ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Specific Effects of Dietary Methylmercury and Inorganic Mercury in Zebrafish (Danio rerio) Determined by Genetic, Histological, and Metallothionein Responses

View Author Information
Université de Bordeaux, EPOC, UMR CNRS 5805, Place du Dr B. Peyneau, F-33120 Arcachon, France
CNRS, EPOC, UMR 5805, F-33120 Arcachon, France
Laboratoire de Chimie Analytique, Bio-Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), CNRS-UPPA-UMR-5254, Hélioparc, 2 Avenue du Président Pierre Angot, F-64053 Pau, France
§ Observatoire Midi-Pyrénées, Laboratoire de Geosciences Environnement Toulouse, Université Paul Sabatier Toulouse III, 14 avenue Edouard Belin, 31400 Toulouse, France
GET, IRD, F-31400 Toulouse, France
*Phone: + (33) 05 56 22 39 21. Fax: +(33) 05 56 54 93 83. E-mail: [email protected]
Cite this: Environ. Sci. Technol. 2015, 49, 24, 14560–14569
Publication Date (Web):October 28, 2015
https://doi.org/10.1021/acs.est.5b03586
Copyright © 2015 American Chemical Society

    Article Views

    1399

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (9 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    A multidisciplinary approach is proposed here to compare toxicity mechanisms of methylmercury (MeHg) and inorganic mercury (iHg) in muscle, liver, and brain from zebrafish (Danio rerio). Animals were dietary exposed to (1) 50 ng Hg g–1, 80% as MeHg; (2) diet enriched in MeHg 10000 ng Hg g–1, 95% as MeHg; (3) diet enriched in iHg 10000 ng Hg g–1, 99% as iHg, for two months. Hg species specific bioaccumulation pathways were highlighted, with a preferential bioaccumulation of MeHg in brain and iHg in liver. In the same way, differences in genetic pattern were observed for both Hg species, (an early genetic response (7 days) for both species in the three organs and a late genetic response (62 days) for iHg) and revealed a dissimilar metabolization of both Hg species. Among the 18 studied genes involved in key metabolic pathways of the cell, major genetic responses were observed in muscle. Electron microscopy revealed damage mainly because of MeHg in muscle and also in liver tissue. In brain, high MeHg and iHg concentrations induced metallothionein production. Finally, the importance of the fish origin in ecotoxicological studies, here the seventh descent of a zebrafish line, is discussed.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.5b03586.

    • Details on experimental design, theoretical quantity of mercury absorbed per fish during the experiment, average total mercury (THg) concentrations in the skeletal muscle, liver, and brain of Danio rerio, function, accession numbers, and specific primer matching with Danio rerio genes used for quantitative RT-PCR, differential gene expressions, observation by electron microscopy of zebrafish skeletal muscle and liver (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 44 publications.

    1. Sophie Gentès, Antoine Minet, Christelle Lopes, Emmanuel Tessier, Claire Gassie, Rémy Guyoneaud, Peter W. Swarzenski, Paco Bustamante, Marc Metian, David Amouroux, Thomas Lacoue-Labarthe. In Vivo Mercury (De)Methylation Metabolism in Cephalopods under Different pCO2 Scenarios. Environmental Science & Technology 2023, 57 (14) , 5761-5770. https://doi.org/10.1021/acs.est.2c08513
    2. Shuying Zhang, Zhongyu Wang, Jingwen Chen, Qing Xie, Minghua Zhu, Wenjing Han. Tissue-Specific Accumulation, Biotransformation, and Physiologically Based Toxicokinetic Modeling of Benzotriazole Ultraviolet Stabilizers in Zebrafish (Danio rerio). Environmental Science & Technology 2021, 55 (17) , 11874-11884. https://doi.org/10.1021/acs.est.1c02861
    3. Claudia Cosio, Davide Degli-Esposti, Christine Almunia, Véronique Gaillet, Hervé Sartelet, Jean Armengaud, Arnaud Chaumot, Olivier Geffard, Alain Geffard. Subcellular Distribution of Dietary Methyl-Mercury in Gammarus fossarum and Its Impact on the Amphipod Proteome. Environmental Science & Technology 2021, 55 (15) , 10514-10523. https://doi.org/10.1021/acs.est.1c02385
    4. Xun Wang, Fengchang Wu, and Wen-Xiong Wang . In Vivo Mercury Demethylation in a Marine Fish (Acanthopagrus schlegeli). Environmental Science & Technology 2017, 51 (11) , 6441-6451. https://doi.org/10.1021/acs.est.7b00923
    5. Zhuhong Wang, Jing Liao, Pengxue Gai, Xiaoling Guo, Wang Zheng, Xue Li, Yulin Ran, Zhongwei Wang, Jiubin Chen. Metabolisms of both inorganic and methyl-mercury in hens reveal eggs as an effective bioindicator for environmental Hg pollution. Journal of Hazardous Materials 2024, 465 , 133191. https://doi.org/10.1016/j.jhazmat.2023.133191
    6. Modi K. P. Bhai, Ambika Binesh, S. A. Shanmugam, Kaliyamurthi Venkatachalam. Effects of mercury chloride on antioxidant and inflammatory cytokines in zebrafish embryos. Journal of Biochemical and Molecular Toxicology 2023, 101 https://doi.org/10.1002/jbt.23589
    7. Patrícia S. Carvalho, Diana Fonseca-Rodrigues, Mário Pacheco, Armando Almeida, Filipa Pinto-Ribeiro, Patrícia Pereira. Comparative neurotoxicity of dietary methylmercury and waterborne inorganic mercury in fish: Evidence of optic tectum vulnerability through morphometric and histopathological assessments. Aquatic Toxicology 2023, 261 , 106557. https://doi.org/10.1016/j.aquatox.2023.106557
    8. Chuxian Li, Maxime Enrico, Oliver Magand, Beatriz F. Araujo, Gaël Le Roux, Stefan Osterwalder, Aurélien Dommergue, Yann Bertrand, Jérôme Brioude, François De Vleeschouwer, Jeroen E. Sonke. A peat core Hg stable isotope reconstruction of Holocene atmospheric Hg deposition at Amsterdam Island (37.8oS). Geochimica et Cosmochimica Acta 2023, 341 , 62-74. https://doi.org/10.1016/j.gca.2022.11.024
    9. Mine Köktürk, Mehmet Nuri Atalar, Arzu Odunkıran, Menekşe Bulut, Duried Alwazeer. Evaluation of the hydrogen-rich water alleviation potential on mercury toxicity in earthworms using ATR-FTIR and LC–ESI–MS/MS spectroscopy. Environmental Science and Pollution Research 2022, 29 (13) , 19642-19656. https://doi.org/10.1007/s11356-021-17230-x
    10. Sha Tan, Xiaowei Xu, Hao Cheng, Junjie Wang, Xun Wang. The alteration of gut microbiome community play an important role in mercury biotransformation in largemouth bass. Environmental Research 2022, 204 , 112026. https://doi.org/10.1016/j.envres.2021.112026
    11. Marianna Pinzone, Alice Cransveld, Gudrun De Boeck, Jyotsna Shrivastava, Emmanuel Tessier, Sylvain Bérail, Joseph G. Schnitzler, David Amouroux, Krishna Das. Dynamics of Dietary Mercury Determined by Mercury Speciation and Isotopic Composition in Dicentrarchus labrax. Frontiers in Environmental Chemistry 2022, 3 https://doi.org/10.3389/fenvc.2022.767202
    12. Cristina Truzzi, Federico Girolametti, Leonardo Giovannini, Ike Olivotto, Matteo Zarantoniello, Giuseppe Scarponi, Anna Annibaldi, Silvia Illuminati. New Eco-Sustainable Feed in Aquaculture: Influence of Insect-Based Diets on the Content of Potentially Toxic Elements in the Experimental Model Zebrafish (Danio rerio). Molecules 2022, 27 (3) , 818. https://doi.org/10.3390/molecules27030818
    13. Marianna Pinzone, Alice Cransveld, Emmanuel Tessier, Sylvain Bérail, Joseph Schnitzler, Krishna Das, David Amouroux. Contamination levels and habitat use influence Hg accumulation and stable isotope ratios in the European seabass Dicentrarchus labrax. Environmental Pollution 2021, 281 , 117008. https://doi.org/10.1016/j.envpol.2021.117008
    14. Fabien Pierron, Sophie Lorioux, Débora Héroin, Guillemine Daffe, Bruno Etcheverria, Jérôme Cachot, Bénédicte Morin, Sylvie Dufour, Patrice Gonzalez. Transgenerational epigenetic sex determination: Environment experienced by female fish affects offspring sex ratio. Environmental Pollution 2021, 277 , 116864. https://doi.org/10.1016/j.envpol.2021.116864
    15. Tao-Tao Yang, Yong Liu, Sha Tan, Wen-Xiong Wang, Xun Wang. The role of intestinal microbiota of the marine fish (Acanthopagrus latus) in mercury biotransformation. Environmental Pollution 2021, 277 , 116768. https://doi.org/10.1016/j.envpol.2021.116768
    16. Ewa Stanisz, Magdalena Krawczyk-Coda. Speciation Analysis of Food Products. 2021, 309-344. https://doi.org/10.1007/978-3-030-61879-7_12
    17. Danae Patsiou, Cristina del Rio-Cubilledo, Ana Isabel Catarino, Stephen Summers, Afiq Mohd Fahmi, David Boyle, Teresa F. Fernandes, Theodore B. Henry. Exposure to Pb-halide perovskite nanoparticles can deliver bioavailable Pb but does not alter endogenous gut microbiota in zebrafish. Science of The Total Environment 2020, 715 , 136941. https://doi.org/10.1016/j.scitotenv.2020.136941
    18. Lixin Yang, Yuanyuan Zhang, Feifei Wang, Zidie Luo, Shaojuan Guo, Uwe Strähle. Toxicity of mercury: Molecular evidence. Chemosphere 2020, 245 , 125586. https://doi.org/10.1016/j.chemosphere.2019.125586
    19. Eliška Rozmánková, Marek Pípal, Lucie Bláhová, Naveen Njattuvetty Chandran, Bénédicte Morin, Patrice Gonzalez, Luděk Bláha. Environmentally relevant mixture of S-metolachlor and its two metabolites affects thyroid metabolism in zebrafish embryos. Aquatic Toxicology 2020, 221 , 105444. https://doi.org/10.1016/j.aquatox.2020.105444
    20. Said Majdood Raihan, Mohammad Moniruzzaman, Youngjin Park, Seunghan Lee, Sungchul C. Bai. Evaluation of Dietary Organic and Inorganic Mercury Threshold Levels on Induced Mercury Toxicity in a Marine Fish Model. Animals 2020, 10 (3) , 405. https://doi.org/10.3390/ani10030405
    21. Carolina Camacho, Ana Luísa Maulvault, Marta T. Santos, Vera Barbosa, Fabíola H. S. Fogaça, Pedro Pousão-Ferreira, M. Leonor Nunes, Rui Rosa, António Marques. Mercury in Juvenile Solea senegalensis: Linking Bioaccumulation, Seafood Safety, and Neuro-Oxidative Responses under Climate Change-Related Stressors. Applied Sciences 2020, 10 (6) , 1993. https://doi.org/10.3390/app10061993
    22. Patrícia Pereira, Malgorzata Korbas, Vitória Pereira, Tiziana Cappello, Maria Maisano, João Canário, Armando Almeida, Mário Pacheco. A multidimensional concept for mercury neuronal and sensory toxicity in fish - From toxicokinetics and biochemistry to morphometry and behavior. Biochimica et Biophysica Acta (BBA) - General Subjects 2019, 1863 (12) , 129298. https://doi.org/10.1016/j.bbagen.2019.01.020
    23. Sophie Gentès, Marina Coquery, Régis Vigouroux, Vincent Hanquiez, Luc Allard, Régine Maury-Brachet. Application of the European Water Framework Directive: Identification of reference sites and bioindicator fish species for mercury in tropical freshwater ecosystems (French Guiana). Ecological Indicators 2019, 106 , 105468. https://doi.org/10.1016/j.ecolind.2019.105468
    24. Claude Belpaire, Peter Hodson, Fabien Pierron, Marko Freese. Impact of chemical pollution on Atlantic eels: Facts, research needs, and implications for management. Current Opinion in Environmental Science & Health 2019, 11 , 26-36. https://doi.org/10.1016/j.coesh.2019.06.008
    25. Xun Wang, Wen-Xiong Wang. The three ‘B’ of fish mercury in China: Bioaccumulation, biodynamics and biotransformation. Environmental Pollution 2019, 250 , 216-232. https://doi.org/10.1016/j.envpol.2019.04.034
    26. V. V. Kuz’mina, V. T. Komov, A. F. Tarleva, V. A. Sheptitskiy. Effect of Dietary Metal Exposure on the Locomotor Reactions and Food Consumption in Common Carp Cyprinus carpio (L.). Inland Water Biology 2019, 12 (3) , 356-364. https://doi.org/10.1134/S1995082919030106
    27. Jun Zhu, Chundan Wang, Xingsu Gao, Jiansheng Zhu, Li Wang, Shuyuan Cao, Qian Wu, Shanlei Qiao, Zhan Zhang, Lei Li. Comparative effects of mercury chloride and methylmercury exposure on early neurodevelopment in zebrafish larvae. RSC Advances 2019, 9 (19) , 10766-10775. https://doi.org/10.1039/C9RA00770A
    28. Cyntia Ayumi Yokota Harayashiki, Amanda Reichelt-Brushett, Kirsten Benkendorff. Behavioural and brain biomarker responses in yellowfin bream (Acanthopagrus australis) after inorganic mercury ingestion. Marine Environmental Research 2019, 144 , 62-71. https://doi.org/10.1016/j.marenvres.2018.12.004
    29. Cyntia Ayumi Yokota Harayashiki, Amanda Reichelt-Brushett, Paul Butcher, Kirsten Benkendorff. Ingestion of inorganic mercury by juvenile black tiger prawns (Penaeus monodon) alters biochemical markers. Ecotoxicology 2018, 27 (9) , 1225-1236. https://doi.org/10.1007/s10646-018-1975-8
    30. Chongning Li, Xiaoliang Wang, Aihui Liang, Yanghe Luo, Guiqing Wen, Zhiliang Jiang. A simple gold nanoplasmonic SERS method for trace Hg 2+ based on aptamer‐regulating graphene oxide catalysis. Luminescence 2018, 33 (6) , 1113-1121. https://doi.org/10.1002/bio.3517
    31. Yiling Li, Bin He, Jiejun Gao, Qian S. Liu, Runzeng Liu, Guangbo Qu, Jianbo Shi, Ligang Hu, Guibin Jiang. Methylmercury exposure alters RNA splicing in human neuroblastoma SK-N-SH cells: Implications from proteomic and post-transcriptional responses. Environmental Pollution 2018, 238 , 213-221. https://doi.org/10.1016/j.envpol.2018.03.019
    32. Adrian J. Green, Antonio Planchart. The neurological toxicity of heavy metals: A fish perspective. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2018, 208 , 12-19. https://doi.org/10.1016/j.cbpc.2017.11.008
    33. Fabrizio Frontalini, Mattia Greco, Letizia Di Bella, Franck Lejzerowicz, Emanuela Reo, Antonio Caruso, Claudia Cosentino, Antonella Maccotta, Giovanna Scopelliti, Maria Pia Nardelli, Maria Teresa Losada, Eric Armynot du Châtelet, Rodolfo Coccioni, Jan Pawlowski. Assessing the effect of mercury pollution on cultured benthic foraminifera community using morphological and eDNA metabarcoding approaches. Marine Pollution Bulletin 2018, 129 (2) , 512-524. https://doi.org/10.1016/j.marpolbul.2017.10.022
    34. Cyntia Ayumi Yokota Harayashiki, Amanda Reichelt-Brushett, Ken Cowden, Kirsten Benkendorff. Effects of oral exposure to inorganic mercury on the feeding behaviour and biochemical markers in yellowfin bream (Acanthopagrus australis). Marine Environmental Research 2018, 134 , 1-15. https://doi.org/10.1016/j.marenvres.2017.12.018
    35. Olívia Cardoso, Sónia Puga, Fátima Brandão, João Canário, Nelson J. O'Driscoll, Maria Ana Santos, Mário Pacheco, Patrícia Pereira. Oxidative stress profiles in brain point out a higher susceptibility of fish to waterborne divalent mercury compared to dietary organic mercury. Marine Pollution Bulletin 2017, 122 (1-2) , 110-121. https://doi.org/10.1016/j.marpolbul.2017.06.029
    36. John J. Govoni, James A. Morris, David W. Evans. Tracing Dietary Mercury Histochemically, with Autometallography, through the Liver to the Ovaries and Spawned Eggs of the Spot, a Temperate Coastal Marine Fish. Journal of Aquatic Animal Health 2017, 29 (3) , 173-180. https://doi.org/10.1080/08997659.2017.1349009
    37. Guo-Di Liu, Zhang Sheng, Cong-Cong Hou, Jie Ni, Ying-Li Han, You-Fa Wang, Yang Zhou, Su-Yan Fu, Jun-Quan Zhu. Molecular cloning, characterization and expression analysis of metallothionein in the liver of the teleost Acrossocheilus fasciatus exposed to cadmium chloride. Environmental Toxicology and Pharmacology 2017, 53 , 1-9. https://doi.org/10.1016/j.etap.2017.03.020
    38. Stephanie D. Graves, Karen A. Kidd, Katharina L. Batchelar, Andrew M. Cowie, Nelson J. O'Driscoll, Christopher J. Martyniuk. Response of oxidative stress transcripts in the brain of wild yellow perch (Perca flavescens) exposed to an environmental gradient of methylmercury. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2017, 192 , 50-58. https://doi.org/10.1016/j.cbpc.2016.12.005
    39. Robert Clough, Chris F. Harrington, Steve J. Hill, Yolanda Madrid, Julian F. Tyson. Atomic spectrometry update: review of advances in elemental speciation. Journal of Analytical Atomic Spectrometry 2017, 32 (7) , 1239-1282. https://doi.org/10.1039/C7JA90028G
    40. Sónia Puga, Patrícia Pereira, Filipa Pinto-Ribeiro, Nelson J. O’Driscoll, Erin Mann, Marisa Barata, Pedro Pousão-Ferreira, João Canário, Armando Almeida, Mário Pacheco. Unveiling the neurotoxicity of methylmercury in fish ( Diplodus sargus ) through a regional morphometric analysis of brain and swimming behavior assessment. Aquatic Toxicology 2016, 180 , 320-333. https://doi.org/10.1016/j.aquatox.2016.10.014
    41. Said A. Hassan, Sameh M. Farouk, Louise C. Abbott. Transmission electron microscopic evaluation of neuronal changes in methylmercury-exposed zebrafish embryos ( Danio rerio ). Ultrastructural Pathology 2016, 40 (6) , 333-341. https://doi.org/10.1080/01913123.2016.1234529
    42. Lin Zeng, Jia-Lang Zheng, Yong-Hong Wang, Mei-Ying Xu, Ai-Yi Zhu, Chang-Wen Wu. The role of Nrf2/Keap1 signaling in inorganic mercury induced oxidative stress in the liver of large yellow croaker Pseudosciaena crocea. Ecotoxicology and Environmental Safety 2016, 132 , 345-352. https://doi.org/10.1016/j.ecoenv.2016.05.002
    43. Fabrizio Frontalini, Davide Curzi, Erica Cesarini, Barbara Canonico, Francesco M. Giordano, Rita De Matteis, Joan M. Bernhard, Nadia Pieretti, Baohua Gu, Jeremy R. Eskelsen, Aaron M. Jubb, Linduo Zhao, Eric M. Pierce, Pietro Gobbi, Stefano Papa, Rodolfo Coccioni, . Mercury-Pollution Induction of Intracellular Lipid Accumulation and Lysosomal Compartment Amplification in the Benthic Foraminifer Ammonia parkinsoniana. PLOS ONE 2016, 11 (9) , e0162401. https://doi.org/10.1371/journal.pone.0162401
    44. Rachele Macirella, Antonello Guardia, Daniela Pellegrino, Ilaria Bernabò, Valentina Tronci, Lars Ebbesson, Settimio Sesti, Sandro Tripepi, Elvira Brunelli. Effects of Two Sublethal Concentrations of Mercury Chloride on the Morphology and Metallothionein Activity in the Liver of Zebrafish (Danio rerio). International Journal of Molecular Sciences 2016, 17 (3) , 361. https://doi.org/10.3390/ijms17030361

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect