ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Use of Soft Electrodes in Capacitive Deionization of Solutions

View Author Information
Department of Applied Physics, School of Science, Campus Fuentenueva University of Granada, 18071 Granada, Spain
*Phone: +34958243209; fax: +34958243214; e-mail: [email protected]
Cite this: Environ. Sci. Technol. 2017, 51, 9, 5326–5333
Publication Date (Web):April 3, 2017
https://doi.org/10.1021/acs.est.6b06181
Copyright © 2017 American Chemical Society

    Article Views

    1372

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)

    Abstract

    Abstract Image

    All efforts to obtain, reuse or purify water are extremely significant for society. Recently, researchers have begun to delve in an idea born decades ago: the desalination of water using highly porous electrodes. It is based on a fundamental aspect of electrical double layers, namely, their huge capacitance. The ions of a solution can be partially removed under the application of an electric field when the solution fills the space between porous electrodes, either bare (CDI, or capacitive deionization), coated with ionic exchange membranes (MCDI) or chemically treated (inverted-CDI or i-CDI). One of the challenges of the last years was to explore new materials and arrangements to improve the efficiency of the system. In this work, we propose a new approach inspired in the electrokinetics of soft particles: a layer of polyelectrolyte (cationic on one electrode, anionic on the opposite one) coats the carbon electrodes, converting them in a sort of “soft” electrode pair. We present a theoretical model and a set of experiments showing how soft electrodes can be successfully employed in capacitive deionization.

    Cited By

    This article is cited by 38 publications.

    1. Qinghao Wu, Dawei Liang, Shanfu Lu, Jin Zhang, Haining Wang, Yan Xiang, Doron Aurbach. Novel Inorganic Integrated Membrane Electrodes for Membrane Capacitive Deionization. ACS Applied Materials & Interfaces 2021, 13 (39) , 46537-46548. https://doi.org/10.1021/acsami.1c10119
    2. Robert McNair, Gyorgy Szekely, Robert A. W. Dryfe. Ion-Exchange Materials for Membrane Capacitive Deionization. ACS ES&T Water 2021, 1 (2) , 217-239. https://doi.org/10.1021/acsestwater.0c00123
    3. Moon Son, Vineeth Pothanamkandathil, Wulin Yang, Johannes S. Vrouwenvelder, Christopher A. Gorski, Bruce E. Logan. Improving the Thermodynamic Energy Efficiency of Battery Electrode Deionization Using Flow-Through Electrodes. Environmental Science & Technology 2020, 54 (6) , 3628-3635. https://doi.org/10.1021/acs.est.9b06843
    4. Steven Hand, Jeremy S. Guest, Roland D. Cusick. Technoeconomic Analysis of Brackish Water Capacitive Deionization: Navigating Tradeoffs between Performance, Lifetime, and Material Costs. Environmental Science & Technology 2019, 53 (22) , 13353-13363. https://doi.org/10.1021/acs.est.9b04347
    5. Changyong Zhang, Lei Wu, Jinxing Ma, A. Ninh Pham, Min Wang, T. David Waite. Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination. Environmental Science & Technology 2019, 53 (22) , 13364-13373. https://doi.org/10.1021/acs.est.9b04436
    6. Sifani Zavahir, Igor Krupa, Sumaya A. AlMaadeed, Jan Tkac, Peter Kasak. Polyzwitterionic Hydrogels in Engines Based on the Antipolyelectrolyte Effect and Driven by the Salinity Gradient. Environmental Science & Technology 2019, 53 (15) , 9260-9268. https://doi.org/10.1021/acs.est.8b06377
    7. Li Wang, J. E. Dykstra, Shihong Lin. Energy Efficiency of Capacitive Deionization. Environmental Science & Technology 2019, 53 (7) , 3366-3378. https://doi.org/10.1021/acs.est.8b04858
    8. Amit Jain, Jun Kim, Oluwaseye M. Owoseni, Cierra Weathers, Daniel Caña, Kuichang Zuo, W. Shane Walker, Qilin Li, Rafael Verduzco. Aqueous-Processed, High-Capacity Electrodes for Membrane Capacitive Deionization. Environmental Science & Technology 2018, 52 (10) , 5859-5867. https://doi.org/10.1021/acs.est.7b05874
    9. Taeyoung Kim, Christopher A. Gorski, Bruce E. Logan. Low Energy Desalination Using Battery Electrode Deionization. Environmental Science & Technology Letters 2017, 4 (10) , 444-449. https://doi.org/10.1021/acs.estlett.7b00392
    10. Mahmoud M. Elewa, Mervette El Batouti, Nouf F. Al-Harby. A Comparison of Capacitive Deionization and Membrane Capacitive Deionization Using Novel Fabricated Ion Exchange Membranes. Materials 2023, 16 (13) , 4872. https://doi.org/10.3390/ma16134872
    11. Sergio Orozco-Barrera, Guillermo R. Iglesias, Ángel V. Delgado, Sergio García-Larios, Silvia Ahualli. Effects of layer-by-layer coating on activated carbon electrodes for capacitive deionization. Physical Chemistry Chemical Physics 2023, 25 (13) , 9482-9491. https://doi.org/10.1039/D2CP05682H
    12. Qinghao Wu, Dawei Liang, Shanfu Lu, Haining Wang, Yan Xiang, Doron Aurbach, Eran Avraham, Izaak Cohen. Advances and perspectives in integrated membrane capacitive deionization for water desalination. Desalination 2022, 542 , 116043. https://doi.org/10.1016/j.desal.2022.116043
    13. Robert McNair, Gyorgy Szekely, Robert A.W. Dryfe. Sustainable processing of electrodes for membrane capacitive deionization (MCDI). Journal of Cleaner Production 2022, 342 , 130922. https://doi.org/10.1016/j.jclepro.2022.130922
    14. Amina Amarray, Sanae El Ghachtouli, Youssef Samih, Mouad Dahbi, Mohammed Azzi. Enhancement of Cd(II) electrosorption using electrosorption process with manganese oxide nanomaterial electrodeposited. Desalination 2022, 521 , 115307. https://doi.org/10.1016/j.desal.2021.115307
    15. Huan Jiang, Jing Zhang, Kunyue Luo, Wenle Xing, Jiaxin Du, Yi Dong, Xiaoting Li, Wangwang Tang. Effective fluoride removal from brackish groundwaters by flow-electrode capacitive deionization (FCDI) under a continuous-flow mode. Science of The Total Environment 2022, 804 , 150166. https://doi.org/10.1016/j.scitotenv.2021.150166
    16. Anjali Cheeramthodi Padmanabhan, Dong Suk Han, Sifani Zavahir, Jan Tkac, Peter Kasak. Tandem Osmotic Engine Based on Hydrogel Particles with Antipolyelectrolyte and Polyelectrolyte Effect Fuelled by Both Salinity Gradient Modes. Gels 2021, 7 (4) , 232. https://doi.org/10.3390/gels7040232
    17. Ding Lu, Chunjian Xu, Yan Wang, Wangfeng Cai. Mechanistic study on pH-related behavior in rocking-chair capacitive deionization. Desalination 2021, 510 , 115090. https://doi.org/10.1016/j.desal.2021.115090
    18. S. Ahualli, M. L. Jiménez, Z. Amador, M. M. Fernández, G. R. Iglesias, A. V. Delgado. Energy production by salinity exchange in polyelectrolyte-coated electrodes. Temperature effects. Sustainable Energy & Fuels 2021, 5 (13) , 3321-3329. https://doi.org/10.1039/D1SE00224D
    19. Chun-Miao Zhang, Jing Guan, Lin-Na Liu, Zhang-Hong Wan, Shu-Guang Wang, Xue-Fei Sun. Impact of molecular size and electrical polarity on fouling of capacitive electrodes during water desalination. Desalination 2021, 500 , 114846. https://doi.org/10.1016/j.desal.2020.114846
    20. Yazeed Algurainy, Douglas F. Call. Asymmetrical removal of sodium and chloride in flow-through capacitive deionization. Water Research 2020, 183 , 116044. https://doi.org/10.1016/j.watres.2020.116044
    21. Pattarachai Srimuk, Xiao Su, Jeyong Yoon, Doron Aurbach, Volker Presser. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nature Reviews Materials 2020, 5 (7) , 517-538. https://doi.org/10.1038/s41578-020-0193-1
    22. Xiong Yang, Qichuan Peng, Lihu Liu, Wenfeng Tan, Guohong Qiu, Chengshuai Liu, Zhi Dang. Synergistic adsorption of Cd(II) and As(V) on birnessite under electrochemical control. Chemosphere 2020, 247 , 125822. https://doi.org/10.1016/j.chemosphere.2020.125822
    23. Wenle Xing, Jie Liang, Wangwang Tang, Di He, Ming Yan, Xiangxi Wang, Yuan Luo, Ning Tang, Mei Huang. Versatile applications of capacitive deionization (CDI)-based technologies. Desalination 2020, 482 , 114390. https://doi.org/10.1016/j.desal.2020.114390
    24. Milene Adriane Luciano, Hélio Ribeiro, Gisele Eva Bruch, Glaura Goulart Silva. Efficiency of capacitive deionization using carbon materials based electrodes for water desalination. Journal of Electroanalytical Chemistry 2020, 859 , 113840. https://doi.org/10.1016/j.jelechem.2020.113840
    25. A.V. Delgado, M.L. Jiménez, G.R. Iglesias, S. Ahualli. Electrical double layers as ion reservoirs: applications to the deionization of solutions. Current Opinion in Colloid & Interface Science 2019, 44 , 72-84. https://doi.org/10.1016/j.cocis.2019.09.003
    26. Silvia Ahualli, Sergio Orozco-Barrera, María del Mar Fernández, Ángel V. Delgado, Guillermo R. Iglesias. Assembly of Soft Electrodes and Ion Exchange Membranes for Capacitive Deionization. Polymers 2019, 11 (10) , 1556. https://doi.org/10.3390/polym11101556
    27. Omari Sufiani, Joyce Elisadiki, Revocatus L. Machunda, Yusufu A.C. Jande. Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications. Journal of Electroanalytical Chemistry 2019, 848 , 113328. https://doi.org/10.1016/j.jelechem.2019.113328
    28. Su Xu, TsingHai Wang, Chu-Fang Wang, Chiu-Wen Chen, Cheng-Di Dong, C.P. Huang. The effect of crystal phase of manganese oxide on the capacitive deionization of simple electrolytes. Science of The Total Environment 2019, 675 , 31-40. https://doi.org/10.1016/j.scitotenv.2019.04.172
    29. Li Wang, Shihong Lin. Theoretical framework for designing a desalination plant based on membrane capacitive deionization. Water Research 2019, 158 , 359-369. https://doi.org/10.1016/j.watres.2019.03.076
    30. G. R. Iglesias, S. Ahualli, M. M. Fernández, M. L. Jiménez, A. V. Delgado. Soft electrodes in water desalination: application to multi-valent ions. Environmental Science: Water Research & Technology 2019, 5 (5) , 873-883. https://doi.org/10.1039/C9EW00049F
    31. Akash P. Bhat, Erik R. Reale, Martina del Cerro, Kyle C. Smith, Roland D. Cusick. Reducing impedance to ionic flux in capacitive deionization with Bi-tortuous activated carbon electrodes coated with asymmetrically charged polyelectrolytes. Water Research X 2019, 3 , 100027. https://doi.org/10.1016/j.wroa.2019.100027
    32. Wangwang Tang, Jie Liang, Di He, Jilai Gong, Lin Tang, Zhifeng Liu, Dongbo Wang, Guangming Zeng. Various cell architectures of capacitive deionization: Recent advances and future trends. Water Research 2019, 150 , 225-251. https://doi.org/10.1016/j.watres.2018.11.064
    33. Wei Jin, Meiqing Hu. High-Performance Capacitive Deionization of Copper Ions at Nanoporous ZnS-Decorated Carbon Felt. Journal of The Electrochemical Society 2019, 166 (2) , E29-E34. https://doi.org/10.1149/2.1061902jes
    34. Martin Kim, Martina del Cerro, Steven Hand, Roland D. Cusick. Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders. Water Research 2019, 148 , 388-397. https://doi.org/10.1016/j.watres.2018.10.044
    35. Xiao Su, Akihiro Kushima, Cameron Halliday, Jian Zhou, Ju Li, T. Alan Hatton. Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-07159-0
    36. Tingting Yan, Juan Liu, Hong Lei, Liyi Shi, Zhongxun An, Ho Seok Park, Dengsong Zhang. Capacitive deionization of saline water using sandwich-like nitrogen-doped graphene composites via a self-assembling strategy. Environmental Science: Nano 2018, 5 (11) , 2722-2730. https://doi.org/10.1039/C8EN00629F
    37. Silvia Ahualli, Guillermo R. Iglesias, Ángel V. Delgado. Principles and Theoretical Models of CDI: Experimental Approaches. 2018, 169-192. https://doi.org/10.1016/B978-0-12-811370-7.00008-5
    38. Silvia Ahualli, Ángel V. Delgado. Future and Perspectives of the Capacitive Techniques. 2018, 195-202. https://doi.org/10.1016/B978-0-12-811370-7.00009-7

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect