ACS Publications. Most Trusted. Most Cited. Most Read
“What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health”
My Activity

Figure 1Loading Img
  • Free to Read
Feature

“What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health”
Click to copy article linkArticle link copied!

View Author Information
Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
Health Effects Institute, Boston, Massachusetts 02110, United States
§ European Commission, Joint Research Centre, Institute for Environment and Sustainability, I. 21027 Ispra, Italy
Institute for Risk Assessment Sciences, Universiteit Utrecht, and Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CJ Utrecht, The Netherlands
State Key Lab for Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
# Social and Environmental Health Research, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
School of Forestry & Environmental Studies, Yale University, New Haven, Connecticut 06511, United States
School of Population and Public Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
Air, Climate & Energy Research Program, Office of Research & Development, Environmental Protection Agency, Durham, North Carolina 27705, United States
Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
Civil and Environmental Engineering, University of California at Davis, Davis, California 95616, United States
Environmental Research Group, King’s College London, London SE1 9NH, United Kingdom
Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
University of Basel, Basel, Switzerland
Laboratoire d’ Aérologie, CNRS-Université de Toulouse, Toulouse 31400, France
@ Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
¢ Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
$ Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States
Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
¥ Economics, Brigham Young University, Provo, Utah 84602, United States
% Earth System Research Laboratory, Chemical Sciences Division, National Oceanic & Atmospheric Administration, Boulder, Colorado 80305, United States
Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
Я Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
*(J.J.W.) E-mail: [email protected]
*(A. C.) E-mail: [email protected]
*(F. D.) E-mail: [email protected]
*(T. Z.) E-mail: [email protected]
Open PDF

Environmental Science & Technology

Cite this: Environ. Sci. Technol. 2016, 50, 10, 4895–4904
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.est.5b03827
Published March 24, 2016

Copyright © 2016 American Chemical Society. This publication is available under these Terms of Use.

Abstract

Click to copy section linkSection link copied!

Air pollution contributes to the premature deaths of millions of people each year around the world, and air quality problems are growing in many developing nations. While past policy efforts have succeeded in reducing particulate matter and trace gases in North America and Europe, adverse health effects are found at even these lower levels of air pollution. Future policy actions will benefit from improved understanding of the interactions and health effects of different chemical species and source categories. Achieving this new understanding requires air pollution scientists and engineers to work increasingly closely with health scientists. In particular, research is needed to better understand the chemical and physical properties of complex air pollutant mixtures, and to use new observations provided by satellites, advanced in situ measurement techniques, and distributed micro monitoring networks, coupled with models, to better characterize air pollution exposure for epidemiological and toxicological research, and to better quantify the effects of specific source sectors and mitigation strategies.

This publication is licensed for personal use by The American Chemical Society.

Copyright © 2016 American Chemical Society

Synopsis

Air pollution contributes to the premature deaths of millions of people each year around the world, and air quality problems are growing in many developing nations. While past policy efforts have succeeded in reducing particulate matter and trace gases in North America and Europe, adverse health effects are found at even these lower levels of air pollution. Future policy actions will benefit from improved understanding of the interactions and health effects of different chemical species and source categories. Achieving this new understanding requires air pollution scientists and engineers to work increasingly closely with health scientists. In particular, research is needed to better understand the chemical and physical properties of complex air pollutant mixtures, and to use new observations provided by satellites, advanced in situ measurement techniques, and distributed micro monitoring networks, coupled with models, to better characterize air pollution exposure for epidemiological and toxicological research, and to better quantify the effects of specific source sectors and mitigation strategies.

Introduction

Click to copy section linkSection link copied!

What we breathe impacts our health. Over the past 20 years, evidence for adverse health effects of ambient air pollution has grown dramatically. (1, 2) It is now widely recognized that exposure to outdoor air pollution contributes to a broad array of acute and chronic health effects, ranging from minor physiological impacts to death from respiratory and cardiovascular disease. (3, 4) It is also recognized that the effects on human health are large and widespread. The Global Burden of Disease (GBD) study (5) ranked exposure to ambient fine particulate matter (PM2.5) as the seventh most important risk factor contributing to global mortality, responsible for 2.9 (95% uncertainty interval: 2.8–3.1) million premature deaths in 2013; in East Asia, it was the fifth largest contributor. Household air pollution from solid fuel combustion ranked eighth globally (second in South Asia), responsible for 2.9 (2.5–3.3) million deaths. These two risk factors are the most important environmental exposures for health globally, comparable in impact to other risk factors that are more widely appreciated, such as tobacco smoking, alcohol use, and high body-mass index. It is estimated that in 2013, 87% of the global population lived in areas exceeding the WHO’s air quality guideline for annual average PM2.5 (10 μg m–3). (6) The most highly polluted areas are often megacities that also have high population, particularly in South and East Asia, (7, 8) and while highly populated regions of Asia have a large burden of disease from air pollution, health effects of air pollution occur globally (Figure 1) and include rural populations. Future increases in global urbanization, particularly in rapidly developing countries, and aging of global populations will likely increase the size of the population vulnerable to air pollution. These trends suggest that reductions in emissions will be required to prevent increases in health effects. (9)

Figure 1

Figure 1. Total rate of health burden in 2013 due to exposure to ambient PM2.5 pollution (disability-adjusted life-years per year per 100 000 population), from the Global Burden of Disease 2013 (Institute of Health Metrics and Evaluation, University of Washington).

In recent decades, governments have adopted standards for specific air pollutants that are measured widely, including ozone and indicators of particulate matter such as PM2.5. These standards, along with emission controls and technological changes, have been remarkably effective at driving air quality improvements in North America (10) and Western Europe, though ozone, NO2, PM2.5, and PM10 standards are still violated in some regions. The improvements in PM2.5 air quality have brought demonstrable increases in life expectancy in the US. (11)
Despite this progress in understanding air pollution and its health effects, and in controlling air pollution in some parts of the world, scientific understanding of air pollution and its health effects is incomplete in ways that are important for air pollution management and public health. In particular, both gaseous and particulate air pollution consist of complex mixtures with chemical and physical characteristics that vary over space and time. These pollutants result from sources with different emission characteristics, and from photochemical reactions that transform air pollutants while they are transported and mix with pollutants from other sources. As indicators of this mixture, individual pollutants such as PM2.5 and ozone have demonstrated associations with human health. Still the effects of the complex mixtures themselves are far less understood. (12) Therefore, several motivating scientific questions currently exist that are also important for policy:
  • What specific characteristics and components of air pollution, or specific mixtures of air pollutants, are responsible for specific health effects?

  • How important are certain source sectors and source regions for air pollution health effects in a particular location, region, or globally?

  • Would other indicators of complex air pollution mixtures and their interactions with human health be more effective for future air quality management?

  • What are the human health implications of alternative future strategies for emissions controls and energy use?

In this paper, we discuss recent changes in global air pollution, and in our understanding of air pollution and its health effects, and consider how research in this area can best provide useful information to inform policy decisions in the coming decades. We suggest that addressing the motivating questions above, and moving the field forward in the coming decades, requires stronger interactions between health scientists—including researchers in toxicology, exposure science, epidemiology, and clinical medicine—and air pollution scientists from the perspectives of atmospheric science, chemistry, physics, and engineering. We focus on research in these two communities that aims to better understand the health effects of ambient air pollution. We summarize recent progress in each of these communities, and in research through which these communities have interacted, that we believe capture the most important scientific advances in recent years. Finally, we offer suggestions for future research that builds on these results.

The Changing Nature of Global Air Pollution

Click to copy section linkSection link copied!

Air pollutant concentrations around the world continue to change due to demographic, societal, economic, and technological development, along with the implementation of air quality regulations in large parts of the world. Broadly, concentrations of key air pollutants are generally decreasing in North America and Europe while they are increasing in China, India, and many less industrialized regions. In North America and Europe, decreases of roughly 1.5–4% yr–1 have been observed for PM2.5, PM10 and sulfate, from 1990 to 2009; decreases in carbonaceous PM of 2.5–7.5% yr–1 have also been observed in North America. (13) Trends in global estimates of PM2.5 since the late 1990s show decreases over the eastern U.S., but increases over the Middle East, eastern and southern Asia, Latin America, and Africa (Figure 2). (14) High PM concentrations are particularly pronounced in China and India, exemplified by the extremely high pollution episodes of January 2013 in northeast China, where measured PM2.5 daily average concentrations exceeded 500 μg m–3, (15) 20 times the 24-h World Health Organization (WHO) air quality guideline.

Figure 2

Figure 2. Ratio of estimated annual average PM2.5 concentrations in 2013 to 1990, at 0.1° × 0.1° resolution, following methods of Brauer et al. (2016). Red indicates a large relative increase during this period; green indicates decreases.

Tropospheric ozone in the Northern Hemisphere is observed to show a rise in the baseline levels (concentrations unaffected by local pollution), with decreases and increases in peak values depending on region. Ozone concentrations have decreased since the 1990s in the eastern U.S., (16) while over North America and Europe there are indications of rising baseline and declining peak ozone levels, (17, 18) reflecting the changing roles of regional and remote ozone sources. Over Asia, ozone increases of about 0.5–1% yr–1 have been observed since the 1990s. (16) Satellite observations of NO2, an important ozone precursor, indicate increases of more than a factor of 2 in Asia, and decreases in Europe and North America (30–50%) over the last two decades. (19, 20)
In addition to these broad trends, the mixture of air pollution from different sources within each world region is changing. For example, while anthropogenic SO2 emissions have decreased substantially between 1990 and 2011 in Western Europe (−77%) and North America (−65%), they have increased rapidly in Asia (+63%). (21) Air pollution is already severe in some large African cities, and is poised to quickly intensify due to the rapid growth in urban population and relative lack of emission controls. (22) Looking to the future, climate change may have significant effects on ozone, PM2.5, and other pollutants, (23) and fire emissions may be significantly influenced by both changes in climate and fire management practices. (24, 25)

Progress in Characterizing Air Pollution

Click to copy section linkSection link copied!

Over recent decades, knowledge of atmospheric composition and its chemistry and physics has grown tremendously, even though air pollutants are not currently monitored in many cities around the world. New and improved instruments, including aerosol mass spectrometers, and proton transfer reaction mass spectrometers, (26) have led revolutionary progress in measuring atmospheric chemical components in ambient environments with high time resolution, especially components in PM and volatile organic compounds (VOCs). (27) Novel analysis methods also more directly investigate the characteristics of aerosol components that may lead to health effects, such as the formation of reactive oxygen species in aerosol that may cause oxidative stress. (28, 29) This improved chemical analysis has supported investigation of the importance of specific chemical species for health. In some cases, motivation for understanding the health effects of chemical species has come from the atmospheric science community, such as for isocyanic acid from wood smoke. (30)
Instruments have also been made increasingly mobile to better characterize concentrations and human exposure (31) through mobile and wearable monitors (32, 33) deployed in a variety of microenvironments including near roadways. (34) Low-cost instruments are being developed and deployed in micronetworks to characterize fine-scale variations in air pollutant concentrations and human exposure, and to extend monitoring to new locations. (35) But as these low-cost and portable monitors have not demonstrated the same accuracy as more established methods, they are best used in conjunction with other methods, for example to provide understanding of spatial variation while more established methods may correct for bias. Finally, satellite observations of many air pollutants, such as PM2.5, NO2, O3, CO, and formaldehyde, now offer global coverage with remarkable spatial and temporal resolution (Figure 3). Satellite-derived PM2.5 estimates exhibit a high degree of consistency with ground-based observations globally, (36) in long-term trends, (14) and at the regional scale. (37, 38) Observations from satellites, together with ground-based observations, have been critical in constraining the magnitude and trends in global emissions and air pollutant concentrations, and in quantifying the intercontinental transport of pollutants. (39)

Figure 3

Figure 3. Satellite image showing a thick river of haze over the Indo-Gangetic Plain on January 10, 2013, as captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite. Image courtesy of NASA Earth Observatory. (http://earthobservatory.nasa.gov/IOTD/view.php?id=80148).

The improved understanding of chemical and other atmospheric processes has been successfully incorporated into models that simulate the transport and transformation of air pollutants at local, regional, and global scales. In addition to improving model processes, global atmospheric models can now simulate global atmospheric chemistry at horizontal resolutions below 1° × 1°, and regional models can simulate air quality over a continent at resolutions below 10 × 10 km. Modeling at finer scale is important as concentrations can vary strongly within urban regions, where population density is high, to avoid spatial misalignment and biases. (40) Models continue to face challenges such as limitations of existing emission inventories, in representing explicit chemical process such as those forming secondary organic aerosols, (41) and in correctly simulating multidecadal changes in air pollution. Nonetheless these models provide the potential to estimate human exposures to ambient pollutant concentrations at fine temporal and spatial scales and by emission source sector. New modeling systems are aiming to better estimate the concentrations to which individuals are exposed by combining coarse-resolution model estimates or satellite observations with land use regression modeling. (42)
Despite this progress, substantial challenges remain to better characterize the mixtures of gases and particles that make up air pollution, and to improve this understanding throughout the world. The measurement techniques used for routine monitoring are also imperfect. For example, it is widely recognized that the U.S. Federal Reference method for NO2, and several international methods that are based on it, measures more than just NO2, capturing more oxidized nitrogen compounds. (43, 44)

Progress in Understanding Air Pollution Health Effects

Click to copy section linkSection link copied!

Our understanding of air pollution health effects has a strong foundation in toxicological and short-term epidemiological studies focusing on individual pollutants. Long-term epidemiological studies provide evidence for relatively large health effects of chronic, long-term exposure to PM (e.g., as measured by PM2.5) and ozone. (4, 45, 46) Associations between exposure to pollution and health have been observed in North America, Europe, and Asia, despite large differences in source composition, pollutant concentrations, and population health characteristics. (47) However, some studies have identified differences in health estimates for particles by region and by season, which may relate to differences in source contributions and chemical composition, or have identified different effects based on particle source or composition. (48-52)
While past studies have focused on individual pollutants, often while controlling for variations in other pollutants, the epidemiology community recognizes that health effects may relate to the body’s response to complex mixtures of air pollution. (53) Unravelling the contributions and interactions of individual components or sources in a multipollutant mixture is a growing research focus, but also prone to fundamental difficulties, as epidemiological studies must account for complex correlations between different pollutants and between the contributions of multiple sources, and both toxicological and epidemiological studies suggest that pollutants in combination may have synergistic or nonlinear impacts. (54, 55)
Nevertheless, some recent research that investigates the health impacts of particular sources suggests that specific sources, especially combustion sources, produce pollutant mixtures that may be more harmful than others. Such differences in toxicity would not be apparent in analyses of total PM2.5 mass. (55) For example, recent studies have shown that sources like fuel oil combustion, coal combustion, traffic, and traffic-related particle pollution may have greater health risks than total PM2.5 mass, or than regional sources and associated components such as sulfates and nitrates. (50, 52, 55-57) Likewise, a meta-analysis of studies focused on black carbon (BC) as an indicator for combustion PM, finding that the increase in life expectancy of a hypothetical traffic abatement policy was 4–9 times greater when evaluated for the BC reduction than for an equivalent reduction of PM2.5 mass. (58) Another study found greater toxicological effects for particles from incomplete combustion sources resulting from two-wheel vehicles and domestic fires than from diesel vehicles. (59) Although this literature is growing, the evidence to date is not entirely consistent in identifying the most harmful sources or chemical components, and has not excluded any specific PM source, component, or size fraction from being a contributor to PM toxicity. (60, 61)
Analyses of relationships between sources and health outcomes depend on imperfect indicators of the specific sources (like NO2 or BC for traffic) or imperfect source estimates based on modeled approaches (e.g., source factorization methods), and these relationships are difficult to extrapolate to other regions or time periods that have different sources, chemistry, meteorology, and exposure and population characteristics. For example, the BC emissions from traffic in the US are markedly different than those in Europe, which has more diesel vehicles.
Past epidemiological studies have largely used measured pollutant concentrations at fixed monitors to represent the exposure of large populations. The relationship between air pollutant concentrations at finer scales and at these fixed monitors has become a subject of increased interest, as have efforts to attempt to characterize personal exposure through micro networks and wearable monitors, as well as using land use regression to estimate fine-scale variations. (62) In particular, there is a demand for information regarding near-road exposures and residential combustion, in different settings around the world, as both occur near where people live and work.
Finally, as most epidemiological evidence derives from studies in North America and Europe, there is a critical need for more research to be conducted in other regions, capturing effects over a wider range of concentrations, pollutant mixtures, and population, exposure, and health characteristics.

Policy Context

Click to copy section linkSection link copied!

Where air pollution has been reduced, such as in North America and Europe, improvements have been forced by regulations and related public policies, and enabled by the development of improved emission control technologies, such as scrubbers on power plants and catalytic converters on motor vehicles, or by changes in energy sources and use. While initiatives of individual national governments have driven air pollution control in North America, international actions have always been important in Europe, including those undertaken through the Convention on Long-Range Transboundary Air Pollution. (63) As the importance of air pollution for global health, and of intercontinental air pollution transport, has increasingly been recognized, international initiatives are now playing an increasing role in addressing global air pollution, including recent resolutions by the United Nations Environment Assembly (64) and the World Health Assembly, (65) and the creation of the Climate and Clean Air Coalition. (66) In this global framework, the air quality management experiences in North America and Europe may be useful as other nations design regulations that adapt to their social, economic, and political circumstances, including the importance of different emissions sources, such as the need to better address emissions from open biomass burning in developing countries. There is clearly a need to improve understanding of local air pollution problems in cities throughout the world, starting with ambient measurements and the creation of emission inventories, (8) with the aim to constrain the relative contributions of different sources to pollutant concentrations and health effects. Likewise, there is a need to develop efficient and affordable energy sources and transportation options, providing alternatives to current practices, especially in developing nations.
There is also increasing interest in the relationships between actions to improve air quality and actions to address climate change. Actions to reduce greenhouse gas (GHG) emissions often reduce coemitted air pollutants from the same sources, and studies of the cobenefits of GHG reductions have found that the monetized benefits of air quality and health improvements are comparable to, or may exceed, the direct costs of GHG reductions. (67-69) Similarly, actions that focus on reductions in short-lived climate pollutants (SLCPs), including black carbon and ozone precursors, have been shown to bring substantial air quality and health improvements in addition to slowing the rate of climate change. (70) Given these strong links between air pollution and climate change, policies can be better coordinated to address both problems simultaneously.

Research Directions

Click to copy section linkSection link copied!

In atmospheric science, fundamental research is needed on the chemical and physical properties of air pollutant mixtures as emissions from a variety of sources mix and age photochemically. (71, 72) This research includes improving our mechanistic understanding of chemical interactions at the atmosphere–biosphere interface, including the effects of biological particles. (73, 74) Epidemiologic studies, which are currently limited by the availability of exposure estimates and rely heavily on pollutants that are measured widely and routinely, should consider other air pollutants suspected to be important for health, such as polycyclic aromatic hydrocarbons (PAHs), metals, reactive oxygen species, and other chemical components of PM. Particle size is likely also important for health, suggesting the importance of measures such as ultrafine PM and particle number concentrations. (75, 76) Atmospheric science can contribute by developing low-cost methods of measuring these pollutants, as well as making monitors for other pollutants more accurate and less expensive. (31, 35) Adoption of new instrumentation on a wider scale should be encouraged, (77) including in routine networks, and information on measurement uncertainty should be provided for incorporation into health studies. Likewise, there is a need to improve atmospheric models through improvements in the descriptions of fundamental processes and optimal assimilation of atmospheric observations, to better constrain emission estimates and quantify source-receptor relationships.
Atmospheric science is now entering an era of data proliferation provided by satellite observations and comparatively affordable and easily deployed sensors, including wearable monitors. (31) An important challenge is to extract more information from these observations, and to combine these data with more accurate monitoring techniques to better represent human exposure, using high resolution air quality models and advanced data assimilation methods. For example, active research is now improving methods of inferring aerosol composition or near-ground ozone from satellite observations. (78, 79) Recent work has statistically combined the available surface measurements with global atmospheric modeling and satellite observations to yield estimates of global PM2.5 surface concentrations at fine resolution, (6) and other studies have applied comparable methods for similar purposes. (80-82) The recent availability of global estimates have been influential in catalyzing consideration of air pollution as an important determinant of population health and as an important sustainable development metric. (83) While North America and Europe have a longer history of air pollution monitoring and a more detailed characterization of ambient concentrations, substantial challenges exist in better characterizing pollutant mixtures at fine spatial and temporal scales. Even greater challenges exist across much of Asia, Africa, the Middle East, and Latin America, where available measurements are severely limited.
More work is needed to improve these approaches and to expand them to additional key pollutants, through improved measurement technology, more widespread surface observations, improvements to satellite retrievals, and advancements in models. It is critically important that the quality and coverage of surface monitoring networks and satellite observations be not only maintained but expanded. Similar observational needs from the climate community regarding SLCPs suggest that investments can be leveraged to benefit both communities. Likewise, increased attention is needed to better understand how ambient concentration relates to the actual exposure of individuals as they move through indoor and outdoor environments in their daily activities.
Improved estimates of air pollutant concentrations at fine spatial and temporal resolution could then be used to estimate exposure for air pollution epidemiology, as more spatially resolved concentration estimates can improve quantification of exposure-health relationships. (84) Especially needed would be source apportionment of PM and modeling to identify exposure due to emissions from particular sources. And by estimating exposures for larger populations globally, epidemiological research can address a wider range of conditions. While North America and Europe have successfully reduced air pollution, it is important to continue to research the further benefits to human health of achieving lower concentrations, as current evidence suggests that health effects occur at concentrations below current standards. (1, 2) Meanwhile, the very high concentrations found in the most polluted regions strongly impact human health. Examination of a wide range of exposures, pollutant mixtures, and population health status is therefore important for epidemiology. In this context, better relating research on the health effects of exposure from indoor cookstoves with that from ambient air pollution will prove fruitful. Similarly, relationships between air pollutants, meteorological parameters (temperature, humidity), and other parameters like allergens should be investigated and will be important for anticipating the effects of future climate change. Finally, intervention studies following rapid changes in air pollutant concentrations have proven very useful in understanding health effects, (85) and opportunities to research such interventions should be identified and pursued. To support epidemiological studies under a wider range of conditions, epidemiologists need to engage with health authorities to improve the collection of high-quality and relevant health data. Ideally, health data would be collected with spatial and temporal resolution that approaches that of the available concentration data.
Health effects science can also be improved by aiming for a better understanding of the biological mechanisms by which specific pollutants impact neurological, cardiovascular, respiratory, and other aspects of human health. Research that combines advanced experimental techniques that characterize atmospheric composition properties, and biological markers in “real life” situations, could contribute to understanding of specific biological mechanisms. One promising approach to investigating biological mechanisms would involve heavily instrumented urban supersites where detailed measurements of air pollutants and modeling are coordinated with intensive toxicological and population health research aimed at particular hypotheses. Such work can explore relevant chemical pathways by better combining detailed atmospheric chemistry with detailed biochemical and medical information. For example, new air quality measurements including online detection of short-lived hazardous compounds, such as organic radicals and reactive oxygen intermediates in particles, could be combined with toxicological experiments including the determination of oxidative stress in cell cultures exposed to ambient air and epidemiological investigations on airway, cardiovascular, and inflammatory diseases.

A Path Forward

Click to copy section linkSection link copied!

Research on air pollution and health is at an important cross-road. Tremendous progress has been made in reducing air pollution and improving public health in North America and Europe through regulation and related public policy actions targeting PM2.5, ozone, and other individual pollutant species. For areas that are developing rapidly, such as India and China, development decisions, for example concerning energy use, in upcoming decades will have enormous implications for air quality and health. In the future, air pollution control efforts would benefit from a more specific understanding of the chemical species and source categories that have the greatest influences on human health, including developing risk functions separately for different sources (e.g., coal combustion and traffic), allowing control actions to be better prioritized. Achieving this new understanding requires progress in individual disciplines, as well as greater interdisciplinary interactions. This new understanding of air pollution health effects can yield improved policies and regulations that more specifically and effectively target particular chemical components and/or sources of air pollution, bringing greater public health benefits at potentially lower cost. While there is ample evidence of the health effects of air pollution to drive decision-making in polluted regions, better understanding can more effectively prioritize control actions among many sources of air pollution, where resources are lacking. In North America and Europe, continued improvements may come at a higher cost, and understanding the differential effects of sources can better prioritize decisions. Further work is needed to incorporate this emerging understanding of health effects into improved model simulations and assessments of human health outcomes, providing better quantification of the health benefits of different actions to mitigate emissions. For example, recent research has identified the importance of different emission sectors for global air quality and health. (86-88) Such tools can then better inform choices of new energy technologies globally over the next century, as we confront the overlapping challenges posed by energy security, air pollution, and climate change, while meeting the energy needs of a growing global population and economy.
The research communities of air pollution science and air pollution health have been traditionally somewhat segregated, as its practitioners often have different disciplinary backgrounds, use different techniques and language, and attend separate meetings. Moving the field forward in the coming decades requires more effective interactions, so that each community can better understand the new findings, and capabilities, limitations, and priorities for research of the other. Interdisciplinary collaborations need to be supported and rewarded through increased funding for interdisciplinary research and by valuing such collaborations in promotion decisions. Through better educational opportunities, junior air pollution scientists should be exposed to the challenges of understanding human health, and vice versa. Meetings should better encourage interdisciplinary dialogue and break down disciplinary boundaries. Since air pollution is important globally, it is important that these improvements should take place internationally.
Acquired knowledge regarding air pollution health effects, coupled with the increased capacity to measure air pollutants via expanded ground-level monitoring networks, satellite-based estimates, and low cost specialized sensors, and with better atmospheric models linking emissions to ambient air pollution and personal exposures, can inform more effective strategies to reduce pollution and population exposure in the regions with the most considerable air pollution problems, especially those that currently lack the capacity to address them. Such developments are on the critical path to reducing the substantial burden of disease due to air pollution.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
    • J. Jason West - Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States Email: [email protected]
    • Aaron Cohen - Health Effects Institute, Boston, Massachusetts 02110, United States Email: [email protected]
    • Frank Dentener - European Commission, Joint Research Centre, Institute for Environment and Sustainability, I. 21027 Ispra, Italy Email: [email protected]
    • Tong Zhu - State Key Lab for Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China Email: [email protected]
  • Authors
    • Bert Brunekreef - Institute for Risk Assessment Sciences, Universiteit Utrecht, and Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CJ Utrecht, The Netherlands
    • Ben Armstrong - Social and Environmental Health Research, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
    • Michelle L. Bell - School of Forestry & Environmental Studies, Yale University, New Haven, Connecticut 06511, United States
    • Michael Brauer - School of Population and Public Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
    • Gregory Carmichael - Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
    • Dan L. Costa - Air, Climate & Energy Research Program, Office of Research & Development, Environmental Protection Agency, Durham, North Carolina 27705, United States
    • Douglas W. Dockery - Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, United States
    • Michael Kleeman - Civil and Environmental Engineering, University of California at Davis, Davis, California 95616, United States
    • Michal Krzyzanowski - Environmental Research Group, King’s College London, London SE1 9NH, United Kingdom
    • Nino Künzli - Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, SwitzerlandUniversity of Basel, Basel, Switzerland
    • Catherine Liousse - Laboratoire d’ Aérologie, CNRS-Université de Toulouse, Toulouse 31400, France
    • Shih-Chun Candice Lung - Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
    • Randall V. Martin - Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, CanadaHarvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States
    • Ulrich Pöschl - Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
    • C. Arden Pope III - Economics, Brigham Young University, Provo, Utah 84602, United States
    • James M. Roberts - Earth System Research Laboratory, Chemical Sciences Division, National Oceanic & Atmospheric Administration, Boulder, Colorado 80305, United States
    • Armistead G. Russell - Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
    • Christine Wiedinmyer - Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

Click to copy section linkSection link copied!

The views presented in this paper were stimulated by a workshop held in Boston in October, 2011: “Atmospheric Chemistry and Health: current knowledge and future directions”. The authors thank the International Commission on Atmospheric Chemistry and Global Pollution (iCACGP), the International Global Atmospheric Chemistry Project (IGAC), the Health Effects Institute (HEI), the World Meteorological Organization (WMO), and the European Commission for providing travel and logistical support to this meeting. J.J.W. was supported by the U.S. National Institute of Environmental Health Sciences, grant #1R21ES022600-01. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under the sponsorship of the National Science Foundation. The contribution from the National Oceanic and Atmospheric Administration was supported by the NOAA Health of the Atmosphere Initiative. The views expressed here do not necessarily reflect the policy of the U.S. Environmental Protection Agency, European Commission, or sponsoring organizations. We thank five anonymous reviewers for their comments.

References

Click to copy section linkSection link copied!

This article references 88 other publications.

  1. 1
    U.S. Environmental Protection Agency. Integrated Science Assessment for Ozone and Related Photochemical Oxidants, EPA 600/R-10/076F, 2013.
  2. 2
    U.S. Environmental Protection Agency. Integrated Science Assessment for Particulate Matter, EPA/600/R-08/139F, 2009.
  3. 3
    Brook, R. D.; Rajagopalan, S.; Pope, C. A.; Brook, J. R.; Bhatnagar, A.; Diez-Roux, A. V.; Holguin, F.; Hong, Y. L.; Luepker, R. V.; Mittleman, M. A.; Peters, A.; Siscovick, D.; Smith, S. C.; Whitsel, L.; Kaufman, J. D.; Epidemiol, A. H. A. C.; Dis, C. K. C.; Metab, C. N. P. A. Particulate Matter Air Pollution and Cardiovascular Disease An Update to the Scientific Statement From the American Heart Association Circulation 2010, 121 (21) 2331 2378 DOI: 10.1161/CIR.0b013e3181dbece1
  4. 4
    Burnett, R. T.; Pope, C. A.; Ezzati, M.; Olives, C.; Lim, S. S.; Mehta, S.; Shin, H. H.; Singh, G.; Hubbell, B.; Brauer, M.; Anderson, H. R.; Smith, K. R.; Balmes, J. R.; Bruce, N. G.; Kan, H. D.; Laden, F.; Pruss-Ustun, A.; Michelle, C. T.; Gapstur, S. M.; Diver, W. R.; Cohen, A. An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure Environ. Health Perspect. 2014, 122 (4) 397 403 DOI: 10.1289/ehp.1307049
  5. 5
    Forouzanfar, M. H.; Alexander, L.; Anderson, H. R.; Bachman, V. F.; Biryukov, S. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013 Lancet 2015, 386 (10010) 2287 2323 DOI: 10.1016/S0140-6736(15)00128-2
  6. 6
    Brauer, M.; Freedman, G.; Frostad, J.; van Donkelaar, A.; Martin, R. V.; Dentener, F.; van Dingenen, R.; Estep, K.; Amini, H.; Apte, J. S.; Balakrishnan, K.; Barragard, L.; Broday, D.; Feigin, V.; Ghosh, S.; Hopke, P. K.; Knibbs, L. D.; Kokubo, Y.; Liu, Y.; Ma, S.; Morawska, L.; Texcalac Sangrador, J. L.; Shaddick, G.; Anderson, H. R.; Vos, T.; Forouzanfar, M. H.; Burnett, R. T.; Cohen, A. Ambient air pollution exposure estimation for the Global Burden of Disease 2013 Environ. Sci. Technol. 2016, 50, 79 88 DOI: 10.1021/acs.est.5b03709
  7. 7
    Parrish, D. D.; Zhu, T. Clean Air for Megacities Science 2009, 326 (5953) 674 675 DOI: 10.1126/science.1176064
  8. 8
    Zhu, T.; Melamed, M.; Parrish, D.; Gauss, M.; Gallardo Klenner, L.; Lawrence, M.; Konare, A.; Liousse, C., Eds.; Impacts of Megacities on Air Pollution and Climate, WMO/IGAC GAW Report 205, ISBN 978–0–9882867–0–2, Geneva, Switzerland, 2012.
  9. 9
    Apte, J. S.; Marshall, J. D.; Cohen, A. J.; Brauer, M. Addressing Global Mortality from Ambient PM2.5 Environ. Sci. Technol. 2015, 49, 8057 8066 DOI: 10.1021/acs.est.5b01236
  10. 10
    Bachmann, J. Will the Circle Be Unbroken: A History of the US National Ambient Air Quality Standards J. Air Waste Manage. Assoc. 2007, 57, 652 697 DOI: 10.3155/1047-3289.57.10.1151
  11. 11
    Pope, C. A.; Ezzati, M.; Dockery, D. W. Fine-Particulate Air Pollution and Life Expectancy in the United States N. Engl. J. Med. 2009, 360 (4) 376 386 DOI: 10.1056/NEJMsa0805646
  12. 12
    Dominici, F.; Peng, R. D.; Barr, C. D.; Bell, M. L. Protecting Human Health From Air Pollution Shifting From a Single-pollutant to a Multipollutant Approach Epidemiology 2010, 21 (2) 187 194 DOI: 10.1097/EDE.0b013e3181cc86e8
  13. 13
    Hartmann, D. L.; Tank, A. M. G. K.; Rusticucci, M.; Alexander, L. V.; Bronnimann, S.; Charabi, Y.; Dentener, F. J.; Dlugokencky, E. J.; Easterling, D. R.; Kaplan, A.; Soden, B. J.; Thorne, P. W.; Wild, M.; Zhai, P. M., Observations: Atmosphere and Surface. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on climate Change; Stocker, T. F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S. K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. M., Eds.; Cambridge University Press: New York, NY, 2013.
  14. 14
    Boys, B. L.; Martin, R. V.; van Donkelaar, A.; MacDonell, R. J.; Hsu, N. C.; Cooper, M. J.; Yantosca, R. M.; Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S. W. Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter Environ. Sci. Technol. 2014, 48 (19) 11109 11118 DOI: 10.1021/es502113p
  15. 15
    Wang, Y. S.; Yao, L.; Wang, L. L.; Liu, Z. R.; Ji, D. S.; Tang, G. Q.; Zhang, J. K.; Sun, Y.; Hu, B.; Xin, J. Y. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China Sci. China: Earth Sci. 2014, 57 (1) 14 25 DOI: 10.1007/s11430-013-4773-4
  16. 16
    Cooper, O. R.; Parrish, D. D.; Ziemke, J.; Balashov, N. V.; Cupeiro, M.; Galbally, I. E.; Gilge, S.; Horowitz, L.; Jensen, N. R.; Lamarque, J.-F.; Naik, V.; Oltmans, S. J.; Schwab, J.; Shindell, D. T.; Thompson, A. M.; Thouret, V.; Wang, Y.; Zbinden, R. M. Global distribution and trends of tropospheric ozone: An observation-based review Elementa 2014, 2, 000029 DOI: 10.12952/journal.elementa.000029
  17. 17
    Cooper, O. R.; Gao, R. S.; Tarasick, D.; Leblanc, T.; Sweeney, C. Long-term ozone trends at rural ozone monitoring sites across the United States, 1990–2010 J. Geophys. Res., Atmos. 2012, 117, D22307 DOI: 10.1029/2012JD018261
  18. 18
    Wilson, R. C.; Fleming, Z. L.; Monks, P. S.; Clain, G.; Henne, S.; Konovalov, I. B.; Szopa, S.; Menut, L. Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996–2005 Atmos. Chem. Phys. 2012, 12 (1) 437 454 DOI: 10.5194/acp-12-437-2012
  19. 19
    Hilboll, A.; Richter, A.; Burrows, J. P. Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments Atmos. Chem. Phys. 2013, 13 (8) 4145 4169 DOI: 10.5194/acp-13-4145-2013
  20. 20
    Geddes, J. A.; Martin, R. V.; Boys, B. L.; van Donkelaar, A. Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations Environ. Health Perspect. 2016, 124, 281 289 DOI: 10.1289/ehp.1409567
  21. 21
    Klimont, Z.; Smith, S. J.; Cofala, J. The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions Environ. Res. Lett. 2013, 8 (1) 014003 DOI: 10.1088/1748-9326/8/1/014003
  22. 22
    Liousse, C.; Assamoi, E.; Criqui, P.; Granier, C.; Rosset, R. Explosive growth in African combustion emissions from 2005 to 2030 Environ. Res. Lett. 2014, 9 (3) 035003 DOI: 10.1088/1748-9326/9/3/035003
  23. 23
    Fiore, A. M.; Naik, V.; Leibensperger, E. M. Air Quality and Climate Connections J. Air Waste Manage. Assoc. 2015, 65 (6) 645 685 DOI: 10.1080/10962247.2015.1040526
  24. 24
    Pechony, O.; Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (45) 19167 19170 DOI: 10.1073/pnas.1003669107
  25. 25
    Yue, X.; Mickley, L. J.; Logan, J. A.; Hudman, R. C.; Martin, M. V.; Yantosca, R. M. Impact of 2050 climate change on North American wildfire: consequences for ozone air quality Atmos. Chem. Phys. 2015, 15, 10033 10055 DOI: 10.5194/acp-15-10033-2015
  26. 26
    de Gouw, J.; Warneke, C. Measurements of volatile organic compounds in the earths atmosphere using proton-transfer-reaction mass spectrometry Mass Spectrom. Rev. 2007, 26 (2) 223 257 DOI: 10.1002/mas.20119
  27. 27
    Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Q.; Kroll, J. H.; DeCarlo, P. F.; Allan, J. D.; Coe, H.; Ng, N. L.; Aiken, A. C.; Docherty, K. S.; Ulbrich, I. M.; Grieshop, A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.; Hueglin, C.; Sun, Y. L.; Tian, J.; Laaksonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara, P.; Ehn, M.; Kulmala, M.; Tomlinson, J. M.; Collins, D. R.; Cubison, M. J.; Dunlea, E. J.; Huffman, J. A.; Onasch, T. B.; Alfarra, M. R.; Williams, P. I.; Bower, K.; Kondo, Y.; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell, L.; Griffin, R.; Takami, A.; Miyoshi, T.; Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y. M.; Dzepina, K.; Kimmel, J. R.; Sueper, D.; Jayne, J. T.; Herndon, S. C.; Trimborn, A. M.; Williams, L. R.; Wood, E. C.; Middlebrook, A. M.; Kolb, C. E.; Baltensperger, U.; Worsnop, D. R. Evolution of Organic Aerosols in the Atmosphere Science 2009, 326 (5959) 1525 1529 DOI: 10.1126/science.1180353
  28. 28
    Shiraiwa, M.; Sosedova, Y.; Rouviere, A.; Yang, H.; Zhang, Y. Y.; Abbatt, J. P. D.; Ammann, M.; Poschl, U. The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles Nat. Chem. 2011, 3 (4) 291 295 DOI: 10.1038/nchem.988
  29. 29
    Verma, V.; Fang, T.; Guo, H.; King, L.; Bates, J. T.; Peltier, R. E.; Edgerton, E.; Russell, A. G.; Weber, R. J. Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: spatiotemporal trends and source apportionment Atmos. Chem. Phys. 2014, 14 (23) 12915 12930 DOI: 10.5194/acp-14-12915-2014
  30. 30
    Roberts, J. M.; Veres, P. R.; Cochran, A. K.; Warneke, C.; Burling, I. R.; Yokelson, R. J.; Lerner, B.; Gilman, J. B.; Kuster, W. C.; Fall, R.; de Gouw, J. Isocyanic acid in the atmosphere and its possible link to smoke-related health effects (vol 108, pg 8966, 2011) Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (41) 17234 17234 DOI: 10.1073/pnas.1103352108
  31. 31
    Snyder, E. G.; Watkins, T. H.; Solomon, P. A.; Thoma, E. D.; Williams, R. W.; Hagler, G. S. W.; Shelow, D.; Hindin, D. A.; Kilaru, V. J.; Preuss, P. W. The Changing Paradigm of Air Pollution Monitoring Environ. Sci. Technol. 2013, 47 (20) 11369 11377 DOI: 10.1021/es4022602
  32. 32
    Dionisio, K. L.; Rooney, M. S.; Arku, R. E.; Friedman, A. B.; Hughes, A. F.; Vallarino, J.; Agyei-Mensah, S.; Spengler, J. D.; Ezzati, M. Within-Neighborhood Patterns and Sources of Particle Pollution: Mobile Monitoring and Geographic Information System Analysis in Four Communities in Accra, Ghana Environ. Health Perspect. 2010, 118 (5) 607 613 DOI: 10.1289/ehp.0901365
  33. 33
    Lung, S. C. C.; Hsiao, P. K.; Wen, T. Y.; Liu, C. H.; Fu, C. B.; Cheng, Y. T. Variability of intra-urban exposure to particulate matter and CO from Asian-type community pollution sources Atmos. Environ. 2014, 83, 6 13 DOI: 10.1016/j.atmosenv.2013.10.046
  34. 34
    Larson, T.; Henderson, S. B.; Brauer, M. Mobile Monitoring of Particle Light Absorption Coefficient in an Urban Area as a Basis for Land Use Regression Environ. Sci. Technol. 2009, 43 (13) 4672 4678 DOI: 10.1021/es803068e
  35. 35
    Mead, M. I.; Popoola, O. A. M.; Stewart, G. B.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J. J.; McLeod, M. W.; Hodgson, T. F.; Dicks, J.; Lewis, A.; Cohen, J.; Baron, R.; Saffell, J. R.; Jones, R. L. The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks Atmos. Environ. 2013, 70, 186 203 DOI: 10.1016/j.atmosenv.2012.11.060
  36. 36
    van Donkelaar, A.; Martin, R. V.; Brauer, M.; Boys, B. L. Use of Satellite Observations for Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter Environ. Health Perspect. 2015, 123 (2) 135 143 DOI: 10.1289/ehp.1408646
  37. 37
    Kloog, I.; Chudnovsky, A. A.; Just, A. C.; Nordio, F.; Koutrakis, P.; Coull, B. A.; Lyapustin, A.; Wang, Y. J.; Schwartz, J. A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data Atmos. Environ. 2014, 95, 581 590 DOI: 10.1016/j.atmosenv.2014.07.014
  38. 38
    Ma, Z. W.; Hu, X. F.; Huang, L.; Bi, J.; Liu, Y. Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing Environ. Sci. Technol. 2014, 48 (13) 7436 7444 DOI: 10.1021/es5009399
  39. 39
    Yu, H. B.; Remer, L. A.; Chin, M.; Bian, H. S.; Tan, Q.; Yuan, T. L.; Zhang, Y. Aerosols from Overseas Rival Domestic Emissions over North America Science 2012, 337 (6094) 566 569 DOI: 10.1126/science.1217576
  40. 40
    Punger, E. M.; West, J. J. The effect of grid resolution on estimates of the burden of ozone and fine particulate matter on premature mortality in the USA Air Qual., Atmos. Health 2013, 6 (3) 563 573 DOI: 10.1007/s11869-013-0197-8
  41. 41
    Surratt, J. D.; Chan, A. W. H.; Eddingsaas, N. C.; Chan, M. N.; Loza, C. L.; Kwan, A. J.; Hersey, S. P.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H. Reactive intermediates revealed in secondary organic aerosol formation from isoprene Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (15) 6640 6645 DOI: 10.1073/pnas.0911114107
  42. 42
    Vienneau, D.; de Hoogh, K.; Bechle, M. J.; Beelen, R.; van Donkelaar, A.; Martin, R. V.; Millet, D. B.; Hoek, G.; Marshall, J. D. Western European Land Use Regression Incorporating Satellite- and Ground-Based Measurements of NO2 and PM10 Environ. Sci. Technol. 2013, 47 (23) 13555 13564 DOI: 10.1021/es403089q
  43. 43
    National Research Council. Rethinking the Ozone Problem in Urban and Regional Air Pollution; National Academy Press: Washington, DC, 1991.
  44. 44
    Dunlea, E. J.; Herndon, S. C.; Nelson, D. D.; Volkamer, R. M.; San Martini, F.; Sheehy, P. M.; Zahniser, M. S.; Shorter, J. H.; Wormhoudt, J. C.; Lamb, B. K.; Allwine, E. J.; Gaffney, J. S.; Marley, N. A.; Grutter, M.; Marquez, C.; Blanco, S.; Cardenas, B.; Retama, A.; Villegas, C. R. R.; Kolb, C. E.; Molina, L. T.; Molina, M. J. Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment Atmos. Chem. Phys. 2007, 7 (10) 2691 2704 DOI: 10.5194/acp-7-2691-2007
  45. 45
    Jerrett, M.; Burnett, R. T.; Pope, C. A.; Ito, K.; Thurston, G.; Krewski, D.; Shi, Y. L.; Calle, E.; Thun, M. Long-Term Ozone Exposure and Mortality N. Engl. J. Med. 2009, 360 (11) 1085 1095 DOI: 10.1056/NEJMoa0803894
  46. 46
    Beelen, R.; Raaschou-Nielsen, O.; Stafoggia, M.; Andersen, Z. J.; Weinmayr, G.; Hoffmann, B.; Wolf, K.; Samoli, E.; Fischer, P.; Nieuwenhuijsen, M.; Vineis, P.; Xun, W. W.; Katsouyanni, K.; Dimakopoulou, K.; Oudin, A.; Forsberg, B.; Modig, L.; Havulinna, A. S.; Lanki, T.; Turunen, A.; Oftedal, B.; Nystad, W.; Nafstad, P.; De Faire, U.; Pedersen, N. L.; Ostenson, C. G.; Fratiglioni, L.; Penell, J.; Korek, M.; Pershagen, G.; Eriksen, K. T.; Overvad, K.; Ellermann, T.; Eeftens, M.; Peeters, P. H.; Meliefste, K.; Wang, M.; Bueno-de-Mesquita, B.; Sugiri, D.; Kramer, U.; Heinrich, J.; de Hoogh, K.; Key, T.; Peters, A.; Hampel, R.; Concin, H.; Nagel, G.; Ineichen, A.; Schaffner, E.; Probst-Hensch, N.; Kunzli, N.; Schindler, C.; Schikowski, T.; Adam, M.; Phuleria, H.; Vilier, A.; Clavel-Chapelon, F.; Declercq, C.; Grioni, S.; Krogh, V.; Tsai, M. Y.; Ricceri, F.; Sacerdote, C.; Galassi, C.; Migliore, E.; Ranzi, A.; Cesaroni, G.; Badaloni, C.; Forastiere, F.; Tamayo, I.; Amiano, P.; Dorronsoro, M.; Katsoulis, M.; Trichopoulou, A.; Brunekreef, B.; Hoek, G. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project Lancet 2014, 383 (9919) 785 795 DOI: 10.1016/S0140-6736(13)62158-3
  47. 47
    Forastiere, F.; Kan, H.; Cohen, A., Updated exposure-response functions available for estimating mortality impacts. In WHO Expert Meeting: Methods and Tools for Assessing the Health Risks of Air Pollution at Local, National and International Level; World Health Organization: Copenhagen, 2014; p 74 91http://www.euro.who.int/__data/assets/pdf_file/0010/263629/WHO-Expert-Meeting-Methods-and-tools-for-assessing-the-health-risks-of-air-pollution-at-local,-national-and-international-level.pdf?ua=1 (accessed 22.04.2015).
  48. 48
    Laden, F.; Neas, L. M.; Dockery, D. W.; Schwartz, J. Association of fine particulate matter from different sources with daily mortality in six US cities Environ. Health Perspect. 2000, 108 (10) 941 947 DOI: 10.1289/ehp.00108941
  49. 49
    Dominici, F.; McDermott, A.; Zeger, S. L.; Samet, J. M. National maps of the effects of particulate matter on mortality: Exploring geographical variation Environ. Health Perspect. 2003, 111 (1) 39 43 DOI: 10.1289/ehp.5181
  50. 50
    Bell, M. L.; Ebisu, K.; Leaderer, B. P.; Gent, J. F.; Lee, H. J.; Koutrakis, P.; Wang, Y.; Dominici, F.; Peng, R. D. Associations of PM2.5 Constituents and Sources with Hospital Admissions: Analysis of Four Counties in Connecticut and Massachusetts (USA) for Persons ≥ 65 Years of Age Environ. Health Perspect. 2014, 122 (2) 138 144 DOI: 10.1289/ehp.1306656
  51. 51
    Baumgartner, J.; Zhang, Y. X.; Schauer, J. J.; Huang, W.; Wang, Y. Q.; Ezzati, M. Highway proximity and black carbon from cookstoves as a risk factor for higher blood pressure in rural China Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (36) 13229 13234 DOI: 10.1073/pnas.1317176111
  52. 52
    Kioumourtzoglou, M. A.; Austin, E.; Koutrakis, P.; Dominici, F.; Schwartz, J.; Zanobetti, A. PM2.5 and survival among older adults: effect modification by particulate composition Epidemiology 2015, 26 (3) 321 327 DOI: 10.1097/EDE.0000000000000269
  53. 53
    Darrow, L. A.; Klein, M.; Flanders, W. D.; Mulholland, J. A.; Tolbert, P. E.; Strickland, M. J. Air Pollution and Acute Respiratory Infections Among Children 0–4 Years of Age: An 18-Year Time-Series Study Am. J. Epidemiol. 2014, 180 (10) 968 977 DOI: 10.1093/aje/kwu234
  54. 54
    Costa, D. L.; Dreher, K. L. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models Environ. Health Perspect. 1997, 105, 1053 1060 DOI: 10.1289/ehp.97105s51053
  55. 55
    Thurston, G. D.; Ito, K.; Lall, R.; Burnett, R. T.; Turner, M. C.; Krewski, D.; Shi, Y.; Jerrett, M.; Gapstur, S. M.; Diver, W. R.; Pope, C. A. NPACT Study 4. Mortality and Long-Term Exposure to PM2.5 and Its Components in the American Cancer Society’S Cancer Prevent Study II cohort; Health Effects Institute: Boston, MA, 2013.
  56. 56
    Bell, M. L.; Belanger, K.; Ebisu, K.; Gent, J. F.; Lee, H. J.; Koutrakis, P.; Leaderer, B. P. Prenatal Exposure to Fine Particulate Matter and Birth Weight Variations by Particulate Constituents and Sources Epidemiology 2010, 21 (6) 884 891 DOI: 10.1097/EDE.0b013e3181f2f405
  57. 57
    Ostro, B.; Tobias, A.; Querol, X.; Alastuey, A.; Amato, F.; Pey, J.; Perez, N.; Sunyer, J. The Effects of Particulate Matter Sources on Daily Mortality: A Case-Crossover Study of Barcelona, Spain Environ. Health Perspect. 2011, 119 (12) 1781 1787 DOI: 10.1289/ehp.1103618
  58. 58
    Janssen, N. A. H.; Hoek, G.; Simic-Lawson, M.; Fischer, P.; van Bree, L.; ten Brink, H.; Keuken, M.; Atkinson, R. W.; Anderson, H. R.; Brunekreef, B.; Cassee, F. R. Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles Compared with PM10 and PM2.5 Environ. Health Perspect. 2011, 119 (12) 1691 1699 DOI: 10.1289/ehp.1003369
  59. 59
    Val, S.; Liousse, C.; Doumbia, E. T.; Galy-Lacaux, C.; Cachier, H.; Marchand, N.; Badel, A.; Gardrat, E.; Sylvestre, A.; Baeza-Squiban, A. Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: Description of a worrying situation Part. Fibre Toxicol. 2013, 10, 10 DOI: 10.1186/1743-8977-10-10
  60. 60
    Stanek, L. W.; Sacks, J. D.; Dutton, S. J.; Dubois, J. J. B. Attributing health effects to apportioned components and sources of particulate matter: An evaluation of collective results Atmos. Environ. 2011, 45 (32) 5655 5663 DOI: 10.1016/j.atmosenv.2011.07.023
  61. 61
    HEI NPACT Review Panel. Executive Summary. HEI’s National Particle Component Toxicity (NPACT) Initiative; Health Effects Institute: Boston, MA, 2013.
  62. 62
    Novotny, E. V.; Bechle, M. J.; Millet, D. B.; Marshall, J. D. National Satellite-Based Land-Use Regression: NO2 in the United States Environ. Sci. Technol. 2011, 45 (10) 4407 4414 DOI: 10.1021/es103578x
  63. 63
    Keating, T. J.; West, J. J.; Farrell, A. E., Prospects for International Management of Intercontinental Air Pollution Transport. In Inter-continental Transport of Air Pollution; Stohl, A., Ed.; Springer-Verlag: Berlin, 2004; pp 295 320.
  64. 64
    United Nations Environment Assembly, Resolutions and decisions adopted by the United Nations Environment Assembly of the United Nations Environment Programme at its first session on 27 June 2014, http://www.unep.org/unea/download.asp?ID=5171, accessed July 9, 2015.
  65. 65
    World Health Assembly. Health and the Environment: Addressing the health impact of air pollution. Sixty-Eighth World Health Assembly, A68/A/CONF./2 Rev.1, 26 May 2015. http://apps.who.int/gb/ebwha/pdf_files/WHA68/A68_ACONF2Rev1-en.pdf (accessed July 9, 2015) .
  66. 66
    Climate & Clean Air Coalition, http://www.ccacoalition.org/ (accessed July 9, 2015) .
  67. 67
    Bell, M. L.; Davis, D. L.; Cifuentes, L. A.; Krupnick, A. J.; Morgenstern, R. D.; Thurston, G. D. Ancillary human health benefits of improved air quality resulting from climate change mitigation Environ. Health 2008, 7, 41 DOI: 10.1186/1476-069X-7-41
  68. 68
    Nemet, G. F.; Holloway, T.; Meier, P. Implications of incorporating air-quality co-benefits into climate change policymaking Environ. Res. Lett. 2010, 5 (1) 014007 DOI: 10.1088/1748-9326/5/1/014007
  69. 69
    West, J. J.; Smith, S. J.; Silva, R. A.; Naik, V.; Zhang, Y. Q.; Adelman, Z.; Fry, M. M.; Anenberg, S.; Horowitz, L. W.; Lamarque, J. F. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health Nat. Clim. Change 2013, 3 (10) 885 889 DOI: 10.1038/nclimate2009
  70. 70
    Shindell, D.; Kuylenstierna, J. C. I.; Vignati, E.; van Dingenen, R.; Amann, M.; Klimont, Z.; Anenberg, S. C.; Muller, N.; Janssens-Maenhout, G.; Raes, F.; Schwartz, J.; Faluvegi, G.; Pozzoli, L.; Kupiainen, K.; Hoglund-Isaksson, L.; Emberson, L.; Streets, D.; Ramanathan, V.; Hicks, K.; Oanh, N. T. K.; Milly, G.; Williams, M.; Demkine, V.; Fowler, D. Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security Science 2012, 335 (6065) 183 189 DOI: 10.1126/science.1210026
  71. 71
    Carlton, A. G.; Pinder, R. W.; Bhave, P. V.; Pouliot, G. A. To What Extent Can Biogenic SOA be Controlled? Environ. Sci. Technol. 2010, 44 (9) 3376 3380 DOI: 10.1021/es903506b
  72. 72
    Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; van Der Gon, H. D.; Facchini, M. C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; Nemitz, E.; Pandis, S.; Riipinen, I.; Rudich, Y.; Schaap, M.; Slowik, J. G.; Spracklen, D. V.; Vignati, E.; Wild, M.; Williams, M.; Gilardoni, S. Particulate matter, air quality and climate: lessons learned and future needs Atmos. Chem. Phys. 2015, 15 (14) 8217 8299 DOI: 10.5194/acp-15-8217-2015
  73. 73
    Guan, T. J.; Yao, M. S.; Wang, J. X.; Fang, Y. H.; Hu, S. H.; Wang, Y.; Dutta, A.; Yang, J. N.; Wu, Y. S.; Hu, M.; Zhu, T. Airborne endotoxin in fine particulate matter in Beijing Atmos. Environ. 2014, 97, 35 42 DOI: 10.1016/j.atmosenv.2014.08.005
  74. 74
    Pöschl, U.; Shiraiwa, M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the Anthropocene Chem. Rev. 2015, 115, 4440 DOI: 10.1021/cr500487s
  75. 75
    Meng, X.; Ma, Y. J.; Chen, R. J.; Zhou, Z. J.; Chen, B. H.; Kan, H. D. Size-Fractionated Particle Number Concentrations and Daily Mortality in a Chinese City Environ. Health Perspect. 2013, 121 (10) 1174 1178 DOI: 10.1289/ehp.1206398
  76. 76
    Gong, J. C.; Zhu, T.; Kipen, H.; Wang, G. F.; Hu, M.; Guo, Q. F.; Ohman-Strickland, P.; Lu, S. E.; Wang, Y. D.; Zhu, P.; Rich, D. Q.; Huang, W.; Zhang, J. F. Comparisons of Ultrafine and Fine Particles in Their Associations with Biomarkers Reflecting Physiological Pathways Environ. Sci. Technol. 2014, 48 (9) 5264 5273 DOI: 10.1021/es5006016
  77. 77
    Meier, R.; Eeftens, M.; Aguilera, I.; Phuleria, H. C.; Ineichen, A.; Davey, M.; Ragettli, M. S.; Fierz, M.; Schindler, C.; Probst-Hensch, N.; Tsai, M. Y.; Kunzli, N. Ambient Ultrafine Particle Levels at Residential and Reference Sites in Urban and Rural Switzerland Environ. Sci. Technol. 2015, 49 (5) 2709 2715 DOI: 10.1021/es505246m
  78. 78
    Natraj, V.; Liu, X.; Kulawik, S.; Chance, K.; Chatfield, R.; Edwards, D. P.; Eldering, A.; Francis, G.; Kurosu, T.; Pickering, K.; Spurr, R.; Worden, H. Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements Atmos. Environ. 2011, 45 (39) 7151 7165 DOI: 10.1016/j.atmosenv.2011.09.014
  79. 79
    Kahn, R. A.; Gaitley, B. J. An analysis of global aerosol type as retrieved by MISR Journal of Geophysical Research-Atmospheres 2015, 120 (9) 4248 4281 DOI: 10.1002/2015JD023322
  80. 80
    Bravo, M. A.; Fuentes, M.; Zhang, Y.; Burr, M. J.; Bell, M. L. Comparison of exposure estimation methods for air pollutants: Ambient monitoring data and regional air quality simulation Environ. Res. 2012, 116, 1 10 DOI: 10.1016/j.envres.2012.04.008
  81. 81
    Lee, H. J.; Kang, C. M.; Coull, B. A.; Bell, M. L.; Koutrakis, P. Assessment of primary and secondary ambient particle trends using satellite aerosol optical depth and ground speciation data in the New England region, United States Environ. Res. 2014, 133, 103 110 DOI: 10.1016/j.envres.2014.04.006
  82. 82
    Kloog, I.; Ridgway, B.; Koutrakis, P.; Coull, B. A.; Schwartz, J. D. Long- and Short-Term Exposure to PM2.5 and Mortality: Using Novel Exposure Models Epidemiology 2013, 24 (4) 555 561 DOI: 10.1097/EDE.0b013e318294beaa
  83. 83
    World Bank, World Development Indicators 2015; World Bank, 2015.
  84. 84
    Jerrett, M.; Burnett, R. T.; Ma, R. J.; Pope, C. A.; Krewski, D.; Newbold, K. B.; Thurston, G.; Shi, Y. L.; Finkelstein, N.; Calle, E. E.; Thun, M. J. Spatial analysis of air pollution and mortality in Los Angeles Epidemiology 2005, 16 (6) 727 736 DOI: 10.1097/01.ede.0000181630.15826.7d
  85. 85
    Clancy, L.; Goodman, P.; Sinclair, H.; Dockery, D. W. Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study Lancet 2002, 360 (9341) 1210 1214 DOI: 10.1016/S0140-6736(02)11281-5
  86. 86
    Chafe, Z. A.; Brauer, M.; Klimont, Z.; Van Dingenen, R.; Mehta, S.; Rao, S.; Riahi, K.; Dentener, F.; Smith, K. R. Household Cooking with Solid Fuels Contributes to Ambient PM2.5 Air Pollution and the Burden of Disease Environ. Health Perspect. 2014, 122 (12) 1314 1320 DOI: 10.1289/ehp.1206340
  87. 87
    Chambliss, S. E.; Silva, R.; West, J. J.; Zeinali, M.; Minjares, R. Estimating source-attributable health impacts of ambient fine particulate matter exposure: Global premature mortality from surface transportation emissions in 2005 Environ. Res. Lett. 2014, 9 (10) 104009 DOI: 10.1088/1748-9326/9/10/104009
  88. 88
    Lelieveld, J.; Evans, J. S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale Nature 2015, 525 (7569) 367 371 DOI: 10.1038/nature15371

Cited By

Click to copy section linkSection link copied!

This article is cited by 298 publications.

  1. Qineng Wang, Huan Song, Huabin Dong, Song Guo, Maosheng Yao, Yi Wan, Keding Lu. Multiphase Radical Chemical Processes Induced by Air Pollutants and the Associated Health Effects. Environment & Health 2025, 3 (1) , 1-13. https://doi.org/10.1021/envhealth.4c00157
  2. Aaron van Donkelaar, Randall V. Martin, Bonne Ford, Chi Li, Amanda J. Pappin, Siyuan Shen, Dandan Zhang. North American Fine Particulate Matter Chemical Composition for 2000–2022 from Satellites, Models, and Monitors: The Changing Contribution of Wildfires. ACS ES&T Air 2024, 1 (12) , 1589-1600. https://doi.org/10.1021/acsestair.4c00151
  3. Shira S. Presberg, Cara M. Waters, Sophie A. Lyon, Matthew J. Elrod. Thermodynamics and Kinetics of Atmospherically Relevant Acetalization Reactions. ACS Earth and Space Chemistry 2024, 8 (8) , 1634-1645. https://doi.org/10.1021/acsearthspacechem.4c00136
  4. Juan Casanova-Chafer, Rocio Garcia-Aboal, Pedro Atienzar, Eduard Llobet. Unraveling the Gas-Sensing Mechanisms of Lead-Free Perovskites Supported on Graphene. ACS Sensors 2022, 7 (12) , 3753-3763. https://doi.org/10.1021/acssensors.2c01581
  5. Aziz C. L. Mohammed, Sunniva B. Sheffield, Matthew J. Elrod. Kinetics Study of Acid-Catalyzed Sulfate Esterification Reactions for Atmospherically Relevant Polyols. ACS Earth and Space Chemistry 2022, 6 (12) , 3115-3122. https://doi.org/10.1021/acsearthspacechem.2c00306
  6. Joses Grady Nathanael, Bing Yuan, Uta Wille. Oxidative Damage of Aliphatic Amino Acid Residues by the Environmental Pollutant NO3·: Impact of Water on the Reactivity. Environmental Science & Technology 2022, 56 (12) , 7687-7695. https://doi.org/10.1021/acs.est.2c00863
  7. Shakiba Zeinali, Janusz Pawliszyn. Green Portable Method for Simultaneous Investigation of Gaseous and Particle-Bound Air Pollutants in Indoor and Outdoor Environments. ACS Sustainable Chemistry & Engineering 2022, 10 (12) , 3981-3989. https://doi.org/10.1021/acssuschemeng.1c08626
  8. Kevin C. Baldridge, Kearstin Edmonds, Thomas Dziubla, J. Zach Hilt, Rebecca E. Dutch, Dibakar Bhattacharyya. Demonstration of Hollow Fiber Membrane-Based Enclosed Space Air Remediation for Capture of an Aerosolized Synthetic SARS-CoV-2 Mimic and Pseudovirus Particles. ACS ES&T Engineering 2022, 2 (2) , 251-262. https://doi.org/10.1021/acsestengg.1c00369
  9. Guang-Lu Zhang, Minmin Zhang, Qian Shi, Zhongyao Jiang, Lili Tong, Zhenzhen Chen, Bo Tang. In Situ Construction of COF-Based Paper Serving as a Plasmonic Substrate for Enhanced PSI-MS Detection of Polycyclic Aromatic Hydrocarbons. ACS Applied Materials & Interfaces 2021, 13 (36) , 43438-43448. https://doi.org/10.1021/acsami.1c13860
  10. Juan Casanova-Chafer, Polona Umek, Selene Acosta, Carla Bittencourt, Eduard Llobet. Graphene Loading with Polypyrrole Nanoparticles for Trace-Level Detection of Ammonia at Room Temperature. ACS Applied Materials & Interfaces 2021, 13 (34) , 40909-40921. https://doi.org/10.1021/acsami.1c10559
  11. Sarah S. Petters, Tianqu Cui, Zhenfa Zhang, Avram Gold, V. Faye McNeill, Jason D. Surratt, Barbara J. Turpin. Organosulfates from Dark Aqueous Reactions of Isoprene-Derived Epoxydiols Under Cloud and Fog Conditions: Kinetics, Mechanism, and Effect of Reaction Environment on Regioselectivity of Sulfate Addition. ACS Earth and Space Chemistry 2021, 5 (3) , 474-486. https://doi.org/10.1021/acsearthspacechem.0c00293
  12. Matthew J. Elrod, Jane A. Sedlak, He Ren. Accurate Computational Model for the Hydration Extent of Atmospherically Relevant Carbonyls on Aqueous Atmospheric Particles. ACS Earth and Space Chemistry 2021, 5 (2) , 348-355. https://doi.org/10.1021/acsearthspacechem.0c00322
  13. He Ren, Jane A. Sedlak, Matthew J. Elrod. General Mechanism for Sulfate Radical Addition to Olefinic Volatile Organic Compounds in Secondary Organic Aerosol. Environmental Science & Technology 2021, 55 (3) , 1456-1465. https://doi.org/10.1021/acs.est.0c05256
  14. Erika Aoki, Jon N. Sarrimanolis, Sophie A. Lyon, Matthew J. Elrod. Determining the Relative Reactivity of Sulfate, Bisulfate, and Organosulfates with Epoxides on Secondary Organic Aerosol. ACS Earth and Space Chemistry 2020, 4 (10) , 1793-1801. https://doi.org/10.1021/acsearthspacechem.0c00178
  15. Biban Gill, Karl Jobst, Philip Britz-McKibbin. Rapid Screening of Urinary 1-Hydroxypyrene Glucuronide by Multisegment Injection–Capillary Electrophoresis–Tandem Mass Spectrometry: A High-Throughput Method for Biomonitoring of Recent Smoke Exposures. Analytical Chemistry 2020, 92 (19) , 13558-13564. https://doi.org/10.1021/acs.analchem.0c03212
  16. Melanie S. Hammer, Aaron van Donkelaar, Chi Li, Alexei Lyapustin, Andrew M. Sayer, N. Christina Hsu, Robert C. Levy, Michael J. Garay, Olga V. Kalashnikova, Ralph A. Kahn, Michael Brauer, Joshua S. Apte, Daven K. Henze, Li Zhang, Qiang Zhang, Bonne Ford, Jeffrey R. Pierce, Randall V. Martin. Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998–2018). Environmental Science & Technology 2020, 54 (13) , 7879-7890. https://doi.org/10.1021/acs.est.0c01764
  17. Michal Pardo, Xinghua Qiu, Ralf Zimmermann, Yinon Rudich. Particulate Matter Toxicity Is Nrf2 and Mitochondria Dependent: The Roles of Metals and Polycyclic Aromatic Hydrocarbons. Chemical Research in Toxicology 2020, 33 (5) , 1110-1120. https://doi.org/10.1021/acs.chemrestox.0c00007
  18. Haijie Tong, Yun Zhang, Alexander Filippi, Ting Wang, Chenpei Li, Fobang Liu, Denis Leppla, Ivan Kourtchev, Kai Wang, Helmi-Marja Keskinen, Janne T. Levula, Andrea M. Arangio, Fangxia Shen, Florian Ditas, Scot T. Martin, Paulo Artaxo, Ricardo H. M. Godoi, Carlos I. Yamamoto, Rodrigo A. F. de Souza, Ru-Jin Huang, Thomas Berkemeier, Yueshe Wang, Hang Su, Yafang Cheng, Francis D. Pope, Pingqing Fu, Maosheng Yao, Christopher Pöhlker, Tuukka Petäjä, Markku Kulmala, Meinrat O. Andreae, Manabu Shiraiwa, Ulrich Pöschl, Thorsten Hoffmann, Markus Kalberer. Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. Environmental Science & Technology 2019, 53 (21) , 12506-12518. https://doi.org/10.1021/acs.est.9b05149
  19. Scott D. Lowther, Kevin C. Jones, Xinming Wang, J. Duncan Whyatt, Oliver Wild, Douglas Booker. Particulate Matter Measurement Indoors: A Review of Metrics, Sensors, Needs, and Applications. Environmental Science & Technology 2019, 53 (20) , 11644-11656. https://doi.org/10.1021/acs.est.9b03425
  20. Luiza A. Mercante, Rafaela S. Andre, Luiz H. C. Mattoso, Daniel S. Correa. Electrospun Ceramic Nanofibers and Hybrid-Nanofiber Composites for Gas Sensing. ACS Applied Nano Materials 2019, 2 (7) , 4026-4042. https://doi.org/10.1021/acsanm.9b01176
  21. Joses G. Nathanael, Uta Wille. Oxidative Damage in Aliphatic Amino Acids and Di- and Tripeptides by the Environmental Free Radical Oxidant NO3•: The Role of the Amide Bond Revealed by Kinetic and Computational Studies. The Journal of Organic Chemistry 2019, 84 (6) , 3405-3418. https://doi.org/10.1021/acs.joc.8b03224
  22. Ling Jin, Jiawen Xie, Chris K. C. Wong, Serena K. Y. Chan, Gülcin Abbaszade, Jürgen Schnelle-Kreis, Ralf Zimmermann, Jun Li, Gan Zhang, Pingqing Fu, Xiangdong Li. Contributions of City-Specific Fine Particulate Matter (PM2.5) to Differential In Vitro Oxidative Stress and Toxicity Implications between Beijing and Guangzhou of China. Environmental Science & Technology 2019, 53 (5) , 2881-2891. https://doi.org/10.1021/acs.est.9b00449
  23. Jiawen Xie, Ling Jin, Tangtian He, Baowei Chen, Xiaosan Luo, Baihuan Feng, Wei Huang, Jun Li, Pingqing Fu, Xiangdong Li. Bacteria and Antibiotic Resistance Genes (ARGs) in PM2.5 from China: Implications for Human Exposure. Environmental Science & Technology 2019, 53 (2) , 963-972. https://doi.org/10.1021/acs.est.8b04630
  24. Crystal L. Weagle, Graydon Snider, Chi Li, Aaron van Donkelaar, Sajeev Philip, Paul Bissonnette, Jaqueline Burke, John Jackson, Robyn Latimer, Emily Stone, Ihab Abboud, Clement Akoshile, Nguyen Xuan Anh, Jeffrey Robert Brook, Aaron Cohen, Jinlu Dong, Mark D. Gibson, Derek Griffith, Kebin B. He, Brent N. Holben, Ralph Kahn, Christoph A. Keller, Jong Sung Kim, Nofel Lagrosas, Puji Lestari, Yeo Lik Khian, Yang Liu, Eloise A. Marais, J. Vanderlei Martins, Amit Misra, Ulfi Muliane, Rizki Pratiwi, Eduardo J. Quel, Abdus Salam, Lior Segev, Sachchida N. Tripathi, Chien Wang, Qiang Zhang, Michael Brauer, Yinon Rudich, Randall V. Martin. Global Sources of Fine Particulate Matter: Interpretation of PM2.5 Chemical Composition Observed by SPARTAN using a Global Chemical Transport Model. Environmental Science & Technology 2018, 52 (20) , 11670-11681. https://doi.org/10.1021/acs.est.8b01658
  25. Peishi Gu, Hugh Z. Li, Qing Ye, Ellis S. Robinson, Joshua S. Apte, Allen L. Robinson, Albert A. Presto. Intracity Variability of Particulate Matter Exposure Is Driven by Carbonaceous Sources and Correlated with Land-Use Variables. Environmental Science & Technology 2018, 52 (20) , 11545-11554. https://doi.org/10.1021/acs.est.8b03833
  26. Nanyang Yu, Huiwei Guo, Jingping Yang, Ling Jin, Xuebing Wang, Wei Shi, Xiaowei Zhang, Hongxia Yu, Si Wei. Non-Target and Suspect Screening of Per- and Polyfluoroalkyl Substances in Airborne Particulate Matter in China. Environmental Science & Technology 2018, 52 (15) , 8205-8214. https://doi.org/10.1021/acs.est.8b02492
  27. Chi Li, Randall V. Martin. Decadal Changes in Seasonal Variation of Atmospheric Haze over the Eastern United States: Connections with Anthropogenic Emissions and Implications for Aerosol Composition. Environmental Science & Technology Letters 2018, 5 (7) , 413-418. https://doi.org/10.1021/acs.estlett.8b00295
  28. Noah Kittner, Raj P. Fadadu, Heather L. Buckley, Megan R. Schwarzman, and Daniel M. Kammen . Trace Metal Content of Coal Exacerbates Air-Pollution-Related Health Risks: The Case of Lignite Coal in Kosovo. Environmental Science & Technology 2018, 52 (4) , 2359-2367. https://doi.org/10.1021/acs.est.7b04254
  29. Haoran Yu, Jinlai Wei, Yilan Cheng, Kiran Subedi, and Vishal Verma . Synergistic and Antagonistic Interactions among the Particulate Matter Components in Generating Reactive Oxygen Species Based on the Dithiothreitol Assay. Environmental Science & Technology 2018, 52 (4) , 2261-2270. https://doi.org/10.1021/acs.est.7b04261
  30. Manabu Shiraiwa, Kayo Ueda, Andrea Pozzer, Gerhard Lammel, Christopher J. Kampf, Akihiro Fushimi, Shinichi Enami, Andrea M. Arangio, Janine Fröhlich-Nowoisky, Yuji Fujitani, Akiko Furuyama, Pascale S. J. Lakey, Jos Lelieveld, Kurt Lucas, Yu Morino, Ulrich Pöschl, Satoshi Takahama, Akinori Takami, Haijie Tong, Bettina Weber, Ayako Yoshino, and Kei Sato . Aerosol Health Effects from Molecular to Global Scales. Environmental Science & Technology 2017, 51 (23) , 13545-13567. https://doi.org/10.1021/acs.est.7b04417
  31. Chi Li, Randall V. Martin, Aaron van Donkelaar, Brian L. Boys, Melanie S. Hammer, Jun-Wei Xu, Eloise A. Marais, Adam Reff, Madeleine Strum, David A. Ridley, Monica Crippa, Michael Brauer, and Qiang Zhang . Trends in Chemical Composition of Global and Regional Population-Weighted Fine Particulate Matter Estimated for 25 Years. Environmental Science & Technology 2017, 51 (19) , 11185-11195. https://doi.org/10.1021/acs.est.7b02530
  32. Wen Cui, Jieyuan Li, Fan Dong, Yanjuan Sun, Guangming Jiang, Wanglai Cen, S. C. Lee, and Zhongbiao Wu . Highly Efficient Performance and Conversion Pathway of Photocatalytic NO Oxidation on SrO-Clusters@Amorphous Carbon Nitride. Environmental Science & Technology 2017, 51 (18) , 10682-10690. https://doi.org/10.1021/acs.est.7b00974
  33. Heresh Amini, Christian Schindler, Vahid Hosseini, Masud Yunesian, and Nino Künzli . Land Use Regression Models for Alkylbenzenes in a Middle Eastern Megacity: Tehran Study of Exposure Prediction for Environmental Health Research (Tehran SEPEHR). Environmental Science & Technology 2017, 51 (15) , 8481-8490. https://doi.org/10.1021/acs.est.7b02238
  34. Sarah Suda Petters, Demetrios Pagonis, Megan S. Claflin, Ezra J. T. Levin, Markus D. Petters, Paul J. Ziemann, and Sonia M. Kreidenweis . Hygroscopicity of Organic Compounds as a Function of Carbon Chain Length and Carboxyl, Hydroperoxy, and Carbonyl Functional Groups. The Journal of Physical Chemistry A 2017, 121 (27) , 5164-5174. https://doi.org/10.1021/acs.jpca.7b04114
  35. Joshua S. Apte, Kyle P. Messier, Shahzad Gani, Michael Brauer, Thomas W. Kirchstetter, Melissa M. Lunden, Julian D. Marshall, Christopher J. Portier, Roel C.H. Vermeulen, and Steven P. Hamburg . High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environmental Science & Technology 2017, 51 (12) , 6999-7008. https://doi.org/10.1021/acs.est.7b00891
  36. Kathrin Reinmuth-Selzle, Christopher J. Kampf, Kurt Lucas, Naama Lang-Yona, Janine Fröhlich-Nowoisky, Manabu Shiraiwa, Pascale S. J. Lakey, Senchao Lai, Fobang Liu, Anna T. Kunert, Kira Ziegler, Fangxia Shen, Rossella Sgarbanti, Bettina Weber, Iris Bellinghausen, Joachim Saloga, Michael G. Weller, Albert Duschl, Detlef Schuppan, and Ulrich Pöschl . Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. Environmental Science & Technology 2017, 51 (8) , 4119-4141. https://doi.org/10.1021/acs.est.6b04908
  37. James B. Burkholder , Jonathan P. D. Abbatt , Ian Barnes , James M. Roberts , Megan L. Melamed , Markus Ammann , Allan K. Bertram , Christopher D. Cappa , Annmarie G. Carlton , Lucy J. Carpenter , John N. Crowley , Yael Dubowski , Christian George , Dwayne E. Heard , Hartmut Herrmann , Frank N. Keutsch , Jesse H. Kroll , V. Faye McNeill , Nga Lee Ng , Sergey A. Nizkorodov , John J. Orlando , Carl J. Percival , Bénédicte Picquet-Varrault , Yinon Rudich , Paul W. Seakins , Jason D. Surratt , Hiroshi Tanimoto , Joel A. Thornton , Zhu Tong , Geoffrey S. Tyndall , Andreas Wahner , Charles J. Weschler , Kevin R. Wilson , Paul J. Ziemann . The Essential Role for Laboratory Studies in Atmospheric Chemistry. Environmental Science & Technology 2017, 51 (5) , 2519-2528. https://doi.org/10.1021/acs.est.6b04947
  38. Kim J. Fernie, Luis Cruz-Martinez, Lisa Peters, Vince Palace, and Judit E.G. Smits . Inhaling Benzene, Toluene, Nitrogen Dioxide, and Sulfur Dioxide, Disrupts Thyroid Function in Captive American Kestrels (Falco sparverius). Environmental Science & Technology 2016, 50 (20) , 11311-11318. https://doi.org/10.1021/acs.est.6b03026
  39. Weijun Li, Lei Liu, Liang Xu. Importance of Microanalysis in Air Quality Studies. 2025, 55-74. https://doi.org/10.1002/9781119554318.ch2
  40. Zhenyu Jia, Jiawei Yin, Tiange Fang, Zhiwen Jiang, Chongzhi Zhong, Zeping Cao, Lin Wu, Ning Wei, Zhengyu Men, Lei Yang, Qijun Zhang, Hongjun Mao. Machine learning helps reveal key factors affecting tire wear particulate matter emissions. Environment International 2025, 195 , 109224. https://doi.org/10.1016/j.envint.2024.109224
  41. Dale A. Dickinson, Karen E. Iles. Environmental Health: Overview. 2025, 14-27. https://doi.org/10.1016/B978-0-323-99967-0.00141-1
  42. Fatma Ozturk Kirbay. Advanced Colorimetric Sensors: Cutting-Edge Materials and Smart Approaches. 2024https://doi.org/10.5772/intechopen.1007936
  43. Subhadeep Saha, Priya Das, Tanu Das, Partha Das, Tamal Basu Roy. A study about the impact of indoor air pollution on cognitive function among middle-aged and older adult people in India. Archives of Public Health 2024, 82 (1) https://doi.org/10.1186/s13690-024-01286-5
  44. Zelin AO, Honglei WANG, Can XU, Huixuan ZHU, Qiaoyue BAI, Huanwu LIU, Tianliang ZHAO. Volatile Organic Compounds Pollution and Ozone Generation Potential in Xi′an. EARTH AND ENVIRONMENT 2024, 52 (6) , 733-744. https://doi.org/10.3724/EE.1672-9250.2024.52.020
  45. Siqi Chen, Fangmin Fei, Yaobin Song, Ming Dong, Aiping Wu, Hua Yu. Composition and Effects of Aerosol Particles Deposited on Urban Plant Leaves in Terrestrial and Aquatic Habitats. Plants 2024, 13 (21) , 3056. https://doi.org/10.3390/plants13213056
  46. Ankita Buwaniwal, Veena Sharma, Gagan Gupta, Sumit Rohj, Sandeep Kansal. Long term analysis of air quality parameters for Ludhiana, India: sources, trends and health impact. Environmental Geochemistry and Health 2024, 46 (11) https://doi.org/10.1007/s10653-024-02200-2
  47. Francesco Di Maria, Federico Sisani, Daniela Cesari, Elza Bontempi. Supporting the investigation of health outcomes due to airborne emission by different approaches: current evidence for the waste incineration sector. Environmental Science and Pollution Research 2024, 31 (48) , 58527-58540. https://doi.org/10.1007/s11356-024-34989-x
  48. Emese Fazakas, Iulia A. Neamtiu, Eugen S. Gurzau. Health effects of air pollutant mixtures (volatile organic compounds, particulate matter, sulfur and nitrogen oxides) – a review of the literature. Reviews on Environmental Health 2024, 39 (3) , 459-478. https://doi.org/10.1515/reveh-2022-0252
  49. Shikang Du, Siyu Chen, Shanling Cheng, Jiaqi He, Chuwei Liu, Lulu Lian, Chao Zhang, Dan Zhao, Nan Yin, Yawen Guan. Data-driven approach for air pollutant concentrations forecasting: A window-based multi-output GBRT approach. Atmospheric Research 2024, 307 , 107459. https://doi.org/10.1016/j.atmosres.2024.107459
  50. Provat K. Saha, Albert A. Presto, Allen L. Robinson. Hyper-local to regional exposure contrast of source-resolved PM2.5 components across the contiguous United States: implications for health assessment. Journal of Exposure Science & Environmental Epidemiology 2024, 34 (5) , 836-844. https://doi.org/10.1038/s41370-023-00623-0
  51. Dimitris Stratoulias, Narissara Nuthammachot, Racha Dejchanchaiwong, Perapong Tekasakul, Gregory R. Carmichael. Recent Developments in Satellite Remote Sensing for Air Pollution Surveillance in Support of Sustainable Development Goals. Remote Sensing 2024, 16 (16) , 2932. https://doi.org/10.3390/rs16162932
  52. Flávio B. Miguez, João P.C. Trigueiro, Ivana Lula, Emmanuel S. Moraes, Teresa D.Z. Atvars, Luiz F.C. de Oliveira, Frank Alexis, Roberto S. Nobuyasu, Frederico B. De Sousa. Photochromic sensing of La3+ and Lu3+ ions using poly(caprolactone) fibers doped with spiropyran dyes. Journal of Photochemistry and Photobiology A: Chemistry 2024, 452 , 115568. https://doi.org/10.1016/j.jphotochem.2024.115568
  53. Yunfei Su, Yuhan Long, Xunzhe Yao, Chunying Chen, Wei Sun, Rui Zhao, Junke Zhang. Microscopic Characterization of Individual Aerosol Particles in a Typical Industrial City and Its Surrounding Rural Areas in China. Toxics 2024, 12 (7) , 525. https://doi.org/10.3390/toxics12070525
  54. Yu‐Chen Chiu, Uta Wille, Joses G. Nathanael. The Environmental Pollutant NO 3 ⋅ Rapidly Damages Alkene Moieties in Lipids Through Electron Transfer. European Journal of Organic Chemistry 2024, 27 (24) https://doi.org/10.1002/ejoc.202400155
  55. Chongzhi Zhong, Jiaxing Sun, Zishu Liu, Haomiao Niu, Jing Zhang, Xiaoyu Liang, Jiawei Yin, Lin Wu, Jianfei Peng, Qijun Zhang, Hongjun Mao. Size distribution of brake wear particulate matter based on a brake dynamometer investigation. Frontiers in Future Transportation 2024, 5 https://doi.org/10.3389/ffutr.2024.1407660
  56. Vikas Kumar Patel, Jayanarayanan Kuttippurath, Rahul Kashyap. Increased global cropland greening as a response to the unusual reduction in atmospheric PM₂.₅ concentrations during the COVID-19 lockdown period. Chemosphere 2024, 358 , 142147. https://doi.org/10.1016/j.chemosphere.2024.142147
  57. Nooshin Karimi Alavijeh, Mohammad Taher Ahmadi Shadmehri, Fatemeh Dehdar, Samane Zangoei, Nazia Nazeer. The role of renewable energy on life expectancy: evidence from method of moments quantile regression based on G-7 countries data. International Journal of Energy Sector Management 2024, 18 (4) , 767-788. https://doi.org/10.1108/IJESM-11-2022-0001
  58. Binfan Jiang, Dehong Xia. Potential PM2.5 generation mechanism induced by ammonia-based SCR: Nucleation of SO3, H2O and NH3. Fuel 2024, 364 , 131114. https://doi.org/10.1016/j.fuel.2024.131114
  59. , , , , , . États des aires marines protégées d’Afrique de l’Ouest 2022. 2024https://doi.org/10.2305/DEEZ7310
  60. Henri Hakkarainen, Anssi Järvinen, Teemu Lepistö, Niina Kuittinen, Lassi Markkula, Tuukka Ihantola, Mo Yang, Maria-Viola Martikainen, Santtu Mikkonen, Hilkka Timonen, Minna Aurela, Luis Barreira, Mika Ihalainen, Sanna Saarikoski, Topi Rönkkö, Päivi Aakko-Saksa, Pasi Jalava. Effects of fuel composition and vehicle operating temperature on in vitro toxicity of exhaust emissions. Environmental Science: Atmospheres 2024, 4 (4) , 455-467. https://doi.org/10.1039/D3EA00136A
  61. Gutema Jula, Dong-Gill Kim, Shemelis Nigatu. Potential of floriculture waste-derived charcoal briquettes as an alternative energy source and means of mitigating indoor air pollution in Ethiopia. Energy for Sustainable Development 2024, 79 , 101390. https://doi.org/10.1016/j.esd.2024.101390
  62. Minjuan Huang, Song Tao, Ke Zhu, Huiran Feng, Xiao Lu, Jian Hang, Xuemei Wang. Applicability of evaluation metrics/schemes for human health burden attributable to regional ozone pollution: A case study in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), South China. Science of The Total Environment 2024, 914 , 169910. https://doi.org/10.1016/j.scitotenv.2024.169910
  63. Luan Nguyen, Thien Pham Huynh. Factors influencing carbon-labeled product purchase intentions: A case study in Vietnam. Innovative Marketing 2024, 20 (1) , 146-159. https://doi.org/10.21511/im.20(1).2024.13
  64. Fanglin Wang, Steven Sai Hang Ho, Chung Ling Man, Linli Qu, Zhe Wang, Zhi Ning, Kin Fai Ho. Characteristics and sources of oxygenated VOCs in Hong Kong: Implications for ozone formation. Science of The Total Environment 2024, 912 , 169156. https://doi.org/10.1016/j.scitotenv.2023.169156
  65. Gabriela da Costa, Theotonio Pauliquevis, Eduardo Ferreira José Heise, Sanja Potgieter-Vermaak, Ana Flávia Locateli Godoi, Carlos Itsuo Yamamoto, Jéssica Caroline dos Santos-Silva, Ricardo Henrique Moreton Godoi. Spatialized PM2.5 during COVID-19 pandemic in Brazil’s most populous southern city: implications for post-pandemic era. Environmental Geochemistry and Health 2024, 46 (1) https://doi.org/10.1007/s10653-023-01809-z
  66. Mohammed Saleh, Huthaifa I. Ashqar, Raed Alary, Esma Mahfouf Bouchareb, Raouf Bouchareb, Nadir Dizge, Deepanraj Balakrishnan. Biodiversity for ecosystem services and sustainable development goals. 2024, 81-110. https://doi.org/10.1016/B978-0-323-95482-2.00005-5
  67. Zi-Li Wang, Ze-Peng Deng, Fang Wang, Xiu-Li Wang, Yu-Zhong Wang, Fei Song. Dual-mode Janus Structural-Color films toward an integrated sensing device with synergistic optical and electrical outputs. Chemical Engineering Journal 2023, 478 , 147364. https://doi.org/10.1016/j.cej.2023.147364
  68. Tanvir Arfin, Anupama M Pillai, Nikhila Mathew, Abha Tirpude, Roshani Bang, Pabitra Mondal. An overview of atmospheric aerosol and their effects on human health. Environmental Science and Pollution Research 2023, 30 (60) , 125347-125369. https://doi.org/10.1007/s11356-023-29652-w
  69. Orthodoxia Zervaki, Dionysios D. Dionysiou, Pramod Kulkarni. Characterization of a multi-stage focusing nozzle for collection of spot samples for aerosol chemical analysis. Journal of Aerosol Science 2023, 174 , 106235. https://doi.org/10.1016/j.jaerosci.2023.106235
  70. Zonghua Liu, Yulang Guo, Ming Zhang, Tianping Mao. Smog risk perception, corporate social responsibility, and green innovation: evidence from China. Social Responsibility Journal 2023, 19 (8) , 1419-1434. https://doi.org/10.1108/SRJ-06-2021-0249
  71. Jaewook Ryu, Seung Hyeun Lee, Sungyeon Kim, Joo-Won Jeong, Kyung Sook Kim, Seungyoon Nam, Ja-Eun Kim. Urban dust particles disrupt mitotic progression by dysregulating Aurora kinase B-related functions. Journal of Hazardous Materials 2023, 459 , 132238. https://doi.org/10.1016/j.jhazmat.2023.132238
  72. Vaishwik Patel, Arun Baskar, Steffi Tiburcius, Brodie Morrison, Bhavya Mod, Pradeep S. Tanwar, Prashant Kumar, Ajay Karakoti, Gurwinder Singh, Ajayan Vinu. Mesoporous Carbon Nitrides as Emerging Materials: Nanoarchitectonics and Biosensing Applications. Advanced Sensor Research 2023, 2 (9) https://doi.org/10.1002/adsr.202300024
  73. Xiaopei Wang, Lingquan Meng, Yifeng Liu, Hongxu Wei. Facial Expressions of Urban Forest Visitors Jointly Exposed to Air Pollution and Regional Climate. Forests 2023, 14 (8) , 1571. https://doi.org/10.3390/f14081571
  74. Lin Qiao, Yihe Zhang, Minghui Zheng, Yatai Li, Yuan Xue, Guangtao Fan, Qihong Deng. Screening for high-risk emerging contaminants in the atmosphere: Recent advances and new challenges. Chinese Science Bulletin 2023, 381 https://doi.org/10.1360/TB-2023-0449
  75. Egide Kalisa, Maggie L. Clark, Theoneste Ntakirutimana, Mabano Amani, John Volckens. Exposure to indoor and outdoor air pollution in schools in Africa: Current status, knowledge gaps, and a call to action. Heliyon 2023, 9 (8) , e18450. https://doi.org/10.1016/j.heliyon.2023.e18450
  76. Eleni Dovrou, Steven Lelieveld, Ashmi Mishra, Ulrich Pöschl, Thomas Berkemeier. Influence of ambient and endogenous H 2 O 2 on reactive oxygen species concentrations and OH radical production in the respiratory tract. Environmental Science: Atmospheres 2023, 3 (7) , 1066-1074. https://doi.org/10.1039/D2EA00179A
  77. Joses G. Nathanael, Uta Wille. Phenylalanine Residues Are Very Rapidly Damaged by Nitrate Radicals (NO 3 ⋅) in an Aqueous Environment. ChemBioChem 2023, 24 (12) https://doi.org/10.1002/cbic.202200731
  78. Gabriela Polezer, Sanja Potgieter-Vermaak, Andrea Oliveira, Leila D. Martins, Jéssica C. Santos-Silva, Camila A. B. Moreira, Theotonio Pauliquevis, Ana F. L. Godoi, Yara Tadano, Carlos I. Yamamoto, Ricardo H. M. Godoi. The new WHO air quality guidelines for PM2.5: predicament for small/medium cities. Environmental Geochemistry and Health 2023, 45 (5) , 1841-1860. https://doi.org/10.1007/s10653-022-01307-8
  79. Giorgio Veratti, Michele Stortini, Roberta Amorati, Lidia Bressan, Giulia Giovannini, Stefano Bande, Francesca Bissardella, Stefania Ghigo, Elisabetta Angelino, Loris Colombo, Giuseppe Fossati, Giulia Malvestiti, Alessandro Marongiu, Alberto Dalla Fontana, Barbara Intini, Silvia Pillon. Impact of NOx and NH3 Emission Reduction on Particulate Matter across Po Valley: A LIFE-IP-PREPAIR Study. Atmosphere 2023, 14 (5) , 762. https://doi.org/10.3390/atmos14050762
  80. Dustin T. Hill, Vikrant Jandev, Michael Petroni, Nader Atallah-Yunes, Kestas Bendinskas, Lynn S. Brann, Kevin Heffernan, David A. Larsen, James A. MacKenzie, Christopher D. Palmer, Patrick J. Parsons, Brooks B. Gump, Mary B. Collins. Airborne levels of cadmium are correlated with urinary cadmium concentrations among young children living in the New York state city of Syracuse, USA. Environmental Research 2023, 223 , 115450. https://doi.org/10.1016/j.envres.2023.115450
  81. Sarah Commodore, Steven Christopher, Bethany Wolf, Erik Svendsen. Assessment of trace elements directly from archived total suspended particulate filters by laser ablation ICP-MS: A case study of South Carolina. Journal of Trace Elements and Minerals 2023, 3 , 100041. https://doi.org/10.1016/j.jtemin.2022.100041
  82. Pengfei Li, Jingyi Wu, Ruohan Wang, Hengyi Liu, Tong Zhu, Tao Xue. Source sectors underlying PM2.5-related deaths among children under 5 years of age in 17 low- and middle-income countries. Environment International 2023, 172 , 107756. https://doi.org/10.1016/j.envint.2023.107756
  83. Girija Kadlaskar, Antonia Piergies, Meghan Miller. Environmental Risk Factors for Attention-Deficit/Hyperactivity Disorder. 2023, 209-242. https://doi.org/10.1007/978-3-031-41709-2_9
  84. Alessandro Bigi, Giorgio Veratti, Elisabeth Andrews, Martine Collaud Coen, Lorenzo Guerrieri, Vera Bernardoni, Dario Massabò, Luca Ferrero, Sergio Teggi, Grazia Ghermandi. Aerosol absorption using in situ filter-based photometers and ground-based sun photometry in the Po Valley urban atmosphere. Atmospheric Chemistry and Physics 2023, 23 (23) , 14841-14869. https://doi.org/10.5194/acp-23-14841-2023
  85. . Chapter 23 : US Caribbean. Fifth National Climate Assessment. 2023https://doi.org/10.7930/NCA5.2023.CH23
  86. Daniela Varrica, Maria Grazia Alaimo. Determination of Water-Soluble Trace Elements in the PM10 and PM2.5 of Palermo Town (Italy). International Journal of Environmental Research and Public Health 2023, 20 (1) , 724. https://doi.org/10.3390/ijerph20010724
  87. Jing Cai, Yang Shen, Xia Meng, Yan Zhao, Yue Niu, Renjie Chen, Wenchong Du, Guangbin Quan, Anna L. Barnett, Gary Jones, Haidong Kan, Jing Hua. Association of developmental coordination disorder with early-life exposure to fine particulate matter in Chinese preschoolers. The Innovation 2023, 4 (1) , 100347. https://doi.org/10.1016/j.xinn.2022.100347
  88. Jun-Wei Xu, Jintai Lin, Gan Luo, Jamiu Adeniran, Hao Kong. Foreign emissions exacerbate PM 2.5 pollution in China through nitrate chemistry. Atmospheric Chemistry and Physics 2023, 23 (7) , 4149-4163. https://doi.org/10.5194/acp-23-4149-2023
  89. Nabgha-e Amen, Syed Ali Musstjab Akber Shah Eqani, Khawar Bilal, Nadeem Ali, Nisreen Rajeh, David Adelman, Heqing Shen, Rainer Lohmann. Molecularly tracing of children exposure pathways to environmental organic pollutants and the Autism Spectrum Disorder Risk. Environmental Pollution 2022, 315 , 120381. https://doi.org/10.1016/j.envpol.2022.120381
  90. Shiyi Yang, Luyao Wen, Xuyang Chai, Yuanyuan Song, Xin Chen, Zhi-Feng Chen, Ruijin Li, Chuan Dong, Zenghua Qi, Zongwei Cai. The protective effects of taurine and fish oil supplementation on PM2.5-induced heart dysfunction among aged mice: A random double-blind study. Science of The Total Environment 2022, 851 , 157966. https://doi.org/10.1016/j.scitotenv.2022.157966
  91. Román Pérez Velasco, Dorota Jarosińska. Update of the WHO global air quality guidelines: Systematic reviews – An introduction. Environment International 2022, 170 , 107556. https://doi.org/10.1016/j.envint.2022.107556
  92. Gabriele Messori, Dave Van Wees, Francesco S.R. Pausata, Juan C. Acosta Navarro, Abdel Hannachi, Frank J. Dentener. The impact of future atmospheric circulation changes over the Euro-Atlantic sector on urban PM2.5 concentrations. Tellus B: Chemical and Physical Meteorology 2022, 70 (1) , 1468704. https://doi.org/10.1080/16000889.2018.1468704
  93. Jingyuan Li, Maodong Fang, Zhiwen Yang, Zongyan Lv, Ning Wei, Fuwu Yan, Hongjun Mao. Impact of Illegal Application of Urea Regulator on Real-World Exhaust Nitrogen Oxygen and Particle Number Emissions. Atmosphere 2022, 13 (10) , 1739. https://doi.org/10.3390/atmos13101739
  94. Egide Kalisa, Vincent Kuuire, Matthew Adams. A preliminary investigation comparing high-volume and low-volume air samplers for measurement of PAHs, NPAHs and airborne bacterial communities in atmospheric particulate matter. Environmental Science: Atmospheres 2022, 2 (5) , 1120-1131. https://doi.org/10.1039/D2EA00078D
  95. Alexander Yang, Qian Tan, Chamara Rajapakshe, Mian Chin, Hongbin Yu. Global premature mortality by dust and pollution PM2.5 estimated from aerosol reanalysis of the modern-era retrospective analysis for research and applications, version 2. Frontiers in Environmental Science 2022, 10 https://doi.org/10.3389/fenvs.2022.975755
  96. Eduard Buss, Tim-Lucas Rabbel, Viktor Horvat, Marko Krizmancic, Stjepan Bogdan, Mostafa Wahby, Heiko Hamann. PhytoNodes for Environmental Monitoring: Stimulus Classification based on Natural Plant Signals in an Interactive Energy-efficient Bio-hybrid System. 2022, 258-264. https://doi.org/10.1145/3524458.3547266
  97. Dajeong Jeong, Changhyun Yoo, Sang-Wook Yeh, Jin-Ho Yoon, Daegyun Lee, Jae-Bum Lee, Jin-Young Choi. Statistical Seasonal Forecasting of Winter and Spring PM2.5 Concentrations Over the Korean Peninsula. Asia-Pacific Journal of Atmospheric Sciences 2022, 58 (4) , 549-561. https://doi.org/10.1007/s13143-022-00275-4
  98. Sofia Eirini Chatoutsidou, Mihalis Lazaridis. Mass concentrations and elemental analysis of PM2.5 and PM10 in a coastal Mediterranean site: A holistic approach to identify contributing sources and varying factors. Science of The Total Environment 2022, 838 , 155980. https://doi.org/10.1016/j.scitotenv.2022.155980
  99. Sofia Anwar, Bilal Hussain, Muhammad Usman, Syed Asif Ali Naqvi, Ashfaq Ahmad Shah. Consumers’ switching intentions from conventional to green vehicles in the context of smog risk in Pakistan. Case Studies on Transport Policy 2022, 10 (3) , 1695-1705. https://doi.org/10.1016/j.cstp.2022.06.008
  100. Li Li, Qiyuan Wang, Yong Zhang, Suixin Liu, Ting Zhang, Shuang Wang, Jie Tian, Yang Chen, Steven Sai Hang Ho, Yongming Han, Junji Cao. Impact of reduced anthropogenic emissions on chemical characteristics of urban aerosol by individual particle analysis. Chemosphere 2022, 303 , 135013. https://doi.org/10.1016/j.chemosphere.2022.135013
Load more citations

Environmental Science & Technology

Cite this: Environ. Sci. Technol. 2016, 50, 10, 4895–4904
Click to copy citationCitation copied!
https://doi.org/10.1021/acs.est.5b03827
Published March 24, 2016

Copyright © 2016 American Chemical Society. This publication is available under these Terms of Use.

Article Views

26k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Total rate of health burden in 2013 due to exposure to ambient PM2.5 pollution (disability-adjusted life-years per year per 100 000 population), from the Global Burden of Disease 2013 (Institute of Health Metrics and Evaluation, University of Washington).

    Figure 2

    Figure 2. Ratio of estimated annual average PM2.5 concentrations in 2013 to 1990, at 0.1° × 0.1° resolution, following methods of Brauer et al. (2016). Red indicates a large relative increase during this period; green indicates decreases.

    Figure 3

    Figure 3. Satellite image showing a thick river of haze over the Indo-Gangetic Plain on January 10, 2013, as captured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite. Image courtesy of NASA Earth Observatory. (http://earthobservatory.nasa.gov/IOTD/view.php?id=80148).

  • References


    This article references 88 other publications.

    1. 1
      U.S. Environmental Protection Agency. Integrated Science Assessment for Ozone and Related Photochemical Oxidants, EPA 600/R-10/076F, 2013.
    2. 2
      U.S. Environmental Protection Agency. Integrated Science Assessment for Particulate Matter, EPA/600/R-08/139F, 2009.
    3. 3
      Brook, R. D.; Rajagopalan, S.; Pope, C. A.; Brook, J. R.; Bhatnagar, A.; Diez-Roux, A. V.; Holguin, F.; Hong, Y. L.; Luepker, R. V.; Mittleman, M. A.; Peters, A.; Siscovick, D.; Smith, S. C.; Whitsel, L.; Kaufman, J. D.; Epidemiol, A. H. A. C.; Dis, C. K. C.; Metab, C. N. P. A. Particulate Matter Air Pollution and Cardiovascular Disease An Update to the Scientific Statement From the American Heart Association Circulation 2010, 121 (21) 2331 2378 DOI: 10.1161/CIR.0b013e3181dbece1
    4. 4
      Burnett, R. T.; Pope, C. A.; Ezzati, M.; Olives, C.; Lim, S. S.; Mehta, S.; Shin, H. H.; Singh, G.; Hubbell, B.; Brauer, M.; Anderson, H. R.; Smith, K. R.; Balmes, J. R.; Bruce, N. G.; Kan, H. D.; Laden, F.; Pruss-Ustun, A.; Michelle, C. T.; Gapstur, S. M.; Diver, W. R.; Cohen, A. An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure Environ. Health Perspect. 2014, 122 (4) 397 403 DOI: 10.1289/ehp.1307049
    5. 5
      Forouzanfar, M. H.; Alexander, L.; Anderson, H. R.; Bachman, V. F.; Biryukov, S. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013 Lancet 2015, 386 (10010) 2287 2323 DOI: 10.1016/S0140-6736(15)00128-2
    6. 6
      Brauer, M.; Freedman, G.; Frostad, J.; van Donkelaar, A.; Martin, R. V.; Dentener, F.; van Dingenen, R.; Estep, K.; Amini, H.; Apte, J. S.; Balakrishnan, K.; Barragard, L.; Broday, D.; Feigin, V.; Ghosh, S.; Hopke, P. K.; Knibbs, L. D.; Kokubo, Y.; Liu, Y.; Ma, S.; Morawska, L.; Texcalac Sangrador, J. L.; Shaddick, G.; Anderson, H. R.; Vos, T.; Forouzanfar, M. H.; Burnett, R. T.; Cohen, A. Ambient air pollution exposure estimation for the Global Burden of Disease 2013 Environ. Sci. Technol. 2016, 50, 79 88 DOI: 10.1021/acs.est.5b03709
    7. 7
      Parrish, D. D.; Zhu, T. Clean Air for Megacities Science 2009, 326 (5953) 674 675 DOI: 10.1126/science.1176064
    8. 8
      Zhu, T.; Melamed, M.; Parrish, D.; Gauss, M.; Gallardo Klenner, L.; Lawrence, M.; Konare, A.; Liousse, C., Eds.; Impacts of Megacities on Air Pollution and Climate, WMO/IGAC GAW Report 205, ISBN 978–0–9882867–0–2, Geneva, Switzerland, 2012.
    9. 9
      Apte, J. S.; Marshall, J. D.; Cohen, A. J.; Brauer, M. Addressing Global Mortality from Ambient PM2.5 Environ. Sci. Technol. 2015, 49, 8057 8066 DOI: 10.1021/acs.est.5b01236
    10. 10
      Bachmann, J. Will the Circle Be Unbroken: A History of the US National Ambient Air Quality Standards J. Air Waste Manage. Assoc. 2007, 57, 652 697 DOI: 10.3155/1047-3289.57.10.1151
    11. 11
      Pope, C. A.; Ezzati, M.; Dockery, D. W. Fine-Particulate Air Pollution and Life Expectancy in the United States N. Engl. J. Med. 2009, 360 (4) 376 386 DOI: 10.1056/NEJMsa0805646
    12. 12
      Dominici, F.; Peng, R. D.; Barr, C. D.; Bell, M. L. Protecting Human Health From Air Pollution Shifting From a Single-pollutant to a Multipollutant Approach Epidemiology 2010, 21 (2) 187 194 DOI: 10.1097/EDE.0b013e3181cc86e8
    13. 13
      Hartmann, D. L.; Tank, A. M. G. K.; Rusticucci, M.; Alexander, L. V.; Bronnimann, S.; Charabi, Y.; Dentener, F. J.; Dlugokencky, E. J.; Easterling, D. R.; Kaplan, A.; Soden, B. J.; Thorne, P. W.; Wild, M.; Zhai, P. M., Observations: Atmosphere and Surface. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on climate Change; Stocker, T. F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S. K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P. M., Eds.; Cambridge University Press: New York, NY, 2013.
    14. 14
      Boys, B. L.; Martin, R. V.; van Donkelaar, A.; MacDonell, R. J.; Hsu, N. C.; Cooper, M. J.; Yantosca, R. M.; Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S. W. Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter Environ. Sci. Technol. 2014, 48 (19) 11109 11118 DOI: 10.1021/es502113p
    15. 15
      Wang, Y. S.; Yao, L.; Wang, L. L.; Liu, Z. R.; Ji, D. S.; Tang, G. Q.; Zhang, J. K.; Sun, Y.; Hu, B.; Xin, J. Y. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China Sci. China: Earth Sci. 2014, 57 (1) 14 25 DOI: 10.1007/s11430-013-4773-4
    16. 16
      Cooper, O. R.; Parrish, D. D.; Ziemke, J.; Balashov, N. V.; Cupeiro, M.; Galbally, I. E.; Gilge, S.; Horowitz, L.; Jensen, N. R.; Lamarque, J.-F.; Naik, V.; Oltmans, S. J.; Schwab, J.; Shindell, D. T.; Thompson, A. M.; Thouret, V.; Wang, Y.; Zbinden, R. M. Global distribution and trends of tropospheric ozone: An observation-based review Elementa 2014, 2, 000029 DOI: 10.12952/journal.elementa.000029
    17. 17
      Cooper, O. R.; Gao, R. S.; Tarasick, D.; Leblanc, T.; Sweeney, C. Long-term ozone trends at rural ozone monitoring sites across the United States, 1990–2010 J. Geophys. Res., Atmos. 2012, 117, D22307 DOI: 10.1029/2012JD018261
    18. 18
      Wilson, R. C.; Fleming, Z. L.; Monks, P. S.; Clain, G.; Henne, S.; Konovalov, I. B.; Szopa, S.; Menut, L. Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996–2005 Atmos. Chem. Phys. 2012, 12 (1) 437 454 DOI: 10.5194/acp-12-437-2012
    19. 19
      Hilboll, A.; Richter, A.; Burrows, J. P. Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments Atmos. Chem. Phys. 2013, 13 (8) 4145 4169 DOI: 10.5194/acp-13-4145-2013
    20. 20
      Geddes, J. A.; Martin, R. V.; Boys, B. L.; van Donkelaar, A. Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations Environ. Health Perspect. 2016, 124, 281 289 DOI: 10.1289/ehp.1409567
    21. 21
      Klimont, Z.; Smith, S. J.; Cofala, J. The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions Environ. Res. Lett. 2013, 8 (1) 014003 DOI: 10.1088/1748-9326/8/1/014003
    22. 22
      Liousse, C.; Assamoi, E.; Criqui, P.; Granier, C.; Rosset, R. Explosive growth in African combustion emissions from 2005 to 2030 Environ. Res. Lett. 2014, 9 (3) 035003 DOI: 10.1088/1748-9326/9/3/035003
    23. 23
      Fiore, A. M.; Naik, V.; Leibensperger, E. M. Air Quality and Climate Connections J. Air Waste Manage. Assoc. 2015, 65 (6) 645 685 DOI: 10.1080/10962247.2015.1040526
    24. 24
      Pechony, O.; Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (45) 19167 19170 DOI: 10.1073/pnas.1003669107
    25. 25
      Yue, X.; Mickley, L. J.; Logan, J. A.; Hudman, R. C.; Martin, M. V.; Yantosca, R. M. Impact of 2050 climate change on North American wildfire: consequences for ozone air quality Atmos. Chem. Phys. 2015, 15, 10033 10055 DOI: 10.5194/acp-15-10033-2015
    26. 26
      de Gouw, J.; Warneke, C. Measurements of volatile organic compounds in the earths atmosphere using proton-transfer-reaction mass spectrometry Mass Spectrom. Rev. 2007, 26 (2) 223 257 DOI: 10.1002/mas.20119
    27. 27
      Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Q.; Kroll, J. H.; DeCarlo, P. F.; Allan, J. D.; Coe, H.; Ng, N. L.; Aiken, A. C.; Docherty, K. S.; Ulbrich, I. M.; Grieshop, A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.; Hueglin, C.; Sun, Y. L.; Tian, J.; Laaksonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara, P.; Ehn, M.; Kulmala, M.; Tomlinson, J. M.; Collins, D. R.; Cubison, M. J.; Dunlea, E. J.; Huffman, J. A.; Onasch, T. B.; Alfarra, M. R.; Williams, P. I.; Bower, K.; Kondo, Y.; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell, L.; Griffin, R.; Takami, A.; Miyoshi, T.; Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y. M.; Dzepina, K.; Kimmel, J. R.; Sueper, D.; Jayne, J. T.; Herndon, S. C.; Trimborn, A. M.; Williams, L. R.; Wood, E. C.; Middlebrook, A. M.; Kolb, C. E.; Baltensperger, U.; Worsnop, D. R. Evolution of Organic Aerosols in the Atmosphere Science 2009, 326 (5959) 1525 1529 DOI: 10.1126/science.1180353
    28. 28
      Shiraiwa, M.; Sosedova, Y.; Rouviere, A.; Yang, H.; Zhang, Y. Y.; Abbatt, J. P. D.; Ammann, M.; Poschl, U. The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles Nat. Chem. 2011, 3 (4) 291 295 DOI: 10.1038/nchem.988
    29. 29
      Verma, V.; Fang, T.; Guo, H.; King, L.; Bates, J. T.; Peltier, R. E.; Edgerton, E.; Russell, A. G.; Weber, R. J. Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: spatiotemporal trends and source apportionment Atmos. Chem. Phys. 2014, 14 (23) 12915 12930 DOI: 10.5194/acp-14-12915-2014
    30. 30
      Roberts, J. M.; Veres, P. R.; Cochran, A. K.; Warneke, C.; Burling, I. R.; Yokelson, R. J.; Lerner, B.; Gilman, J. B.; Kuster, W. C.; Fall, R.; de Gouw, J. Isocyanic acid in the atmosphere and its possible link to smoke-related health effects (vol 108, pg 8966, 2011) Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (41) 17234 17234 DOI: 10.1073/pnas.1103352108
    31. 31
      Snyder, E. G.; Watkins, T. H.; Solomon, P. A.; Thoma, E. D.; Williams, R. W.; Hagler, G. S. W.; Shelow, D.; Hindin, D. A.; Kilaru, V. J.; Preuss, P. W. The Changing Paradigm of Air Pollution Monitoring Environ. Sci. Technol. 2013, 47 (20) 11369 11377 DOI: 10.1021/es4022602
    32. 32
      Dionisio, K. L.; Rooney, M. S.; Arku, R. E.; Friedman, A. B.; Hughes, A. F.; Vallarino, J.; Agyei-Mensah, S.; Spengler, J. D.; Ezzati, M. Within-Neighborhood Patterns and Sources of Particle Pollution: Mobile Monitoring and Geographic Information System Analysis in Four Communities in Accra, Ghana Environ. Health Perspect. 2010, 118 (5) 607 613 DOI: 10.1289/ehp.0901365
    33. 33
      Lung, S. C. C.; Hsiao, P. K.; Wen, T. Y.; Liu, C. H.; Fu, C. B.; Cheng, Y. T. Variability of intra-urban exposure to particulate matter and CO from Asian-type community pollution sources Atmos. Environ. 2014, 83, 6 13 DOI: 10.1016/j.atmosenv.2013.10.046
    34. 34
      Larson, T.; Henderson, S. B.; Brauer, M. Mobile Monitoring of Particle Light Absorption Coefficient in an Urban Area as a Basis for Land Use Regression Environ. Sci. Technol. 2009, 43 (13) 4672 4678 DOI: 10.1021/es803068e
    35. 35
      Mead, M. I.; Popoola, O. A. M.; Stewart, G. B.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J. J.; McLeod, M. W.; Hodgson, T. F.; Dicks, J.; Lewis, A.; Cohen, J.; Baron, R.; Saffell, J. R.; Jones, R. L. The use of electrochemical sensors for monitoring urban air quality in low-cost, high-density networks Atmos. Environ. 2013, 70, 186 203 DOI: 10.1016/j.atmosenv.2012.11.060
    36. 36
      van Donkelaar, A.; Martin, R. V.; Brauer, M.; Boys, B. L. Use of Satellite Observations for Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter Environ. Health Perspect. 2015, 123 (2) 135 143 DOI: 10.1289/ehp.1408646
    37. 37
      Kloog, I.; Chudnovsky, A. A.; Just, A. C.; Nordio, F.; Koutrakis, P.; Coull, B. A.; Lyapustin, A.; Wang, Y. J.; Schwartz, J. A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data Atmos. Environ. 2014, 95, 581 590 DOI: 10.1016/j.atmosenv.2014.07.014
    38. 38
      Ma, Z. W.; Hu, X. F.; Huang, L.; Bi, J.; Liu, Y. Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing Environ. Sci. Technol. 2014, 48 (13) 7436 7444 DOI: 10.1021/es5009399
    39. 39
      Yu, H. B.; Remer, L. A.; Chin, M.; Bian, H. S.; Tan, Q.; Yuan, T. L.; Zhang, Y. Aerosols from Overseas Rival Domestic Emissions over North America Science 2012, 337 (6094) 566 569 DOI: 10.1126/science.1217576
    40. 40
      Punger, E. M.; West, J. J. The effect of grid resolution on estimates of the burden of ozone and fine particulate matter on premature mortality in the USA Air Qual., Atmos. Health 2013, 6 (3) 563 573 DOI: 10.1007/s11869-013-0197-8
    41. 41
      Surratt, J. D.; Chan, A. W. H.; Eddingsaas, N. C.; Chan, M. N.; Loza, C. L.; Kwan, A. J.; Hersey, S. P.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H. Reactive intermediates revealed in secondary organic aerosol formation from isoprene Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (15) 6640 6645 DOI: 10.1073/pnas.0911114107
    42. 42
      Vienneau, D.; de Hoogh, K.; Bechle, M. J.; Beelen, R.; van Donkelaar, A.; Martin, R. V.; Millet, D. B.; Hoek, G.; Marshall, J. D. Western European Land Use Regression Incorporating Satellite- and Ground-Based Measurements of NO2 and PM10 Environ. Sci. Technol. 2013, 47 (23) 13555 13564 DOI: 10.1021/es403089q
    43. 43
      National Research Council. Rethinking the Ozone Problem in Urban and Regional Air Pollution; National Academy Press: Washington, DC, 1991.
    44. 44
      Dunlea, E. J.; Herndon, S. C.; Nelson, D. D.; Volkamer, R. M.; San Martini, F.; Sheehy, P. M.; Zahniser, M. S.; Shorter, J. H.; Wormhoudt, J. C.; Lamb, B. K.; Allwine, E. J.; Gaffney, J. S.; Marley, N. A.; Grutter, M.; Marquez, C.; Blanco, S.; Cardenas, B.; Retama, A.; Villegas, C. R. R.; Kolb, C. E.; Molina, L. T.; Molina, M. J. Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment Atmos. Chem. Phys. 2007, 7 (10) 2691 2704 DOI: 10.5194/acp-7-2691-2007
    45. 45
      Jerrett, M.; Burnett, R. T.; Pope, C. A.; Ito, K.; Thurston, G.; Krewski, D.; Shi, Y. L.; Calle, E.; Thun, M. Long-Term Ozone Exposure and Mortality N. Engl. J. Med. 2009, 360 (11) 1085 1095 DOI: 10.1056/NEJMoa0803894
    46. 46
      Beelen, R.; Raaschou-Nielsen, O.; Stafoggia, M.; Andersen, Z. J.; Weinmayr, G.; Hoffmann, B.; Wolf, K.; Samoli, E.; Fischer, P.; Nieuwenhuijsen, M.; Vineis, P.; Xun, W. W.; Katsouyanni, K.; Dimakopoulou, K.; Oudin, A.; Forsberg, B.; Modig, L.; Havulinna, A. S.; Lanki, T.; Turunen, A.; Oftedal, B.; Nystad, W.; Nafstad, P.; De Faire, U.; Pedersen, N. L.; Ostenson, C. G.; Fratiglioni, L.; Penell, J.; Korek, M.; Pershagen, G.; Eriksen, K. T.; Overvad, K.; Ellermann, T.; Eeftens, M.; Peeters, P. H.; Meliefste, K.; Wang, M.; Bueno-de-Mesquita, B.; Sugiri, D.; Kramer, U.; Heinrich, J.; de Hoogh, K.; Key, T.; Peters, A.; Hampel, R.; Concin, H.; Nagel, G.; Ineichen, A.; Schaffner, E.; Probst-Hensch, N.; Kunzli, N.; Schindler, C.; Schikowski, T.; Adam, M.; Phuleria, H.; Vilier, A.; Clavel-Chapelon, F.; Declercq, C.; Grioni, S.; Krogh, V.; Tsai, M. Y.; Ricceri, F.; Sacerdote, C.; Galassi, C.; Migliore, E.; Ranzi, A.; Cesaroni, G.; Badaloni, C.; Forastiere, F.; Tamayo, I.; Amiano, P.; Dorronsoro, M.; Katsoulis, M.; Trichopoulou, A.; Brunekreef, B.; Hoek, G. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project Lancet 2014, 383 (9919) 785 795 DOI: 10.1016/S0140-6736(13)62158-3
    47. 47
      Forastiere, F.; Kan, H.; Cohen, A., Updated exposure-response functions available for estimating mortality impacts. In WHO Expert Meeting: Methods and Tools for Assessing the Health Risks of Air Pollution at Local, National and International Level; World Health Organization: Copenhagen, 2014; p 74 91http://www.euro.who.int/__data/assets/pdf_file/0010/263629/WHO-Expert-Meeting-Methods-and-tools-for-assessing-the-health-risks-of-air-pollution-at-local,-national-and-international-level.pdf?ua=1 (accessed 22.04.2015).
    48. 48
      Laden, F.; Neas, L. M.; Dockery, D. W.; Schwartz, J. Association of fine particulate matter from different sources with daily mortality in six US cities Environ. Health Perspect. 2000, 108 (10) 941 947 DOI: 10.1289/ehp.00108941
    49. 49
      Dominici, F.; McDermott, A.; Zeger, S. L.; Samet, J. M. National maps of the effects of particulate matter on mortality: Exploring geographical variation Environ. Health Perspect. 2003, 111 (1) 39 43 DOI: 10.1289/ehp.5181
    50. 50
      Bell, M. L.; Ebisu, K.; Leaderer, B. P.; Gent, J. F.; Lee, H. J.; Koutrakis, P.; Wang, Y.; Dominici, F.; Peng, R. D. Associations of PM2.5 Constituents and Sources with Hospital Admissions: Analysis of Four Counties in Connecticut and Massachusetts (USA) for Persons ≥ 65 Years of Age Environ. Health Perspect. 2014, 122 (2) 138 144 DOI: 10.1289/ehp.1306656
    51. 51
      Baumgartner, J.; Zhang, Y. X.; Schauer, J. J.; Huang, W.; Wang, Y. Q.; Ezzati, M. Highway proximity and black carbon from cookstoves as a risk factor for higher blood pressure in rural China Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (36) 13229 13234 DOI: 10.1073/pnas.1317176111
    52. 52
      Kioumourtzoglou, M. A.; Austin, E.; Koutrakis, P.; Dominici, F.; Schwartz, J.; Zanobetti, A. PM2.5 and survival among older adults: effect modification by particulate composition Epidemiology 2015, 26 (3) 321 327 DOI: 10.1097/EDE.0000000000000269
    53. 53
      Darrow, L. A.; Klein, M.; Flanders, W. D.; Mulholland, J. A.; Tolbert, P. E.; Strickland, M. J. Air Pollution and Acute Respiratory Infections Among Children 0–4 Years of Age: An 18-Year Time-Series Study Am. J. Epidemiol. 2014, 180 (10) 968 977 DOI: 10.1093/aje/kwu234
    54. 54
      Costa, D. L.; Dreher, K. L. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models Environ. Health Perspect. 1997, 105, 1053 1060 DOI: 10.1289/ehp.97105s51053
    55. 55
      Thurston, G. D.; Ito, K.; Lall, R.; Burnett, R. T.; Turner, M. C.; Krewski, D.; Shi, Y.; Jerrett, M.; Gapstur, S. M.; Diver, W. R.; Pope, C. A. NPACT Study 4. Mortality and Long-Term Exposure to PM2.5 and Its Components in the American Cancer Society’S Cancer Prevent Study II cohort; Health Effects Institute: Boston, MA, 2013.
    56. 56
      Bell, M. L.; Belanger, K.; Ebisu, K.; Gent, J. F.; Lee, H. J.; Koutrakis, P.; Leaderer, B. P. Prenatal Exposure to Fine Particulate Matter and Birth Weight Variations by Particulate Constituents and Sources Epidemiology 2010, 21 (6) 884 891 DOI: 10.1097/EDE.0b013e3181f2f405
    57. 57
      Ostro, B.; Tobias, A.; Querol, X.; Alastuey, A.; Amato, F.; Pey, J.; Perez, N.; Sunyer, J. The Effects of Particulate Matter Sources on Daily Mortality: A Case-Crossover Study of Barcelona, Spain Environ. Health Perspect. 2011, 119 (12) 1781 1787 DOI: 10.1289/ehp.1103618
    58. 58
      Janssen, N. A. H.; Hoek, G.; Simic-Lawson, M.; Fischer, P.; van Bree, L.; ten Brink, H.; Keuken, M.; Atkinson, R. W.; Anderson, H. R.; Brunekreef, B.; Cassee, F. R. Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles Compared with PM10 and PM2.5 Environ. Health Perspect. 2011, 119 (12) 1691 1699 DOI: 10.1289/ehp.1003369
    59. 59
      Val, S.; Liousse, C.; Doumbia, E. T.; Galy-Lacaux, C.; Cachier, H.; Marchand, N.; Badel, A.; Gardrat, E.; Sylvestre, A.; Baeza-Squiban, A. Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: Description of a worrying situation Part. Fibre Toxicol. 2013, 10, 10 DOI: 10.1186/1743-8977-10-10
    60. 60
      Stanek, L. W.; Sacks, J. D.; Dutton, S. J.; Dubois, J. J. B. Attributing health effects to apportioned components and sources of particulate matter: An evaluation of collective results Atmos. Environ. 2011, 45 (32) 5655 5663 DOI: 10.1016/j.atmosenv.2011.07.023
    61. 61
      HEI NPACT Review Panel. Executive Summary. HEI’s National Particle Component Toxicity (NPACT) Initiative; Health Effects Institute: Boston, MA, 2013.
    62. 62
      Novotny, E. V.; Bechle, M. J.; Millet, D. B.; Marshall, J. D. National Satellite-Based Land-Use Regression: NO2 in the United States Environ. Sci. Technol. 2011, 45 (10) 4407 4414 DOI: 10.1021/es103578x
    63. 63
      Keating, T. J.; West, J. J.; Farrell, A. E., Prospects for International Management of Intercontinental Air Pollution Transport. In Inter-continental Transport of Air Pollution; Stohl, A., Ed.; Springer-Verlag: Berlin, 2004; pp 295 320.
    64. 64
      United Nations Environment Assembly, Resolutions and decisions adopted by the United Nations Environment Assembly of the United Nations Environment Programme at its first session on 27 June 2014, http://www.unep.org/unea/download.asp?ID=5171, accessed July 9, 2015.
    65. 65
      World Health Assembly. Health and the Environment: Addressing the health impact of air pollution. Sixty-Eighth World Health Assembly, A68/A/CONF./2 Rev.1, 26 May 2015. http://apps.who.int/gb/ebwha/pdf_files/WHA68/A68_ACONF2Rev1-en.pdf (accessed July 9, 2015) .
    66. 66
      Climate & Clean Air Coalition, http://www.ccacoalition.org/ (accessed July 9, 2015) .
    67. 67
      Bell, M. L.; Davis, D. L.; Cifuentes, L. A.; Krupnick, A. J.; Morgenstern, R. D.; Thurston, G. D. Ancillary human health benefits of improved air quality resulting from climate change mitigation Environ. Health 2008, 7, 41 DOI: 10.1186/1476-069X-7-41
    68. 68
      Nemet, G. F.; Holloway, T.; Meier, P. Implications of incorporating air-quality co-benefits into climate change policymaking Environ. Res. Lett. 2010, 5 (1) 014007 DOI: 10.1088/1748-9326/5/1/014007
    69. 69
      West, J. J.; Smith, S. J.; Silva, R. A.; Naik, V.; Zhang, Y. Q.; Adelman, Z.; Fry, M. M.; Anenberg, S.; Horowitz, L. W.; Lamarque, J. F. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health Nat. Clim. Change 2013, 3 (10) 885 889 DOI: 10.1038/nclimate2009
    70. 70
      Shindell, D.; Kuylenstierna, J. C. I.; Vignati, E.; van Dingenen, R.; Amann, M.; Klimont, Z.; Anenberg, S. C.; Muller, N.; Janssens-Maenhout, G.; Raes, F.; Schwartz, J.; Faluvegi, G.; Pozzoli, L.; Kupiainen, K.; Hoglund-Isaksson, L.; Emberson, L.; Streets, D.; Ramanathan, V.; Hicks, K.; Oanh, N. T. K.; Milly, G.; Williams, M.; Demkine, V.; Fowler, D. Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security Science 2012, 335 (6065) 183 189 DOI: 10.1126/science.1210026
    71. 71
      Carlton, A. G.; Pinder, R. W.; Bhave, P. V.; Pouliot, G. A. To What Extent Can Biogenic SOA be Controlled? Environ. Sci. Technol. 2010, 44 (9) 3376 3380 DOI: 10.1021/es903506b
    72. 72
      Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; van Der Gon, H. D.; Facchini, M. C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; Nemitz, E.; Pandis, S.; Riipinen, I.; Rudich, Y.; Schaap, M.; Slowik, J. G.; Spracklen, D. V.; Vignati, E.; Wild, M.; Williams, M.; Gilardoni, S. Particulate matter, air quality and climate: lessons learned and future needs Atmos. Chem. Phys. 2015, 15 (14) 8217 8299 DOI: 10.5194/acp-15-8217-2015
    73. 73
      Guan, T. J.; Yao, M. S.; Wang, J. X.; Fang, Y. H.; Hu, S. H.; Wang, Y.; Dutta, A.; Yang, J. N.; Wu, Y. S.; Hu, M.; Zhu, T. Airborne endotoxin in fine particulate matter in Beijing Atmos. Environ. 2014, 97, 35 42 DOI: 10.1016/j.atmosenv.2014.08.005
    74. 74
      Pöschl, U.; Shiraiwa, M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the Anthropocene Chem. Rev. 2015, 115, 4440 DOI: 10.1021/cr500487s
    75. 75
      Meng, X.; Ma, Y. J.; Chen, R. J.; Zhou, Z. J.; Chen, B. H.; Kan, H. D. Size-Fractionated Particle Number Concentrations and Daily Mortality in a Chinese City Environ. Health Perspect. 2013, 121 (10) 1174 1178 DOI: 10.1289/ehp.1206398
    76. 76
      Gong, J. C.; Zhu, T.; Kipen, H.; Wang, G. F.; Hu, M.; Guo, Q. F.; Ohman-Strickland, P.; Lu, S. E.; Wang, Y. D.; Zhu, P.; Rich, D. Q.; Huang, W.; Zhang, J. F. Comparisons of Ultrafine and Fine Particles in Their Associations with Biomarkers Reflecting Physiological Pathways Environ. Sci. Technol. 2014, 48 (9) 5264 5273 DOI: 10.1021/es5006016
    77. 77
      Meier, R.; Eeftens, M.; Aguilera, I.; Phuleria, H. C.; Ineichen, A.; Davey, M.; Ragettli, M. S.; Fierz, M.; Schindler, C.; Probst-Hensch, N.; Tsai, M. Y.; Kunzli, N. Ambient Ultrafine Particle Levels at Residential and Reference Sites in Urban and Rural Switzerland Environ. Sci. Technol. 2015, 49 (5) 2709 2715 DOI: 10.1021/es505246m
    78. 78
      Natraj, V.; Liu, X.; Kulawik, S.; Chance, K.; Chatfield, R.; Edwards, D. P.; Eldering, A.; Francis, G.; Kurosu, T.; Pickering, K.; Spurr, R.; Worden, H. Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements Atmos. Environ. 2011, 45 (39) 7151 7165 DOI: 10.1016/j.atmosenv.2011.09.014
    79. 79
      Kahn, R. A.; Gaitley, B. J. An analysis of global aerosol type as retrieved by MISR Journal of Geophysical Research-Atmospheres 2015, 120 (9) 4248 4281 DOI: 10.1002/2015JD023322
    80. 80
      Bravo, M. A.; Fuentes, M.; Zhang, Y.; Burr, M. J.; Bell, M. L. Comparison of exposure estimation methods for air pollutants: Ambient monitoring data and regional air quality simulation Environ. Res. 2012, 116, 1 10 DOI: 10.1016/j.envres.2012.04.008
    81. 81
      Lee, H. J.; Kang, C. M.; Coull, B. A.; Bell, M. L.; Koutrakis, P. Assessment of primary and secondary ambient particle trends using satellite aerosol optical depth and ground speciation data in the New England region, United States Environ. Res. 2014, 133, 103 110 DOI: 10.1016/j.envres.2014.04.006
    82. 82
      Kloog, I.; Ridgway, B.; Koutrakis, P.; Coull, B. A.; Schwartz, J. D. Long- and Short-Term Exposure to PM2.5 and Mortality: Using Novel Exposure Models Epidemiology 2013, 24 (4) 555 561 DOI: 10.1097/EDE.0b013e318294beaa
    83. 83
      World Bank, World Development Indicators 2015; World Bank, 2015.
    84. 84
      Jerrett, M.; Burnett, R. T.; Ma, R. J.; Pope, C. A.; Krewski, D.; Newbold, K. B.; Thurston, G.; Shi, Y. L.; Finkelstein, N.; Calle, E. E.; Thun, M. J. Spatial analysis of air pollution and mortality in Los Angeles Epidemiology 2005, 16 (6) 727 736 DOI: 10.1097/01.ede.0000181630.15826.7d
    85. 85
      Clancy, L.; Goodman, P.; Sinclair, H.; Dockery, D. W. Effect of air-pollution control on death rates in Dublin, Ireland: an intervention study Lancet 2002, 360 (9341) 1210 1214 DOI: 10.1016/S0140-6736(02)11281-5
    86. 86
      Chafe, Z. A.; Brauer, M.; Klimont, Z.; Van Dingenen, R.; Mehta, S.; Rao, S.; Riahi, K.; Dentener, F.; Smith, K. R. Household Cooking with Solid Fuels Contributes to Ambient PM2.5 Air Pollution and the Burden of Disease Environ. Health Perspect. 2014, 122 (12) 1314 1320 DOI: 10.1289/ehp.1206340
    87. 87
      Chambliss, S. E.; Silva, R.; West, J. J.; Zeinali, M.; Minjares, R. Estimating source-attributable health impacts of ambient fine particulate matter exposure: Global premature mortality from surface transportation emissions in 2005 Environ. Res. Lett. 2014, 9 (10) 104009 DOI: 10.1088/1748-9326/9/10/104009
    88. 88
      Lelieveld, J.; Evans, J. S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale Nature 2015, 525 (7569) 367 371 DOI: 10.1038/nature15371