ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Smoke in the City: How Often and Where Does Smoke Impact Summertime Ozone in the United States?

View Author Information
§ Steven Brey Department of Atmospheric Science, Colorado State University, 200 West Lake Street, 1371 Campus Delivery, Fort Collins, Colorado 80523, United States
*Phone: (970) 491-8587; e-mail: [email protected] (S.J.B.).
Cite this: Environ. Sci. Technol. 2016, 50, 3, 1288–1294
Publication Date (Web):December 31, 2015
https://doi.org/10.1021/acs.est.5b05218
Copyright © 2015 American Chemical Society

    Article Views

    1324

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    We investigate the influence of smoke on ozone (O3) abundances over the contiguous United States. Using colocated observations of particulate matter and the National Weather Service Hazard Mapping System smoke data, we identify summertime days between 2005 and 2014 that Environmental Protection Agency Air Quality System O3 monitors are influenced by smoke. We compare O3 mixing ratio distributions for smoke-free and smoke-impacted days for each monitor, while controlling for temperature. This analysis shows that (i) the mean O3 abundance measured on smoke-impacted days is higher than on smoke-free days, and (ii) the magnitude of the effect varies by location with a range of 3 to 36 ppbv. For each site, we present the percentage of days when the 8-h average O3 mixing ratio (MDA8) exceeds 75 ppbv and smoke is present. Smoke-impacted O3 mixing ratios are most elevated in locations with the highest emissions of nitrogen oxides. The Northeast corridor, Dallas, Houston, Atlanta, Birmingham, and Kansas City stand out as having smoke present 10–20% of the days when 8-h average O3 mixing ratios exceed 75 ppbv. Most U.S. cities maintain a similar proportion of smoke-impacted exceedance days when they are held against the new MDA8 limit of 70 ppbv.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.5b05218.

    • Information on how trends in O3 mixing ratios were accounted for in this analysis (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 59 publications.

    1. Xiaomeng Jin, Arlene M. Fiore, Ronald C. Cohen. Space-Based Observations of Ozone Precursors within California Wildfire Plumes and the Impacts on Ozone-NOx-VOC Chemistry. Environmental Science & Technology 2023, Article ASAP.
    2. Pamela S. Rickly, Matthew M. Coggon, Kenneth C. Aikin, Raul J. Alvarez, II, Sunil Baidar, Jessica B. Gilman, Georgios I. Gkatzelis, Colin Harkins, Jian He, Aaron Lamplugh, Andrew O. Langford, Brian C. McDonald, Jeff Peischl, Michael A. Robinson, Andrew W. Rollins, Rebecca H. Schwantes, Christoph J. Senff, Carsten Warneke, Steven S. Brown. Influence of Wildfire on Urban Ozone: An Observationally Constrained Box Modeling Study at a Site in the Colorado Front Range. Environmental Science & Technology 2023, 57 (3) , 1257-1267. https://doi.org/10.1021/acs.est.2c06157
    3. Michael A. Robinson, Zachary C. J. Decker, Kelley C. Barsanti, Matthew M. Coggon, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Jessica B. Gilman, Georgios I. Gkatzelis, Christopher D. Holmes, Aaron Lamplugh, Avi Lavi, Ann M. Middlebrook, Denise M. Montzka, Brett B. Palm, Jeff Peischl, Brad Pierce, Rebecca H. Schwantes, Kanako Sekimoto, Vanessa Selimovic, Geoffrey S. Tyndall, Joel A. Thornton, Paul Van Rooy, Carsten Warneke, Andrew J. Weinheimer, Steven S. Brown. Variability and Time of Day Dependence of Ozone Photochemistry in Western Wildfire Plumes. Environmental Science & Technology 2021, 55 (15) , 10280-10290. https://doi.org/10.1021/acs.est.1c01963
    4. Sheena E. Martenies, Joshua P. Keller, Sherry WeMott, Grace Kuiper, Zev Ross, William B. Allshouse, John L. Adgate, Anne P. Starling, Dana Dabelea, Sheryl Magzamen. A Spatiotemporal Prediction Model for Black Carbon in the Denver Metropolitan Area, 2009–2020. Environmental Science & Technology 2021, 55 (5) , 3112-3123. https://doi.org/10.1021/acs.est.0c06451
    5. Katelyn O’Dell, Rebecca S. Hornbrook, Wade Permar, Ezra J. T. Levin, Lauren A. Garofalo, Eric C. Apel, Nicola J. Blake, Alex Jarnot, Matson A. Pothier, Delphine K. Farmer, Lu Hu, Teresa Campos, Bonne Ford, Jeffrey R. Pierce, Emily V. Fischer. Hazardous Air Pollutants in Fresh and Aged Western US Wildfire Smoke and Implications for Long-Term Exposure. Environmental Science & Technology 2020, 54 (19) , 11838-11847. https://doi.org/10.1021/acs.est.0c04497
    6. Claire E. Buysse, Aaron Kaulfus, Udaysankar Nair, Daniel A. Jaffe. Relationships between Particulate Matter, Ozone, and Nitrogen Oxides during Urban Smoke Events in the Western US. Environmental Science & Technology 2019, 53 (21) , 12519-12528. https://doi.org/10.1021/acs.est.9b05241
    7. Xi Gong, Aaron Kaulfus, Udaysankar Nair, and Daniel A. Jaffe . Quantifying O3 Impacts in Urban Areas Due to Wildfires Using a Generalized Additive Model. Environmental Science & Technology 2017, 51 (22) , 13216-13223. https://doi.org/10.1021/acs.est.7b03130
    8. Kyle J. Zarzana, Kyung-Eun Min, Rebecca A. Washenfelder, Jennifer Kaiser, Mitchell Krawiec-Thayer, Jeff Peischl, J. Andrew Neuman, John B. Nowak, Nicholas L. Wagner, William P. Dubè, Jason M. St. Clair, Glenn M. Wolfe, Thomas F. Hanisco, Frank N. Keutsch, Thomas B. Ryerson, and Steven S. Brown . Emissions of Glyoxal and Other Carbonyl Compounds from Agricultural Biomass Burning Plumes Sampled by Aircraft. Environmental Science & Technology 2017, 51 (20) , 11761-11770. https://doi.org/10.1021/acs.est.7b03517
    9. Lena Kabeshita, Lindsey L. Sloat, Emily V. Fischer, Stephanie Kampf, Sheryl Magzamen, Courtney Schultz, Michael J. Wilkins, Eva Kinnebrew, Nathaniel D. Mueller. Pathways framework identifies wildfire impacts on agriculture. Nature Food 2023, 4 (8) , 664-672. https://doi.org/10.1038/s43016-023-00803-z
    10. Yu Yu, William Zou, Michael Jerrett, Ying-Ying Meng. Acute health impact of wildfire-related and conventional PM2.5 in the United States: A narrative review. Environmental Advances 2023, 12 , 100179. https://doi.org/10.1016/j.envadv.2022.100179
    11. Ruijun Dang, Daniel J. Jacob, Viral Shah, Sebastian D. Eastham, Thibaud M. Fritz, Loretta J. Mickley, Tianjia Liu, Yi Wang, Jun Wang. Background nitrogen dioxide (NO 2 ) over the United States and its implications for satellite observations and trends: effects of nitrate photolysis, aircraft, and open fires. Atmospheric Chemistry and Physics 2023, 23 (11) , 6271-6284. https://doi.org/10.5194/acp-23-6271-2023
    12. Christina-Anna Papanikolaou, Panagiotis Kokkalis, Ourania Soupiona, Stavros Solomos, Alexandros Papayannis, Maria Mylonaki, Dimitra Anagnou, Romanos Foskinis, Marilena Gidarakou. Australian Bushfires (2019–2020): Aerosol Optical Properties and Radiative Forcing. Atmosphere 2022, 13 (6) , 867. https://doi.org/10.3390/atmos13060867
    13. Bruce Ainslie, Rita So, Jack Chen. Operational Evaluation of a Wildfire Air Quality Model from a Forecaster Point of View. Weather and Forecasting 2022, 37 (5) , 681-698. https://doi.org/10.1175/WAF-D-21-0064.1
    14. Virginia Iglesias, Natasha Stavros, Jennifer K Balch, Kimiko Barrett, Jeanette Cobian-Iñiguez, Cyrus Hester, Crystal A Kolden, Stefan Leyk, R Chelsea Nagy, Colleen E Reid, Christine Wiedinmyer, Elizabeth Woolner, William R Travis. Fires that matter: reconceptualizing fire risk to include interactions between humans and the natural environment. Environmental Research Letters 2022, 17 (4) , 045014. https://doi.org/10.1088/1748-9326/ac5c0c
    15. Zhifeng Yang, Belay Demoz, Ruben Delgado, John Sullivan, Andrew Tangborn, Pius Lee. Influence of the transported Canadian wildfire smoke on the ozone and particle pollution over the Mid-Atlantic United States. Atmospheric Environment 2022, 273 , 118940. https://doi.org/10.1016/j.atmosenv.2022.118940
    16. Dmitri A. Kalashnikov, Jordan L. Schnell, John T. Abatzoglou, Daniel L. Swain, Deepti Singh. Increasing co-occurrence of fine particulate matter and ground-level ozone extremes in the western United States. Science Advances 2022, 8 (1) https://doi.org/10.1126/sciadv.abi9386
    17. Aoxing Zhang, Yongqiang Liu, Scott Goodrick, Marcus D. Williams. Duff burning from wildfires in a moist region: different impacts on PM2.5 and ozone. Atmospheric Chemistry and Physics 2022, 22 (1) , 597-624. https://doi.org/10.5194/acp-22-597-2022
    18. Noah Bernays, Daniel A. Jaffe, Irina Petropavlovskikh, Peter Effertz. Comment on “Comparison of ozone measurement methods in biomass burning smoke: an evaluation under field and laboratory conditions” by Long et al. (2021). Atmospheric Measurement Techniques 2022, 15 (10) , 3189-3192. https://doi.org/10.5194/amt-15-3189-2022
    19. Keming Pan, Ian C. Faloona. The impacts of wildfires on ozone production and boundary layer dynamics in California's Central Valley. Atmospheric Chemistry and Physics 2022, 22 (14) , 9681-9702. https://doi.org/10.5194/acp-22-9681-2022
    20. Sarah M. McCaffrey, Ana G. Rappold, Mary Clare Hano, Kathleen M. Navarro, Tanya F. Phillips, Jeffrey P. Prestemon, Ambarish Vaidyanathan, Karen L. Abt, Colleen E. Reid, Jason D. Sacks. Social Considerations: Health, Economics, and Risk Communication. 2022, 199-237. https://doi.org/10.1007/978-3-030-87045-4_7
    21. Matthew J. Alvarado, Kelley C. Barsanti, Serena H. Chung, Daniel A. Jaffe, Charles T. Moore. Smoke Chemistry. 2022, 167-198. https://doi.org/10.1007/978-3-030-87045-4_6
    22. Yongqiang Liu, Warren E. Heilman, Brian E. Potter, Craig B. Clements, William A. Jackson, Nancy H. F. French, Scott L. Goodrick, Adam K. Kochanski, Narasimhan K. Larkin, Peter W. Lahm, Timothy J. Brown, Joshua P. Schwarz, Sara M. Strachan, Fengjun Zhao. Smoke Plume Dynamics. 2022, 83-119. https://doi.org/10.1007/978-3-030-87045-4_4
    23. Yongqiang Liu, Yang Liu, Joshua Fu, Cheng-En Yang, Xingyi Dong, Hanqin Tian, Bo Tao, Jia Yang, Yuhang Wang, Yufei Zou, Ziming Ke. Projection of future wildfire emissions in western USA under climate change: contributions from changes in wildfire, fuel loading and fuel moisture. International Journal of Wildland Fire 2022, 31 (1) , 1-13. https://doi.org/10.1071/WF20190
    24. Asher P. Mouat, Clare Paton-Walsh, Jack B. Simmons, Jhonathan Ramirez-Gamboa, David W. T. Griffith, Jennifer Kaiser. Measurement report: Observations of long-lived volatile organic compounds from the 2019–2020 Australian wildfires during the COALA campaign. Atmospheric Chemistry and Physics 2022, 22 (17) , 11033-11047. https://doi.org/10.5194/acp-22-11033-2022
    25. Julieta F. Juncosa Calahorrano, Vivienne H. Payne, Susan Kulawik, Bonne Ford, Frank Flocke, Teresa Campos, Emily V. Fischer. Evolution of Acyl Peroxynitrates (PANs) in Wildfire Smoke Plumes Detected by the Cross‐Track Infrared Sounder (CrIS) Over the Western U.S. During Summer 2018. Geophysical Research Letters 2021, 48 (23) https://doi.org/10.1029/2021GL093405
    26. Lu Xu, John D. Crounse, Krystal T. Vasquez, Hannah Allen, Paul O. Wennberg, Ilann Bourgeois, Steven S. Brown, Pedro Campuzano-Jost, Matthew M. Coggon, James H. Crawford, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, Emily M. Gargulinski, Jessica B. Gilman, Georgios I. Gkatzelis, Hongyu Guo, Johnathan W. Hair, Samuel R. Hall, Hannah A. Halliday, Thomas F. Hanisco, Reem A. Hannun, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron Lamplugh, Young Ro Lee, Jin Liao, Jakob Lindaas, J. Andrew Neuman, John B. Nowak, Jeff Peischl, David A. Peterson, Felix Piel, Dirk Richter, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Thomas B. Ryerson, Kanako Sekimoto, Vanessa Selimovic, Taylor Shingler, Amber J. Soja, Jason M. St. Clair, David J. Tanner, Kirk Ullmann, Patrick R. Veres, James Walega, Carsten Warneke, Rebecca A. Washenfelder, Petter Weibring, Armin Wisthaler, Glenn M. Wolfe, Caroline C. Womack, Robert J. Yokelson. Ozone chemistry in western U.S. wildfire plumes. Science Advances 2021, 7 (50) https://doi.org/10.1126/sciadv.abl3648
    27. O V Sanderfoot, S B Bassing, J L Brusa, R L Emmet, S J Gillman, K Swift, B Gardner. A review of the effects of wildfire smoke on the health and behavior of wildlife. Environmental Research Letters 2021, 16 (12) , 123003. https://doi.org/10.1088/1748-9326/ac30f6
    28. Hao Chen, James M. Samet, Philip A. Bromberg, Haiyan Tong. Cardiovascular health impacts of wildfire smoke exposure. Particle and Fibre Toxicology 2021, 18 (1) https://doi.org/10.1186/s12989-020-00394-8
    29. Emily Lill, Jakob Lindaas, Julieta F. Juncosa Calahorrano, Teresa Campos, Frank Flocke, Eric C. Apel, Rebecca S. Hornbrook, Alan Hills, Alex Jarnot, Nicola Blake, Wade Permar, Lu Hu, Andrew Weinheimer, Geoff Tyndall, Denise D.e Montzka, Samuel R. Hall, Kirk Ullmann, Joel Thornton, Brett B. Palm, Qiaoyun Peng, Ilana Pollack, Emily V. Fischer. Wildfire-driven changes in the abundance of gas-phase pollutants in the city of Boise, ID during summer 2018. Atmospheric Pollution Research 2021, 113 , 101269. https://doi.org/10.1016/j.apr.2021.101269
    30. Ilana B. Pollack, Detlev Helmig, Katelyn O'Dell, Emily V. Fischer. Weekend‐Weekday Implications and the Impact of Wildfire Smoke on Ozone and Its Precursors at Boulder Reservoir, Colorado Between 2017 and 2019. Journal of Geophysical Research: Atmospheres 2021, 126 (17) https://doi.org/10.1029/2021JD035221
    31. Katelyn O’Dell, Kelsey Bilsback, Bonne Ford, Sheena E. Martenies, Sheryl Magzamen, Emily V. Fischer, Jeffrey R. Pierce. Estimated Mortality and Morbidity Attributable to Smoke Plumes in the United States: Not Just a Western US Problem. GeoHealth 2021, 5 (9) https://doi.org/10.1029/2021GH000457
    32. Xiaodan Zhou, Kevin Josey, Leila Kamareddine, Miah C. Caine, Tianjia Liu, Loretta J. Mickley, Matthew Cooper, Francesca Dominici. Excess of COVID-19 cases and deaths due to fine particulate matter exposure during the 2020 wildfires in the United States. Science Advances 2021, 7 (33) , eabi8789. https://doi.org/10.1126/sciadv.abi8789
    33. S. E. Martenies, L. Hoskovec, A. Wilson, W. B. Allshouse, J. L. Adgate, D. Dabelea, S. Jathar, S. Magzamen. Assessing the Impact of Wildfires on the Use of Black Carbon as an Indicator of Traffic Exposures in Environmental Epidemiology Studies. GeoHealth 2021, 5 (6) https://doi.org/10.1029/2020GH000347
    34. Ilana B. Pollack, Detlev Helmig, Katelyn O'Dell, Emily V. Fischer. Seasonality and Source Apportionment of Nonmethane Volatile Organic Compounds at Boulder Reservoir, Colorado, Between 2017 and 2019. Journal of Geophysical Research: Atmospheres 2021, 126 (9) https://doi.org/10.1029/2020JD034234
    35. Cecilia Sorensen, John A. House, Katelyn O'Dell, Steven J. Brey, Bonne Ford, Jeffrey R. Pierce, Emily V. Fischer, Jay Lemery, James L. Crooks. Associations Between Wildfire‐Related PM 2.5 and Intensive Care Unit Admissions in the United States, 2006–2015. GeoHealth 2021, 5 (5) https://doi.org/10.1029/2021GH000385
    36. Matthew S. Landis, Russell W. Long, Jonathan Krug, Maribel Colón, Robert Vanderpool, Andrew Habel, Shawn P. Urbanski. The U.S. EPA wildland fire sensor challenge: Performance and evaluation of solver submitted multi-pollutant sensor systems. Atmospheric Environment 2021, 247 , 118165. https://doi.org/10.1016/j.atmosenv.2020.118165
    37. Steven J. Brey, Elizabeth A. Barnes, Jeffrey R. Pierce, Abigail L. S. Swann, Emily V. Fischer. Past Variance and Future Projections of the Environmental Conditions Driving Western U.S. Summertime Wildfire Burn Area. Earth's Future 2021, 9 (2) https://doi.org/10.1029/2020EF001645
    38. Shawn J. Mccoy, Xiaoxi Zhao. Wildfire and infant health: a geospatial approach to estimating the health impacts of wildfire smoke exposure. Applied Economics Letters 2021, 28 (1) , 32-37. https://doi.org/10.1080/13504851.2020.1730747
    39. Stephanie M. Holm, Mark D. Miller, John R. Balmes. Health effects of wildfire smoke in children and public health tools: a narrative review. Journal of Exposure Science & Environmental Epidemiology 2021, 31 (1) , 1-20. https://doi.org/10.1038/s41370-020-00267-4
    40. Heath D. Starns, Douglas R. Tolleson, Robert J. Agnew, Elijah G. Schnitzler, John R. Weir. Smoke in the Great Plains, USA: an increasing phenomenon with potential policy and health implications. Fire Ecology 2020, 16 (1) https://doi.org/10.1186/s42408-020-00073-1
    41. Ricardo Cisneros, Haiganoush K. Preisler, Donald Schweizer, Hamed Gharibi. Determining the Impact of Wildland Fires on Ground Level Ambient Ozone Levels in California. Atmosphere 2020, 11 (10) , 1131. https://doi.org/10.3390/atmos11101131
    42. Vanessa Selimovic, Robert J. Yokelson, Gavin R. McMeeking, Sarah Coefield. Aerosol Mass and Optical Properties, Smoke Influence on O 3 , and High NO 3 Production Rates in a Western U.S. City Impacted by Wildfires. Journal of Geophysical Research: Atmospheres 2020, 125 (16) https://doi.org/10.1029/2020JD032791
    43. Jesse Burkhardt, Jude Bayham, Ander Wilson, Jesse D. Berman, Katelyn O'Dell, Bonne Ford, Emily V. Fischer, Jeffrey R. Pierce. The relationship between monthly air pollution and violent crime across the United States. Journal of Environmental Economics and Policy 2020, 9 (2) , 188-205. https://doi.org/10.1080/21606544.2019.1630014
    44. Zhen He, Xin Zhang, Yunfeng Li, Xuefen Zhong, Hong Li, Rui Gao, Jinjuan Li. Characterizing carbonyl compounds and their sources in Fuzhou ambient air, southeast of China. PeerJ 2020, 8 , e10227. https://doi.org/10.7717/peerj.10227
    45. Jacob R. Pratt, Ryan W. Gan, Bonne Ford, Steven Brey, Jeffrey R. Pierce, Emily V. Fischer, Sheryl Magzamen. A national burden assessment of estimated pediatric asthma emergency department visits that may be attributed to elevated ozone levels associated with the presence of smoke. Environmental Monitoring and Assessment 2019, 191 (S2) https://doi.org/10.1007/s10661-019-7420-5
    46. Ettie M. Lipner, Katelyn O'Dell, Steven J. Brey, Bonne Ford, Jeffrey R. Pierce, Emily V. Fischer, James L. Crooks. The Associations Between Clinical Respiratory Outcomes and Ambient Wildfire Smoke Exposure Among Pediatric Asthma Patients at National Jewish Health, 2012–2015. GeoHealth 2019, 3 (6) , 146-159. https://doi.org/10.1029/2018GH000142
    47. Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Kanako Sekimoto, Bin Yuan, Jessica B. Gilman, David H. Hagan, Vanessa Selimovic, Kyle J. Zarzana, Steven S. Brown, James M. Roberts, Markus Müller, Robert Yokelson, Armin Wisthaler, Jordan E. Krechmer, Jose L. Jimenez, Christopher Cappa, Jesse H. Kroll, Joost de Gouw, Carsten Warneke. OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation. Atmospheric Chemistry and Physics 2019, 19 (23) , 14875-14899. https://doi.org/10.5194/acp-19-14875-2019
    48. Matthew Noestheden, Benjamin Noyovitz, Seamus Riordan-Short, Eric G. Dennis, Wesley F. Zandberg. Smoke from simulated forest fire alters secondary metabolites in Vitis vinifera L. berries and wine. Planta 2018, 248 (6) , 1537-1550. https://doi.org/10.1007/s00425-018-2994-7
    49. Steven J. Brey, Elizabeth A. Barnes, Jeffrey R. Pierce, Christine Wiedinmyer, Emily V. Fischer. Environmental Conditions, Ignition Type, and Air Quality Impacts of Wildfires in the Southeastern and Western United States. Earth's Future 2018, 6 (10) , 1442-1456. https://doi.org/10.1029/2018EF000972
    50. Alexandra E. Larsen, Brian J. Reich, Mark Ruminski, Ana G. Rappold. Impacts of fire smoke plumes on regional air quality, 2006–2013. Journal of Exposure Science & Environmental Epidemiology 2018, 28 (4) , 319-327. https://doi.org/10.1038/s41370-017-0013-x
    51. Gregory R. Wentworth, Yayne-abeba Aklilu, Matthew S. Landis, Yu-Mei Hsu. Impacts of a large boreal wildfire on ground level atmospheric concentrations of PAHs, VOCs and ozone. Atmospheric Environment 2018, 178 , 19-30. https://doi.org/10.1016/j.atmosenv.2018.01.013
    52. Kyle J. Zarzana, Vanessa Selimovic, Abigail R. Koss, Kanako Sekimoto, Matthew M. Coggon, Bin Yuan, William P. Dubé, Robert J. Yokelson, Carsten Warneke, Joost A. de Gouw, James M. Roberts, Steven S. Brown. Primary emissions of glyoxal and methylglyoxal from laboratory measurements of open biomass burning. Atmospheric Chemistry and Physics 2018, 18 (20) , 15451-15470. https://doi.org/10.5194/acp-18-15451-2018
    53. Steven J. Brey, Mark Ruminski, Samuel A. Atwood, Emily V. Fischer. Connecting smoke plumes to sources using Hazard Mapping System (HMS) smoke and fire location data over North America. Atmospheric Chemistry and Physics 2018, 18 (3) , 1745-1761. https://doi.org/10.5194/acp-18-1745-2018
    54. Emily V. Fischer, Liye Zhu, Vivienne H. Payne, John R. Worden, Zhe Jiang, Susan S. Kulawik, Steven Brey, Arsineh Hecobian, Daniel Gombos, Karen Cady-Pereira, Frank Flocke. Using TES retrievals to investigate PAN in North American biomass burning plumes. Atmospheric Chemistry and Physics 2018, 18 (8) , 5639-5653. https://doi.org/10.5194/acp-18-5639-2018
    55. Shawn P. Urbanski, Matt C. Reeves, Rachel E. Corley, Robin P. Silverstein, Wei Min Hao. Contiguous United States wildland fire emission estimates during 2003–2015. Earth System Science Data 2018, 10 (4) , 2241-2274. https://doi.org/10.5194/essd-10-2241-2018
    56. Honglian Gao, Daniel A. Jaffe. Comparison of ultraviolet absorbance and NO-chemiluminescence for ozone measurement in wildfire plumes at the Mount Bachelor Observatory. Atmospheric Environment 2017, 166 , 224-233. https://doi.org/10.1016/j.atmosenv.2017.07.007
    57. Xiaoxi Liu, L. Gregory Huey, Robert J. Yokelson, Vanessa Selimovic, Isobel J. Simpson, Markus Müller, Jose L. Jimenez, Pedro Campuzano‐Jost, Andreas J. Beyersdorf, Donald R. Blake, Zachary Butterfield, Yonghoon Choi, John D. Crounse, Douglas A. Day, Glenn S. Diskin, Manvendra K. Dubey, Edward Fortner, Thomas F. Hanisco, Weiwei Hu, Laura E. King, Lawrence Kleinman, Simone Meinardi, Tomas Mikoviny, Timothy B. Onasch, Brett B. Palm, Jeff Peischl, Ilana B. Pollack, Thomas B. Ryerson, Glen W. Sachse, Arthur J. Sedlacek, John E. Shilling, Stephen Springston, Jason M. St. Clair, David J. Tanner, Alexander P. Teng, Paul O. Wennberg, Armin Wisthaler, Glenn M. Wolfe. Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications. Journal of Geophysical Research: Atmospheres 2017, 122 (11) , 6108-6129. https://doi.org/10.1002/2016JD026315
    58. Jakob Lindaas, Delphine K. Farmer, Ilana B. Pollack, Andrew Abeleira, Frank Flocke, Rob Roscioli, Scott Herndon, Emily V. Fischer. Changes in ozone and precursors during two aged wildfire smoke events in the Colorado Front Range in summer 2015. Atmospheric Chemistry and Physics 2017, 17 (17) , 10691-10707. https://doi.org/10.5194/acp-17-10691-2017
    59. Xiao Lu, Lin Zhang, Xu Yue, Jiachen Zhang, Daniel A. Jaffe, Andreas Stohl, Yuanhong Zhao, Jingyuan Shao. Wildfire influences on the variability and trend of summer surface ozone in the mountainous western United States. Atmospheric Chemistry and Physics 2016, 16 (22) , 14687-14702. https://doi.org/10.5194/acp-16-14687-2016

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect