ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

High Methylmercury in Arctic and Subarctic Ponds is Related to Nutrient Levels in the Warming Eastern Canadian Arctic

View Author Information
Centre d’études nordiques, Département de sciences biologiques, Université de Montréal, Montreal, Quebec Canada, H2V 2S9
Environment Canada, National Wildlife Research Centre, Ottawa, Ontario Canada, K1A 0H3
§ Centre d’études nordiques, Institut national de la recherche scientifique, Centre Eau, Terre et Environnement, Québec, Quebec Canada, G1K 9A9
*Phone: 514-343-7496; fax: 514-343-2293; e-mail: [email protected]
Cite this: Environ. Sci. Technol. 2015, 49, 13, 7743–7753
Publication Date (Web):June 1, 2015
https://doi.org/10.1021/acs.est.5b00763
Copyright © 2015 American Chemical Society

    Article Views

    1163

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L–1). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3–2.2 ng L–1) than polygonal ponds (0.1–0.3 ng L–1) or lakes (<0.1 ng L–1). High MeHg was measured in the bottom waters of Subarctic thaw ponds near Kuujjuarapik (0.1–3.1 ng L–1). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Details of the experimental design, raw physicochemical data tables, GPS coordinates, simple linear regressions and supporting figures. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.5b00763.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 51 publications.

    1. Brittany Tarbier, Gustaf Hugelius, Anna Britta Kristina Sannel, Carluvy Baptista-Salazar, Sofi Jonsson. Permafrost Thaw Increases Methylmercury Formation in Subarctic Fennoscandia. Environmental Science & Technology 2021, 55 (10) , 6710-6717. https://doi.org/10.1021/acs.est.0c04108
    2. Stephanie Varty, Igor Lehnherr, Kyra St. Pierre, Jane Kirk, Victoria Wisniewski. Methylmercury Transport and Fate Shows Strong Seasonal and Spatial Variability along a High Arctic Freshwater Hydrologic Continuum. Environmental Science & Technology 2021, 55 (1) , 331-340. https://doi.org/10.1021/acs.est.0c05051
    3. Zhijia Ci, Fei Peng, Xian Xue, Xiaoshan Zhang. Permafrost Thaw Dominates Mercury Emission in Tibetan Thermokarst Ponds. Environmental Science & Technology 2020, 54 (9) , 5456-5466. https://doi.org/10.1021/acs.est.9b06712
    4. Scott Zolkos, David P. Krabbenhoft, Anya Suslova, Suzanne E. Tank, James W. McClelland, Robert G. M. Spencer, Alexander Shiklomanov, Alexander V. Zhulidov, Tatiana Gurtovaya, Nikita Zimov, Sergey Zimov, Edda A. Mutter, Les Kutny, Edwin Amos, Robert M. Holmes. Mercury Export from Arctic Great Rivers. Environmental Science & Technology 2020, 54 (7) , 4140-4148. https://doi.org/10.1021/acs.est.9b07145
    5. Kyra A. St. Pierre, Scott Zolkos, Sarah Shakil, Suzanne E. Tank, Vincent L. St. Louis, Steven V. Kokelj. Unprecedented Increases in Total and Methyl Mercury Concentrations Downstream of Retrogressive Thaw Slumps in the Western Canadian Arctic. Environmental Science & Technology 2018, 52 (24) , 14099-14109. https://doi.org/10.1021/acs.est.8b05348
    6. Craig A. Emmerton, Colin A. Cooke, Gregory R. Wentworth, Jennifer A. Graydon, Andrei Ryjkov, Ashu Dastoor. Total Mercury and Methylmercury in Lake Water of Canada’s Oil Sands Region. Environmental Science & Technology 2018, 52 (19) , 10946-10955. https://doi.org/10.1021/acs.est.8b01680
    7. Oleg S. Pokrovsky, Maite Bueno, Rinat M. Manasypov, Liudmila S. Shirokova, Jan Karlsson, David Amouroux. Dissolved Organic Matter Controls Seasonal and Spatial Selenium Concentration Variability in Thaw Lakes across a Permafrost Gradient. Environmental Science & Technology 2018, 52 (18) , 10254-10262. https://doi.org/10.1021/acs.est.8b00918
    8. Brett A. Poulin, Chase A. Gerbig, Christopher S. Kim, John P. Stegemeier, Joseph N. Ryan, and George R. Aiken . Effects of Sulfide Concentration and Dissolved Organic Matter Characteristics on the Structure of Nanocolloidal Metacinnabar. Environmental Science & Technology 2017, 51 (22) , 13133-13142. https://doi.org/10.1021/acs.est.7b02687
    9. Marc Amyot, Meredith G. Clayden, Gwyneth A. MacMillan, Tania Perron, and Alexandre Arscott-Gauvin . Fate and Trophic Transfer of Rare Earth Elements in Temperate Lake Food Webs. Environmental Science & Technology 2017, 51 (11) , 6009-6017. https://doi.org/10.1021/acs.est.7b00739
    10. Catherine Girard, Maxime Leclerc, and Marc Amyot . Photodemethylation of Methylmercury in Eastern Canadian Arctic Thaw Pond and Lake Ecosystems. Environmental Science & Technology 2016, 50 (7) , 3511-3520. https://doi.org/10.1021/acs.est.5b04921
    11. Zhao Wenwen, Xin Yuan, Zhang Zhongsheng, Zhang Xuehui, Wu Haitao. Accelerated Hg loss and increased methylmercury covary with soil organic matter mineralization and dissolved organic matter humification under warming conditions in permafrost marsh, Northeast China. Environmental Research 2023, 234 , 116593. https://doi.org/10.1016/j.envres.2023.116593
    12. Sif Marie Holmberg, Niels O. G. Jørgensen. Insights into abundance, adaptation and activity of prokaryotes in arctic and Antarctic environments. Polar Biology 2023, 46 (5) , 381-396. https://doi.org/10.1007/s00300-023-03137-5
    13. Maxime Wauthy, Marc Amyot, Dominic E. Ponton, Caroline Fink-Mercier, François Bilodeau, Alain Tremblay, Paul del Giorgio, Jean-François Lapierre. Riverine exports of mercury and methylmercury from dammed and undammed rivers of Quebec, Eastern Canada. Estuarine, Coastal and Shelf Science 2023, 284 , 108272. https://doi.org/10.1016/j.ecss.2023.108272
    14. Ting Sun, Zoë Lindo, Brian A. Branfireun. Ground warming releases inorganic mercury and increases net methylmercury production in two boreal peatland types. Frontiers in Environmental Science 2023, 11 https://doi.org/10.3389/fenvs.2023.1100443
    15. Yuan Xin, Xuehui Zhang, Dongmei Zheng, Zhongsheng Zhang, Ming Jiang. Impacts of spectral characteristics of dissolved organic matter on methylmercury contents in peatlands, Northeast China. Environmental Geochemistry and Health 2023, 45 (3) , 913-923. https://doi.org/10.1007/s10653-022-01257-1
    16. Lauren M. Thompson, McKenzie A. Kuhn, Johanna C. Winder, Lucas P. P. Braga, Ryan H. S. Hutchins, Andrew J. Tanentzap, Vincent L. St. Louis, David Olefeldt. Controls on methylmercury concentrations in lakes and streams of peatland‐rich catchments along a 1700 km permafrost gradient. Limnology and Oceanography 2023, 68 (3) , 583-597. https://doi.org/10.1002/lno.12296
    17. Sofi Jonsson, Michelle Nerentorp Mastromonaco, Feiyue Wang, Andrea G. Bravo, Warren R.L. Cairns, John Chételat, Thomas A. Douglas, Gretchen Lescord, Liisa Ukonmaanaho, Lars-Eric Heimbürger-Boavida. Arctic methylmercury cycling. Science of The Total Environment 2022, 850 , 157445. https://doi.org/10.1016/j.scitotenv.2022.157445
    18. Ashu Dastoor, Simon J. Wilson, Oleg Travnikov, Andrei Ryjkov, Hélène Angot, Jesper H. Christensen, Frits Steenhuisen, Marilena Muntean. Arctic atmospheric mercury: Sources and changes. Science of The Total Environment 2022, 839 , 156213. https://doi.org/10.1016/j.scitotenv.2022.156213
    19. Stephanie N. Wright, Lauren M. Thompson, David Olefeldt, Ryan F. Connon, Olivia A. Carpino, Casey R. Beel, William L. Quinton. Thaw-induced impacts on land and water in discontinuous permafrost: A review of the Taiga Plains and Taiga Shield, northwestern Canada. Earth-Science Reviews 2022, 232 , 104104. https://doi.org/10.1016/j.earscirev.2022.104104
    20. John Chételat, Melissa A. McKinney, Marc Amyot, Ashu Dastoor, Thomas A. Douglas, Lars-Eric Heimbürger-Boavida, Jane Kirk, Kimmo K. Kahilainen, Peter M. Outridge, Nicolas Pelletier, Henrik Skov, Kyra St. Pierre, Jussi Vuorenmaa, Feiyue Wang. Climate change and mercury in the Arctic: Abiotic interactions. Science of The Total Environment 2022, 824 , 153715. https://doi.org/10.1016/j.scitotenv.2022.153715
    21. Lijie Zhang, Michael Philben, Neslihan Taş, Alexander Johs, Ziming Yang, Stan D. Wullschleger, David E. Graham, Eric M. Pierce, Baohua Gu. Unravelling biogeochemical drivers of methylmercury production in an Arctic fen soil and a bog soil. Environmental Pollution 2022, 299 , 118878. https://doi.org/10.1016/j.envpol.2022.118878
    22. Bruce A. Fowler, Rudolfs K. Zalups. Mercury. 2022, 539-599. https://doi.org/10.1016/B978-0-12-822946-0.00020-9
    23. Stéphanie Coulombe, Daniel Fortier, Frédéric Bouchard, Michel Paquette, Simon Charbonneau, Denis Lacelle, Isabelle Laurion, Reinhard Pienitz. Contrasted geomorphological and limnological properties of thermokarst lakes formed in buried glacier ice and ice-wedge polygon terrain. The Cryosphere 2022, 16 (7) , 2837-2857. https://doi.org/10.5194/tc-16-2837-2022
    24. Akito Matsuyama, Shinichiro Yano, Yoko Taniguchi, Michiaki Kindaichi, Akihide Tada, Minoru Wada. Trends in mercury concentrations and methylation in Minamata Bay, Japan, between 2014 and 2018. Marine Pollution Bulletin 2021, 173 , 112886. https://doi.org/10.1016/j.marpolbul.2021.112886
    25. Beatriz Malcata Martins, Nelson J. O’Driscoll, Mark L. Mallory, João Canário. A Review of Freshwater Invertebrates as Biomonitors of Methylmercury: the Importance of More Complete Physical and Chemical Reporting. Bulletin of Environmental Contamination and Toxicology 2021, 107 (5) , 801-808. https://doi.org/10.1007/s00128-021-03274-9
    26. Marc Amyot, Dominic Bélanger, Dana F. Simon, John Chételat, Mike Palmer, Parisa Ariya. Photooxidation of arsenic in pristine and mine-impacted Canadian subarctic freshwater systems. Journal of Hazardous Materials Advances 2021, 2 , 100006. https://doi.org/10.1016/j.hazadv.2021.100006
    27. Clara Rutkowski, Josefine Lenz, Andreas Lang, Juliane Wolter, Sibylle Mothes, Thorsten Reemtsma, Guido Grosse, Mathias Ulrich, Matthias Fuchs, Lutz Schirrmeister, Alexander Fedorov, Mikhail Grigoriev, Hugues Lantuit, Jens Strauss. Mercury in Sediment Core Samples From Deep Siberian Ice-Rich Permafrost. Frontiers in Earth Science 2021, 9 https://doi.org/10.3389/feart.2021.718153
    28. Hanna N. Kreplin, Carla Sofia Santos Ferreira, Georgia Destouni, Saskia D. Keesstra, Luca Salvati, Zahra Kalantari. Arctic wetland system dynamics under climate warming. WIREs Water 2021, 8 (4) https://doi.org/10.1002/wat2.1526
    29. Jonathan O’Donnell, Thomas Douglas, Amanda Barker, Laodong Guo. Changing Biogeochemical Cycles of Organic Carbon, Nitrogen, Phosphorus, and Trace Elements in Arctic Rivers. 2021, 315-348. https://doi.org/10.1007/978-3-030-50930-9_11
    30. Jeremy De Bonville, Marc Amyot, Paul del Giorgio, Alain Tremblay, François Bilodeau, Dominic E. Ponton, Jean‐François Lapierre. Mobilization and Transformation of Mercury Across a Dammed Boreal River Are Linked to Carbon Processing and Hydrology. Water Resources Research 2020, 56 (10) https://doi.org/10.1029/2020WR027951
    31. Suzanne E. Tank, Jorien E. Vonk, Michelle A. Walvoord, James W. McClelland, Isabelle Laurion, Benjamin W. Abbott. Landscape matters: Predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach. Permafrost and Periglacial Processes 2020, 31 (3) , 358-370. https://doi.org/10.1002/ppp.2057
    32. Jiang Liu, Dingyong Wang, Jinzhong Zhang, Van Liem-Nguyen, Rong Huang, Tao Jiang. Evaluation of Hg methylation in the water-level-fluctuation zone of the Three Gorges Reservoir region by using the MeHg/HgT ratio. Ecotoxicology and Environmental Safety 2020, 195 , 110468. https://doi.org/10.1016/j.ecoenv.2020.110468
    33. Andrea G. Bravo, Claudia Cosio. Biotic formation of methylmercury: A bio–physico–chemical conundrum. Limnology and Oceanography 2020, 65 (5) , 1010-1027. https://doi.org/10.1002/lno.11366
    34. Maciej Bartosiewicz, Anna Przytulska, Jean‐François Lapierre, Isabelle Laurion, Moritz F. Lehmann, Roxane Maranger. Hot tops, cold bottoms: Synergistic climate warming and shielding effects increase carbon burial in lakes. Limnology and Oceanography Letters 2019, 4 (5) , 132-144. https://doi.org/10.1002/lol2.10117
    35. Alex C.Y. Yeung, Aleksey Paltsev, Abby Daigle, Peter N. Duinker, Irena F. Creed. Atmospheric change as a driver of change in the Canadian boreal zone 1. Environmental Reviews 2019, 27 (3) , 346-376. https://doi.org/10.1139/er-2018-0055
    36. Karista E. Hudelson, Derek C.G. Muir, Paul E. Drevnick, Günter Köck, Deborah Iqaluk, Xiaowa Wang, Jane L. Kirk, Benjamin D. Barst, Alice Grgicak-Mannion, Rebecca Shearon, Aaron T. Fisk. Temporal trends, lake-to-lake variation, and climate effects on Arctic char (Salvelinus alpinus) mercury concentrations from six High Arctic lakes in Nunavut, Canada. Science of The Total Environment 2019, 678 , 801-812. https://doi.org/10.1016/j.scitotenv.2019.04.453
    37. Raphael A. Lavoie, Marc Amyot, Jean‐François Lapierre. Global Meta‐Analysis on the Relationship Between Mercury and Dissolved Organic Carbon in Freshwater Environments. Journal of Geophysical Research: Biogeosciences 2019, 124 (6) , 1508-1523. https://doi.org/10.1029/2018JG004896
    38. Esteban Góngora, Birgit M. Braune, Kyle H. Elliott. Nitrogen and sulfur isotopes predict variation in mercury levels in Arctic seabird prey. Marine Pollution Bulletin 2018, 135 , 907-914. https://doi.org/10.1016/j.marpolbul.2018.07.075
    39. Fengcheng Peng, Tianrong He, Zhenji Li, Mengyu Chen, Xiaoli Qian, Lingxia Zeng, Yiyuan Xu. Enrichment characteristics and risk assessment of Hg in bird feathers from Caohai wetland in Guizhou Province, China. Acta Geochimica 2018, 37 (4) , 526-536. https://doi.org/10.1007/s11631-017-0242-7
    40. Zhijia Ci, Fei Peng, Xian Xue, Xiaoshan Zhang. Temperature sensitivity of gaseous elemental mercury in the active layer of the Qinghai-Tibet Plateau permafrost. Environmental Pollution 2018, 238 , 508-515. https://doi.org/10.1016/j.envpol.2018.02.085
    41. C. Olson, M. Jiskra, H. Biester, J. Chow, D. Obrist. Mercury in Active‐Layer Tundra Soils of Alaska: Concentrations, Pools, Origins, and Spatial Distribution. Global Biogeochemical Cycles 2018, 32 (7) , 1058-1073. https://doi.org/10.1029/2017GB005840
    42. Pianpian Wu, Kevin Bishop, Claudia von Brömssen, Karin Eklöf, Martyn Futter, Hans Hultberg, Jaclyn Martin, Staffan Åkerblom. Does forest harvest increase the mercury concentrations in fish? Evidence from Swedish lakes. Science of The Total Environment 2018, 622-623 , 1353-1362. https://doi.org/10.1016/j.scitotenv.2017.12.075
    43. Daniel Obrist, Jane L. Kirk, Lei Zhang, Elsie M. Sunderland, Martin Jiskra, Noelle E. Selin. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018, 47 (2) , 116-140. https://doi.org/10.1007/s13280-017-1004-9
    44. Nicola Colombo, Franco Salerno, Stephan Gruber, Michele Freppaz, Mark Williams, Simona Fratianni, Marco Giardino. Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water. Global and Planetary Change 2018, 162 , 69-83. https://doi.org/10.1016/j.gloplacha.2017.11.017
    45. Sonia Herrero Ortega, Núria Catalán, Erik Björn, Hannes Gröntoft, Torfi Geir Hilmarsson, Stefan Bertilsson, Pianpian Wu, Kevin Bishop, Oded Levanoni, Andrea G. Bravo. High methylmercury formation in ponds fueled by fresh humic and algal derived organic matter. Limnology and Oceanography 2018, 63 (S1) https://doi.org/10.1002/lno.10722
    46. Ruhai Liu, Yanyan Zhang, Yan Wang, Jin Zhao, Huayao Shan. Vertical distribution of mercury and MeHg in Nandagang and Beidagang wetlands: Influence of microtopography. Physics and Chemistry of the Earth, Parts A/B/C 2018, 103 , 45-50. https://doi.org/10.1016/j.pce.2017.04.003
    47. Changzhou Yan, Feifei Che, Liqing Zeng, Zaosheng Wang, Miaomiao Du, Qunshan Wei, Zhenhong Wang, Dapeng Wang, Zhuo Zhen. Spatial and seasonal changes of arsenic species in Lake Taihu in relation to eutrophication. Science of The Total Environment 2016, 563-564 , 496-505. https://doi.org/10.1016/j.scitotenv.2016.04.132
    48. Ziming Yang, Wei Fang, Xia Lu, Guo-Ping Sheng, David E. Graham, Liyuan Liang, Stan D. Wullschleger, Baohua Gu. Warming increases methylmercury production in an Arctic soil. Environmental Pollution 2016, 214 , 504-509. https://doi.org/10.1016/j.envpol.2016.04.069
    49. Frederick J. Wrona, Margareta Johansson, Joseph M. Culp, Alan Jenkins, Johanna Mård, Isla H. Myers-Smith, Terry D. Prowse, Warwick F. Vincent, Philip A. Wookey. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime. Journal of Geophysical Research: Biogeosciences 2016, 121 (3) , 650-674. https://doi.org/10.1002/2015JG003133
    50. Oleg S. Pokrovsky, Rinat M. Manasypov, Sergey V. Loiko, Ivan A. Krickov, Sergey G. Kopysov, Larisa G. Kolesnichenko, Sergey N. Vorobyev, Sergey N. Kirpotin. Trace element transport in western Siberian rivers across a permafrost gradient. Biogeosciences 2016, 13 (6) , 1877-1900. https://doi.org/10.5194/bg-13-1877-2016
    51. J. E. Vonk, S. E. Tank, W. B. Bowden, I. Laurion, W. F. Vincent, P. Alekseychik, M. Amyot, M. F. Billet, J. Canário, R. M. Cory, B. N. Deshpande, M. Helbig, M. Jammet, J. Karlsson, J. Larouche, G. MacMillan, M. Rautio, K. M. Walter Anthony, K. P. Wickland. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 2015, 12 (23) , 7129-7167. https://doi.org/10.5194/bg-12-7129-2015

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect