham, 2018; pp 323.
    227. 227
      Zhu, Z.; Zhou, Y.; Seto, K. C.; Stokes, E. C.; Deng, C.; Pickett, S. T. A.; Taubenböck, H. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens. Environ. 2019, 228, 164182,  DOI: 10.1016/j.rse.2019.04.020
    228. 228
      Prakash, M.; Ramage, S.; Kavvada, A.; Goodman, S. Open Earth Observations for Sustainable Urban Development. Remote Sens. 2020, 12 (10), 1646,  DOI: 10.3390/rs12101646
    229. 229
      Maus, V.; Giljum, S.; da Silva, D. M.; Gutschlhofer, J.; da Rosa, R. P.; Luckeneder, S.; Gass, S. L. B.; Lieber, M.; McCallum, I. An update on global mining land use. Sci. Data 2022, 9 (1), 433,  DOI: 10.1038/s41597-022-01547-4
    230. 230
      Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: current status and future perspectives. Int. J. Coal Sci. 2019, 6 (3), 320333,  DOI: 10.1007/s40789-019-00264-5
    231. 231
      Tucci, G.; Gebbia, A.; Conti, A.; Fiorini, L.; Lubello, C. Monitoring and Computation of the Volumes of Stockpiles of Bulk Material by Means of UAV Photogrammetric Surveying. Remote Sens. 2019, 11 (12), 1471,  DOI: 10.3390/rs11121471
    232. 232
      New Tech, new deal - Technology Impacts Review; Intergovernmental Forum on Mining, Minerals, Metals and Sustainable Development (IGF). International Institute for Sustainable Development (IISD): Winnipeg, Canada, 2019.
    233. 233
      Jang, H.; Topal, E. Transformation of the Australian mining industry and future prospects. Mining Technology 2020, 129 (3), 120134,  DOI: 10.1080/25726668.2020.1786298
    234. 234
      Li, W.; Hsu, C.-Y. GeoAI for Large-Scale Image Analysis and Machine Vision: Recent Progress of Artificial Intelligence in Geography. ISPRS International Journal of Geo-Information 2022, 11 (7), 385,  DOI: 10.3390/ijgi11070385
    235. 235
      Smith, W. D.; Maier, W. D. The geotectonic setting, age and mineral deposit inventory of global layered intrusions. Earth-Sci. Rev. 2021, 220, 103736,  DOI: 10.1016/j.earscirev.2021.103736
    236. 236
      Dong, J.; Metternicht, G.; Hostert, P.; Fensholt, R.; Chowdhury, R. R. Remote sensing and geospatial technologies in support of a normative land system science: status and prospects. COSUST 2019, 38, 4452,  DOI: 10.1016/j.cosust.2019.05.003
    237. 237
      Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 1827,  DOI: 10.1016/j.rse.2017.06.031
    238. 238
      Planetary Computer; Microsoft, 2022.
    239. 239
      Kopp, S.; Becker, P.; Doshi, A.; Wright, D. J.; Zhang, K.; Xu, H. Achieving the Full Vision of Earth Observation Data Cubes. Data 2019, 4 (3), 94,  DOI: 10.3390/data4030094
    240. 240
      Bauer, P.; Dueben, P. D.; Hoefler, T.; Quintino, T.; Schulthess, T. C.; Wedi, N. P. The digital revolution of Earth-system science. Nature Computational Science 2021, 1 (2), 104113,  DOI: 10.1038/s43588-021-00023-0
    241. 241
      Graciano, A.; Rueda, A. J.; Feito, F. R. Real-time visualization of 3D terrains and subsurface geological structures. Adv. Eng. Software 2018, 115, 314326,  DOI: 10.1016/j.advengsoft.2017.10.002
    242. 242
      Schokker, J.; Sandersen, P.; de Beer, J.; Eriksson, I.; Kallio, H.; Kearsey, T.; Pfleiderer, S.; Seither, A. 3D Urban Subsurface Modelling and Visualisation - A Review of Good Practices and Techniques to Ensure Optimal Use of Geological Information in Urban Planning; COST Action Sub-Urban, 2017.
    243. 243
      Baumberger, R.; Oesterling, N. The National Geological Model: Towards mastering the Digital Transformation in Switzerland. In Three-Dimensional Geological Mapping and Modeling; Vancouver, BC, 2018; pp 1923.
    244. 244
      Guo, J.; Wang, X.; Wang, J.; Dai, X.; Wu, L.; Li, C.; Li, F.; Liu, S.; Jessell, M. W. Three-dimensional geological modeling and spatial analysis from geotechnical borehole data using an implicit surface and marching tetrahedra algorithm. Eng. Geol. 2021, 284, 106047,  DOI: 10.1016/j.enggeo.2021.106047
    245. 245
      Guo, H.; Li, X.; Wang, W.; Lv, Z.; Wu, C.; Xu, W. An event-driven dynamic updating method for 3D geo-databases. Geo-Spat. Inf. Sci. 2016, 19 (2), 140147,  DOI: 10.1080/10095020.2016.1182808
    246. 246
      Marker, B.; Turner, A. K. Legislation, regulation and management. In Applied Multidimensional Geological Modeling; Turner, A. K., Kessler, H., Van der Meulen, M., Eds.; John Wiley & Sons, 2021; pp 3568.
    247. 247
      Grieves, M. Virtually Intelligent Product Systems: Digital and Physical Twins. In Complex Systems Engineering: Theory and Practice; Flumerfelt, S., Schwartz, K. G., Mavris, D., Briceno, S., Eds. American Institute of Aeronautics and Astronautics: Reston, VA, 2019; pp 175200.
    248. 248
      Rasheed, A.; San, O.; Kvamsdal, T. Digital Twin: Values, Challenges and Enablers From a Modeling Perspective. IEEE Access 2020, 8, 2198022012,  DOI: 10.1109/ACCESS.2020.2970143
    249. 249
      Zobl, F.; Marschallinger, R. GeoBIM - Subsurface Building Information Modelling. GEOinformatics 2008, 8 (11), 4043
    250. 250
      Huang, M. Q.; Ninić, J.; Zhang, Q. B. BIM, machine learning and computer vision techniques in underground construction: Current status and future perspectives. Tunnel. Underground Space Technol. 2021, 108, 103677,  DOI: 10.1016/j.tust.2020.103677
    251. 251
      Gore, A. The digital earth: understanding our planet in the 21st century. Australian surveyor 1998, 43 (2), 8991,  DOI: 10.1080/00050348.1998.10558728
    252. 252
      Coalition for Digital Environmental Sustainability. Action Plan for a Sustainable Planet in the Digital Age ; United Nations: 2022. DOI: 10.5281/zenodo.6573509 .
    253. 253
      Van Oosterom, P.; Stoter, J. 5D data modelling: full integration of 2D/3D space, time and scale dimensions; International Conference on Geographic Information Science, 2010; Springer: 2010; pp 310324.
    254. 254
      Turner, A. K.; Kessler, H.; Van der Meulen, M. Introduction to modeling terminology and concepts. In Applied Multidimensional Geological Modeling, Turner, A. K.; Kessler, H.; Van der Meulen, M., Eds.; John Wiley & Sons, 2021; pp 333.
    255. 255
      Breunig, M.; Bradley, P. E.; Jahn, M.; Kuper, P.; Mazroob, N.; Rösch, N.; Al-Doori, M.; Stefanakis, E.; Jadidi, M. Geospatial Data Management Research: Progress and Future Directions. ISPRS International Journal of Geo-Information 2020, 9 (2), 95,  DOI: 10.3390/ijgi9020095
    256. 256
      Baumann, P. A General Conceptual Framework for Multi-Dimensional Spatio-Temporal Data Sets. Environ. Model. Software 2021, 143, 105096,  DOI: 10.1016/j.envsoft.2021.105096
    257. 257
      European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - A European strategy for data. Official Journal of the European Union, COM/2020/66 final, 2020.
    258. 258
      van den Brink, L.; Barnaghi, P.; Tandy, J.; Atemezing, G.; Atkinson, R.; Cochrane, B.; Fathy, Y.; Garcia Castro, R.; Haller, A.; Harth, A.; Janowicz, K.; Kolozali, S.; van Leeuwen, B.; Lefrancois, M.; Lieberman, J.; Perego, A.; Le-Phuoc, D.; Roberts, B.; Taylor, K.; Troncy, R. Best practices for publishing, retrieving, and using spatial data on the web. Semantic Web 2018, 10 (1), 95114,  DOI: 10.3233/SW-180305
    259. 259
      European Commission. Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). Official Journal of the European Union, L 108, 1–14, 2007.
    260. 260
      Deep-time Digital Earth (DDE) 2020–2030; International Union of Geological Sciences IUGS: Yangcheng, China, 2022.
    261. 261
      Wang, C.; Hazen, R. M.; Cheng, Q.; Stephenson, M. H.; Zhou, C.; Fox, P.; Shen, S.-z.; Oberhänsli, R.; Hou, Z.; Ma, X.; Feng, Z.; Fan, J.; Ma, C.; Hu, X.; Luo, B.; Wang, J.; Schiffries, C. M. The Deep-Time Digital Earth program: data-driven discovery in geosciences. Natl. Sci. Rev. 2021, 8 (9), nwab027,  DOI: 10.1093/nsr/nwab027
    262. 262
      Xu, L. D. The contribution of systems science to Industry 4.0. Systems Research and Behavioral Science 2020, 37 (4), 618631,  DOI: 10.1002/sres.2705
    263. 263
      Åm, K.; Heiberg, S. Public-private partnership for improved hydrocarbon recovery - Lessons from Norway’s major development programs. Energy Strategy Reviews 2014, 3, 3048,  DOI: 10.1016/j.esr.2014.06.003
    264. 264
      Prahalad, C. K.; Ramaswamy, V. Co-creation experiences: The next practice in value creation. J. Interact. Mark. 2004, 18 (3), 514,  DOI: 10.1002/dir.20015
    265. 265
      Scott, M.; Jones, M. Management of Public Geoscience Data; International Mining for Development Centre (IM4DC): Perth, Australia, 2014.
    266. 266
      Nad, A.; Jooshaki, M.; Tuominen, E.; Michaux, S.; Kirpala, A.; Newcomb, J. Digitalization Solutions in the Mineral Processing Industry: The Case of GTK Mintec, Finland. Minerals 2022, 12 (2), 210,  DOI: 10.3390/min12020210
    267. 267
      Sun, Z.; Sandoval, L.; Crystal-Ornelas, R.; Mousavi, S. M.; Wang, J.; Lin, C.; Cristea, N.; Tong, D.; Carande, W. H.; Ma, X.; Rao, Y.; Bednar, J. A.; Tan, A.; Wang, J.; Purushotham, S.; Gill, T. E.; Chastang, J.; Howard, D.; Holt, B.; Gangodagamage, C.; Zhao, P.; Rivas, P.; Chester, Z.; Orduz, J.; John, A. A review of Earth Artificial Intelligence. Comput. Geosci. 2022, 159, 105034,  DOI: 10.1016/j.cageo.2022.105034
    268. 268
      Litvinenko, V. S. Digital Economy as a Factor in the Technological Development of the Mineral Sector. Nat. Resour. Res. 2020, 29 (3), 15211541,  DOI: 10.1007/s11053-019-09568-4
    269. 269
      Ghorbani, Y.; Zhang, S. E.; Nwaila, G. T.; Bourdeau, J. E. Framework components for data-centric dry laboratories in the minerals industry: A path to science-and-technology-led innovation. Extr. Ind. Soc. 2022, 10, 101089,  DOI: 10.1016/j.exis.2022.101089
    270. 270
      McCuaig, T. C.; Hronsky, J. M. A.; Kelley, K. D.; Golden, H. C. The Mineral System Concept: The Key to Exploration Targeting. In Building Exploration Capability for the 21st Century; Society of Economic Geologists: 2014; Vol. 18, p 0.
    271. 271
      Lawrence, M. G.; Williams, S.; Nanz, P.; Renn, O. Characteristics, potentials, and challenges of transdisciplinary research. One Earth 2022, 5 (1), 4461,  DOI: 10.1016/j.oneear.2021.12.010
    272. 272
      UNEA. Mineral Resource Governance. United Nations Environment Programme, 2019.
    273. 273
      Wilkinson, M. D.; Dumontier, M.; Aalbersberg, I. J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L. B.; Bourne, P. E.; Bouwman, J.; Brookes, A. J.; Clark, T.; Crosas, M.; Dillo, I.; Dumon, O.; Edmunds, S.; Evelo, C. T.; Finkers, R.; Gonzalez-Beltran, A.; Gray, A. J. G.; Groth, P.; Goble, C.; Grethe, J. S.; Heringa, J.; ’t Hoen, P. A. C.; Hooft, R.; Kuhn, T.; Kok, R.; Kok, J.; Lusher, S. J.; Martone, M. E.; Mons, A.; Packer, A. L.; Persson, B.; Rocca-Serra, P.; Roos, M.; van Schaik, R.; Sansone, S.-A.; Schultes, E.; Sengstag, T.; Slater, T.; Strawn, G.; Swertz, M. A.; Thompson, M.; van der Lei, J.; van Mulligen, E.; Velterop, J.; Waagmeester, A.; Wittenburg, P.; Wolstencroft, K.; Zhao, J.; Mons, B. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3 (1), 160018,  DOI: 10.1038/sdata.2016.18
    274. 274
      Ubaldi, B. Open Government Data: Towards Empirical Analysis of Open Government Data Initiatives; Organisation for Economic Cooperation and Development: 2013. DOI: 10.1787/5k46bj4f03s7-en .
    275. 275
      Recommendation of the Council on Enhancing Access to and Sharing of Data; Organisation for Economic Co-operation and Development, 2022.
    276. 276
      Integrated Geospatial Information Framework: A Strategic Guide to Develop and Strengthen National Geospatial Information Management - Part 1: Overarching Strategic Framework; World Bank, United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM): New York, 2018.
    277. 277
      UN-GGIM. The Global Statistical Geospatial Framework; United Nations: New York, 2019.
    278. 278
      Tate, M.; Bongiovanni, I.; Kowalkiewicz, M.; Townson, P. Managing the “Fuzzy front end” of open digital service innovation in the public sector: A methodology. IJIM 2018, 39, 186198,  DOI: 10.1016/j.ijinfomgt.2017.11.008
    279. 279
      Gray, S. J.; Hellman, N.; Ivanova, M. N. Extractive Industries Reporting: A Review of Accounting Challenges and the Research Literature. Abacus 2019, 55 (1), 4291,  DOI: 10.1111/abac.12147
    280. 280
      2017 Resource Governance Index; Natural Resource Governance Institute (NRGI): New York, 2017.
    281. 281
      Van Alstine, J. Critical reflections on 15 years of the Extractive Industries Transparency Initiative (EITI). Extr. Ind. Soc. 2017, 4 (4), 766770,  DOI: 10.1016/j.exis.2017.10.010
    282. 282
      EITI Progress Report 2022; Extractive Industries Transparency Initiative (EITI): Oslo, Norway, 2022.
    283. 283
      Proposals for a Relevant and Dynamic EU Sustainability Reporting Standard-Setting; European Financial Reporting Advisory Group (EFRAG): Brussels, Belgium, 2021.
    284. 284
      Geels, F. W.; Schwanen, T.; Sorrell, S.; Jenkins, K.; Sovacool, B. K. Reducing energy demand through low carbon innovation: A sociotechnical transitions perspective and thirteen research debates. ERSS 2018, 40, 2335,  DOI: 10.1016/j.erss.2017.11.003
    285. 285
      IGF Guidance for Governments: Environmental Management and Mining Governance; Intergovernmental Forum on Mining, Minerals, Metals and Sustainable Development (IGF): Winnipeg, 2021.
    286. 286
      Vision 2050 - Time to Transform: How business can lead the transformations the world needs; World Business Council for Sustainable Development (WBCSD): Geneva, Switzerland, 2021.
    287. 287
      Transforming Extractive Industries for Sustainable Development; United Nations Executive Office of the Secretary-General (EOSG): New York, 2021. DOI:  DOI: 10.18356/27082245-22 .
    288. 288
      Berg, F.; Koelbel, J. F.; Rigobon, R. Aggregate confusion: The divergence of ESG ratings. Rev. Financ. 2022, 26 (6), 13151344,  DOI: 10.1093/rof/rfac033
    289. 289
      Petravatzi, E.; Müller, D. B.; Lundhaug, M.; Liu, G.; Cullen, J.; Simoni, M. U.; Dittrich, M.; Cao, Z.; Murguía, D.; Hirschnitz-Garbers, M.; Hamadová, B. MinFuture Roadmap - A Roadmap Towards Monitoring the Physical Economy; Nottingham, UK, 2018.
    290. 290
      Fonseca, A.; McAllister, M. L.; Fitzpatrick, P. Measuring what? A comparative anatomy of five mining sustainability frameworks. Miner. Eng. 2013, 46–47, 180186,  DOI: 10.1016/j.mineng.2013.04.008
    291. 291
      General Requirements for Disclosure of Sustainability-related Financial Information. General Requirements Exposure Draft; Exposure Draft IFRS S1 International Sustainability Standards Board (ISSB): London, 2022.
    292. 292
      Haasnoot, M.; Biesbroek, R.; Lawrence, J.; Muccione, V.; Lempert, R.; Glavovic, B. Defining the solution space to accelerate climate change adaptation. Reg. Environ. Change 2020, 20 (2), 37,  DOI: 10.1007/s10113-020-01623-8
    293. 293
      Giesekam, J.; Norman, J.; Garvey, A.; Betts-Davies, S. Science-Based Targets: On Target?. Sustainability 2021, 13 (4), 1657,  DOI: 10.3390/su13041657
    294. 294
      Wiek, A.; Binder, C. Solution spaces for decision-making─a sustainability assessment tool for city-regions. Environ. Impact Assess. Rev. 2005, 25 (6), 589608,  DOI: 10.1016/j.eiar.2004.09.009
    295. 295
      Rockström, J.; Gupta, J.; Lenton, T. M.; Qin, D.; Lade, S. J.; Abrams, J. F.; Jacobson, L.; Rocha, J. C.; Zimm, C.; Bai, X.; Bala, G.; Bringezu, S.; Broadgate, W.; Bunn, S. E.; DeClerck, F.; Ebi, K. L.; Gong, P.; Gordon, C.; Kanie, N.; Liverman, D. M.; Nakicenovic, N.; Obura, D.; Ramanathan, V.; Verburg, P. H.; van Vuuren, D. P.; Winkelmann, R. Identifying a Safe and Just Corridor for People and the Planet. Earth's Future 2021, 9 (4), e2020EF001866  DOI: 10.1029/2020EF001866
    296. 296
      European Commission. Directive 2019/1024 of the European Parliament and of the Council of 20 June 2019 on open data and the re-use of public sector information. Official Journal of the European Union, L 172, 56–83, 2019.
    297. 297
      European Commission. Commission Implementing Regulation (EU) 2023/138 of 21 December 2022 laying down a list of specific high-value datasets and the arrangements for their publication and re-use. Official Journal of the European Union, L 19, 43–75, 2023.
    298. 298
      Koninkrijk der Nederlanden. Regulation on the National Key Registry for the Subsurface (Regeling basisregistratie ondergrond, BRO). Minister van Binnenlandse Zaken en Koninkrijksrelaties, Nederlande, 2021.
    299. 299
      Norwegian Petroleum Directorate. Diskos Handbook , Version 2.0; May 2019; Norwegian Petroleum Directorate: Stavanger, Norway, 2019.
    300. 300
      Olje-og energidepartementet. Forskrift om ressursforvaltning i petroleumsvirksomheten (ressursforskriften). 2021.
    301. 301
      Kolbjørnsen, O.; Hammer, E.; Pruno, S.; Wellsbury, P.; Kusak, M. In Norwegian Released Wells Project: Study Design, Material Preparation, Measurements and Data Analysis; SPWLA 63rd Annual Logging Symposium, 2022; 2022.
    302. 302
      Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325 (5939), 419422,  DOI: 10.1126/science.1172133
    303. 303
      Steffen, W.; Crutzen, P. J.; McNeill, J. R. The Anthropocene: are humans now overwhelming the great forces of nature. Ambio 2007, 36 (8), 614621,  DOI: 10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2
    304. 304
      Bateman, I. J.; Mace, G. M. The natural capital framework for sustainably efficient and equitable decision making. Nat. Sustainability 2020, 3 (10), 776783,  DOI: 10.1038/s41893-020-0552-3
    305. 305
      Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T. M.; Folke, C.; Liverman, D.; Summerhayes, C. P.; Barnosky, A. D.; Cornell, S. E.; Crucifix, M.; Donges, J. F.; Fetzer, I.; Lade, S. J.; Scheffer, M.; Winkelmann, R.; Schellnhuber, H. J. Trajectories of the Earth System in the Anthropocene. Proc. Nat. Acad. Sci. U.S.A. 2018, 115 (33), 82528259,  DOI: 10.1073/pnas.1810141115
    306. 306
      Wackernagel, M.; Hanscom, L.; Jayasinghe, P.; Lin, D.; Murthy, A.; Neill, E.; Raven, P. The importance of resource security for poverty eradication. Nat. Sustainability 2021, 4 (8), 731738,  DOI: 10.1038/s41893-021-00708-4
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.3c03088.

    • Materials and methods section describing literature selection and bibliometric analysis; timeline of historical events with reference list; notes on mass balance consistency in financial reporting and the UN System of Environmental-Economic Accounting (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.