ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Stressor Exposures Determine Risk: So, Why Do Fellow Scientists Continue To Focus on Superficial Microplastics Risk?

View Author Information
University of Michigan, Ann Arbor, Michigan 48109, United States
Cite this: Environ. Sci. Technol. 2017, 51, 23, 13515–13516
Publication Date (Web):November 17, 2017
https://doi.org/10.1021/acs.est.7b05463
Copyright © 2017 American Chemical Society
  • Free to Read

Article Views

10580

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (670 KB)

A couple of years ago, I tried to publish an Op-Ed challenging the perceived environmental threat of microplastics in the New York Times, Washington Post, LA Times, Chicago Times, and Wall Street Journal—but these respected news outlets rejected my submission. Subsequently, I published a Letter to the Editor in the journal Integrated Environmental Assessment & Management. (1) This did little to change the concern expressed here.

The focus on my opinion article was the concern that the environmental risk from microplastics (more specifically, microbeads) was overstated. As an environmental toxicologist and risk assessor, I knew low microplastic exposure concentrations dictated there could be no risk. Thankfully, others are now beginning to join this chorus. (2-9)

Even when scientific knowledge was in its infancy, Paracelsus stated in ∼500 AD a currently held, toxicological truth: All things are poisons at the right dose. My concern that microplastics in marine and freshwater ecosystems aquatic environment are not a risk due to LOW concentrations (i.e., low exposures) is slowly being realized and certainly applies to other contaminants of emerging concern. Recently, an Environmental Science & Technology Viewpoint article by Weltje and Sumpter (10) challenged scientists to better define environmentally relevant concentrations as all too often this term is loosely used.

Numerous authors and organizations have called for standardized methods for collecting, quantifying, and characterizing microplastics. (3, 11, 12) A plethora of methods exist for each of these three critical components of environmental assessments, each with their own strengths and limitations, but no one is sufficient. High numbers of false positive and false negatives have been identified, depending on the methods used, which makes it impossible to compare microplastic studies that may be overestimating or under-estimating exposures. (2, 11, 12) Nevertheless, the great majority of studies are stating the highest concentrations typically found are in the range of less than 1 to 10s of particles per meter squared (i.e., 1000 L). (2, 3, 7, 8, 13, 14) These concentrations are several orders of magnitude lower than virtually all laboratory studies and organisms feeding on this sized range will find orders of magnitude more plankton available for ingesting. Also, many of the studies measure concentrations based on mass (e.g., mg/L) or surface area (number/km2), and these units add large uncertainty to actual organism exposures to these diverse particles. (3)

As Editor-in-Chief of one of the premier journals for environmental toxicology, I find the continuing publication of microplastics studies stating a severe environmental threat, in high quality journals disturbing. These studies are rapidly picked up by the news media, as we have seen and serve to misinform the public and policy makers, as noted by others. (6, 15)

Are reviewers and Associate Editors for our highest quality journals simply unaware of what constitutes hazard and risk and how exposure is the most important part of the equation? Since scientists should be nonbiased, how can this be happening? Is the penchant for visibility, pressure to publish, inability to publish negative results, funding, and sensationalism overtaken this science? This seems unethical.

In the Environmental Science & Technology Feature by Koelmans et al., (6) they present a comprehensive coverage of these issues and propose and simple and eloquent path forward.

In my opinion, this trend of reporting has adversely influenced policy making (e.g., the banning of microbeads—one of the lesser components of microplastics and clearly not an environmental threat). The dominant component of microplastics characterized to date are not microbeads, rather polyester fibers or fragments (depending on which study cited), which are also below concentrations causing adverse effects. Nevertheless, there is no call by environmental advocates to ban polyester clothing or to ban all plastics which eventually will disintegrate to fragments. Colleagues in the industries affected by this ban have said privately at international scientific conferences it is a battle their respective companies have chosen not to fight. Well, that is wonderful, fewer microbeads being discharged—but if there was no adverse exposure to begin with—why care?

In addition, there are likely much higher exposures from “nanoplastics/nanoparticles” (less than the lowest size of 100 μm often measured for microplastics), but few have attempted to study this small size because of methodological challenges. Perhaps these ultrasmall particles are an environmental risk–but we do not know. Recent papers, suggest they share many traits of nanosize carbon and metal compounds and quickly aggregate in the environment. Much is to be learned from previous nanomaterial research. (16, 17)

The process of determining microplastics risk should be an analysis of true risk (realistic exposure relationships to adverse effects). It should be documented in the field. (3, 6, 18) Much greater and pervasive ecosystem risks often occur where microplastics are at their highest concentrations (18) and are well-documented and rampant globally; including excess nutrients, low dissolved oxygen, solids from erosion, pathogens, altered flows, degraded habitats, temperature, and loss of shading. These common and major stressors should first be dealt with by regulators and environmental advocacy groups before focusing on the minor and questionable threats.

Author Information

ARTICLE SECTIONS
Jump To

    • Author
    • Notes
      Disclaimer: The author received no funding from the plastics or any microparticles organization.
      The author declares no competing financial interest.

    References

    ARTICLE SECTIONS
    Jump To

    This article references 18 other publications.

    1. 1
      Burton, G. A., Jr. Losing sight of science in the regulatory push to ban microbeads from consumer products and industrial use Integr. Environ. Assess. Manage. 2015, 11 (3) 346 347 DOI: 10.1002/ieam.1645
    2. 2
      Cable, R. N.; Beletsky, D.; Beletsky, R.; Wigginton, K.; Locke, B. W.; Duhaime, M. B. Distribution and modeled transport of plastic pollution in the Great Lakes, the world’s largest freshwater resource Front Environ. Sci. 2017,  DOI: 10.3389/fenvs.2017.00045
    3. 3
      Connors, K. A.; Dyer, S. D.; Belanger, S. E. Advancing the quality of environmental microplastic research Environ. Toxicol. Chem. 2017, 36, 1697 1703 DOI: 10.1002/etc.3829
    4. 4
      Galloway, T.; Cole, M.; Lewis, C. Interactions of microplastic debris throughout the marine ecosystem Nat. Ecol. Evol. 2017, 1, 0116 DOI: 10.1038/s41559-017-0116
    5. 5
      Koelmans, A. A.; Bakir, A.; Burton, G. A.; Janssen, C. R. Microplastic as a vector for chemicals in the aquatic environt: Critical review and model-supported reinterpretation of empirical studies Environ. Sci. Technol. 2016, 50, 3315 3326 DOI: 10.1021/acs.est.5b06069
    6. 6
      Koelmans, A. A.; Besseling, E.; Foekema, E.; Kooi, M.; Mintenig, S.; Ossendorp, B. C.; Redondo-Hasselerharm, P. E.; Verschoor, A.; van Wezel, A. P.; Scheffer, M. Risks of plastic debris: Unravelling fact, opinion, perception, and belief Environ. Sci. Technol. 2017, 51, 11513 11519 DOI: 10.1021/acs.est.7b02219
    7. 7
      Lenz, R.; Enders, K.; Nielsen, T. G. Microplastic exposure studies should be environmentally realistic Proc. Natl. Acad. Sci. U. S. A. 2016, 113, E4121 E4122 DOI: 10.1073/pnas.1606615113
    8. 8
      Tang, B. L. Commentary: Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure Front. Environ. Sci. 2017,  DOI: 10.3389/fenvs.2017.00063
    9. 9
      Van Cauwenberghe, L.; Devriese, L.; Galgani, F.; Robbens, J.; Janssen, C. R. Microplastics in sediments: A review of techniques, occurrence and effects Mar. Environ. Res. 2015, 111, 5 17 DOI: 10.1016/j.marenvres.2015.06.007
    10. 10
      Weltje, L.; Sumpter, J. P. What makes a concentration environmentally relevant? Critique and a Proposal Environ. Sci. Technol. 2017, 51, 11520 11521 DOI: 10.1021/acs.est.7b04673
    11. 11
      Hidalgo-Ruz, V.; Gutow, L.; Thompson, R. C.; Thiel, M. Microplastics in the marine environment: A review of the metehods used for identification and quantification Environ. Sci. Technol. 2012, 46, 3060 3075 DOI: 10.1021/es2031505
    12. 12
      Vandermeersch, G.; Van Cauwenberghe, L.; Janssen, C. R.; Marques, A.; Granby, K.; Fait, G.; Kotterman, M.; Diogene, J.; Bekaert, K.; Robbens, J.; Devriese, L. A critical view on microplastic quantification in aquatic organisms Environ. Res. 2015, 143, 46 55 DOI: 10.1016/j.envres.2015.07.016
    13. 13
      Baldwin, A. K.; Corsi, S. R.; Mason, S. A. Plastic Debris in 29 Great Lakes Tributaries: Relations to Watershed Attributes and Hydrology Environ. Sci. Technol. 2016, 50, 10377 10385 DOI: 10.1021/acs.est.6b02917
    14. 14
      Beer, S.; Garm, A.; Huwer, B.; Dierking, J.; Nielsen, T. G. No increase in marine microplastic concentration over the last three decades—A case study from the Baltic Sea Sci. Total Environ. 2017,  DOI: 10.1016/j.scitotenv.2017.10.101
    15. 15
      McDevitt, J. P.; Criddle, C. S.; Morse, M.; Hale, R. C.; Bott, C. B.; Rochman, C. M. Addressing the issue of microplastics int he Wake of the Microbead-Free Water Act – A new standard can facilitate improved policy Environ. Sci. Technol. 2017, 51, 6611 6617 DOI: 10.1021/acs.est.6b05812
    16. 16
      Huffer, T.; Praetorius, A.; Wagner, S.; von der Kammer, F.; Hofmann, T. Microplastic exposure assessment in aquatic environmewnts: Learning from similarities and differences to engineered nanparticles Environ. Sci. Technol. 2017, 51, 2499 2507 DOI: 10.1021/acs.est.6b04054
    17. 17
      Syberg, K.; Khan, F. R.; Selck, H.; Palmqvist, A.; Banta, G. T.; Daley, J.; Sano, L.; Duhaime, M. B. Microplastics: Addressing ecological risk through lessons learned Environ. Toxicol. Chem. 2015, 34, 945 953 DOI: 10.1002/etc.2914
    18. 18
      Sedlak, D. Three lessons for the microplastics voyage Environ. Sci. Technol. 2017, 51, 7747 7748 DOI: 10.1021/acs.est.7b03340

    Cited By

    This article is cited by 81 publications.

    1. Natalia P. Ivleva. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chemical Reviews 2021, 121 (19) , 11886-11936. https://doi.org/10.1021/acs.chemrev.1c00178
    2. Austine Ofondu Chinomso Iroegbu, Suprakas Sinha Ray, Vuyelwa Mbarane, João Carlos Bordado, José Paulo Sardinha. Plastic Pollution: A Perspective on Matters Arising: Challenges and Opportunities. ACS Omega 2021, 6 (30) , 19343-19355. https://doi.org/10.1021/acsomega.1c02760
    3. Shelie A. Miller. Five Misperceptions Surrounding the Environmental Impacts of Single-Use Plastic. Environmental Science & Technology 2020, 54 (22) , 14143-14151. https://doi.org/10.1021/acs.est.0c05295
    4. Delphine Kawecki, Bernd Nowack. Polymer-Specific Modeling of the Environmental Emissions of Seven Commodity Plastics As Macro- and Microplastics. Environmental Science & Technology 2019, 53 (16) , 9664-9676. https://doi.org/10.1021/acs.est.9b02900
    5. Jinfeng Ding, Fenghua Jiang, Jingxi Li, Zongxing Wang, Chengjun Sun, Zhangyi Wang, Liang Fu, Neal Xiangyu Ding, Changfei He. Microplastics in the Coral Reef Systems from Xisha Islands of South China Sea. Environmental Science & Technology 2019, 53 (14) , 8036-8046. https://doi.org/10.1021/acs.est.9b01452
    6. Jin Liu, Tong Zhang, Lili Tian, Xinlei Liu, Zhichong Qi, Yini Ma, Rong Ji, Wei Chen. Aging Significantly Affects Mobility and Contaminant-Mobilizing Ability of Nanoplastics in Saturated Loamy Sand. Environmental Science & Technology 2019, 53 (10) , 5805-5815. https://doi.org/10.1021/acs.est.9b00787
    7. Farhan R. Khan. Ecotoxicology in the Anthropocene: Are We Listening to Nature’s Scream?. Environmental Science & Technology 2018, 52 (18) , 10227-10229. https://doi.org/10.1021/acs.est.8b04534
    8. Johanna Kramm, Carolin Völker, Martin Wagner. Superficial or Substantial: Why Care about Microplastics in the Anthropocene?. Environmental Science & Technology 2018, 52 (6) , 3336-3337. https://doi.org/10.1021/acs.est.8b00790
    9. Alexander S. Tagg, Matthias Labrenz. Closing Microplastic Pathways Before They Open: A Model Approach. Environmental Science & Technology 2018, 52 (6) , 3340-3341. https://doi.org/10.1021/acs.est.8b00961
    10. Jin Liu, Yini Ma, Dongqiang Zhu, Tianjiao Xia, Yu Qi, Yao Yao, Xiaoran Guo, Rong Ji, Wei Chen. Polystyrene Nanoplastics-Enhanced Contaminant Transport: Role of Irreversible Adsorption in Glassy Polymeric Domain. Environmental Science & Technology 2018, 52 (5) , 2677-2685. https://doi.org/10.1021/acs.est.7b05211
    11. Robert C. Hale . Are the Risks from Microplastics Truly Trivial?. Environmental Science & Technology 2018, 52 (3) , 931-931. https://doi.org/10.1021/acs.est.7b06615
    12. Maria Bille Nielsen, Lauge Peter Westergaard Clausen, Richard Cronin, Steffen Foss Hansen, Nikoline Garner Oturai, Kristian Syberg. Unfolding the science behind policy initiatives targeting plastic pollution. Microplastics and Nanoplastics 2023, 3 (1) https://doi.org/10.1186/s43591-022-00046-y
    13. Catherine Tobin, Juanita Urban-Rich, Christopher Larosee, Georgia Mavrommati. The importance of discourse when discussing microplastic pollution with oyster stakeholders in Massachusetts, USA. Ambio 2023, 52 (9) , 1488-1504. https://doi.org/10.1007/s13280-023-01870-z
    14. Jin Chen, Caiyi Guo, Yang Xuan, Tengda Ding. Analysis and toxicity of microplastics in organisms and humans originated from aquatic environment. TrAC Trends in Analytical Chemistry 2023, 3 , 117293. https://doi.org/10.1016/j.trac.2023.117293
    15. Xu Zhou, Cunde Xiao, Xueying Li, Tao Chen, Xiaofan Yang. Microplastics in coastal blue carbon ecosystems: A global Meta-analysis of its distribution, driving mechanisms, and potential risks. Science of The Total Environment 2023, 878 , 163048. https://doi.org/10.1016/j.scitotenv.2023.163048
    16. Sirui Huang, Ruitong Jiang, Nicholas J. Craig, Hua Deng, Wenhui He, Juan-Ying Li, Lei Su. Accumulation and re-distribution of microplastics via aquatic plants and macroalgae - A review of field studies. Marine Environmental Research 2023, 187 , 105951. https://doi.org/10.1016/j.marenvres.2023.105951
    17. Qiang Zhang, Wenjie Ma, Jingmin Zhu. Combined Toxicities of Di-Butyl Phthalate and Polyethylene Terephthalate to Zebrafish Embryos. Toxics 2023, 11 (5) , 469. https://doi.org/10.3390/toxics11050469
    18. Sichen Gao, Gordon Huang, Peng Zhang, Xiaying Xin, Jianan Yin, Dengcheng Han, Tangnyu Song, Scott Rosendahl, Stuart Read. Rethinking the effects of micro/nanoplastics from the global environmental change and systematic perspective: An aquatic environmental system-based comprehensive assessment approach of micro/nanoplastic impacts. Journal of Hazardous Materials 2023, 6 , 131695. https://doi.org/10.1016/j.jhazmat.2023.131695
    19. Anne Gammelgaard Ballantyne, Jean-Paul de Cros Péronard. Can Communication Theory Advance Research When Environmental Issues Become Wicked? The Case of Microplastics. Science Communication 2023, 45 (2) , 267-276. https://doi.org/10.1177/10755470221138271
    20. Aaron J. Beck, Mikael Kaandorp, Thea Hamm, Boie Bogner, Elke Kossel, Mark Lenz, Matthias Haeckel, Eric P. Achterberg. Rapid shipboard measurement of net-collected marine microplastic polymer types using near-infrared hyperspectral imaging. Analytical and Bioanalytical Chemistry 2023, 62 https://doi.org/10.1007/s00216-023-04634-6
    21. Katherine K. Porterfield, Sarah A. Hobson, Deborah A. Neher, Meredith T. Niles, Eric D. Roy. Microplastics in composts, digestates, and food wastes: A review. Journal of Environmental Quality 2023, 52 (2) , 225-240. https://doi.org/10.1002/jeq2.20450
    22. Philip J. Landrigan, Hervé Raps, Maureen Cropper, Caroline Bald, Manuel Brunner, Elvia Maya Canonizado, Dominic Charles, Thomas C. Chiles, Mary J. Donohue, Judith Enck, Patrick Fenichel, Lora E. Fleming, Christine Ferrier-Pages, Richard Fordham, Aleksandra Gozt, Carly Griffin, Mark E. Hahn, Budi Haryanto, Richard Hixson, Hannah Ianelli, Bryan D. James, Pushpam Kumar, Amalia Laborde, Kara Lavender Law, Keith Martin, Jenna Mu, Yannick Mulders, Adetoun Mustapha, Jia Niu, Sabine Pahl, Yongjoon Park, Maria-Luiza Pedrotti, Jordan Avery Pitt, Mathuros Ruchirawat, Bhedita Jaya Seewoo, Margaret Spring, John J. Stegeman, William Suk, Christos Symeonides, Hideshige Takada, Richard C. Thompson, Andrea Vicini, Zhanyun Wang, Ella Whitman, David Wirth, Megan Wolff, Aroub K. Yousuf, Sarah Dunlop. The Minderoo-Monaco Commission on Plastics and Human Health. Annals of Global Health 2023, 89 (1) , 23. https://doi.org/10.5334/aogh.4056
    23. Shelie A. Miller. The capabilities and deficiencies of life cycle assessment to address the plastic problem. Frontiers in Sustainability 2022, 3 https://doi.org/10.3389/frsus.2022.1007060
    24. M. della Valle, G. D'Abrosca, M. T. Gentile, L. Russo, C. Isernia, S. Di Gaetano, R. Avolio, R. Castaldo, M. Cocca, G. Gentile, G. Malgieri, M. E. Errico, R. Fattorusso. Polystyrene nanoplastics affect the human ubiquitin structure and ubiquitination in cells: a high-resolution study. Chemical Science 2022, 13 (45) , 13563-13573. https://doi.org/10.1039/D2SC04434J
    25. Pengfei Wu, Siyi Lin, Guodong Cao, Jiabin Wu, Hangbiao Jin, Chen Wang, Ming Hung Wong, Zhu Yang, Zongwei Cai. Absorption, distribution, metabolism, excretion and toxicity of microplastics in the human body and health implications. Journal of Hazardous Materials 2022, 437 , 129361. https://doi.org/10.1016/j.jhazmat.2022.129361
    26. Guilherme Malafaia. Introduction to the special collection “Microplastic dragons live among us”. Science of The Total Environment 2022, 830 , 155557. https://doi.org/10.1016/j.scitotenv.2022.155557
    27. Kofi O. Renner, Helen A. Foster, Edwin J. Routledge, Mark D. Scrimshaw. A Comparison of Different Approaches for Characterizing Microplastics in Selected Personal Care Products. Environmental Toxicology and Chemistry 2022, 41 (4) , 880-887. https://doi.org/10.1002/etc.5057
    28. Jie Yin, Juan-Ying Li, Nicholas J. Craig, Lei Su. Microplastic pollution in wild populations of decapod crustaceans: A review. Chemosphere 2022, 291 , 132985. https://doi.org/10.1016/j.chemosphere.2021.132985
    29. Johanna Kramm, Stefanie Steinhoff, Simon Werschmöller, Beate Völker, Carolin Völker. Explaining risk perception of microplastics: Results from a representative survey in Germany. Global Environmental Change 2022, 73 , 102485. https://doi.org/10.1016/j.gloenvcha.2022.102485
    30. Puspa L. Adhikari, Wokil Bam, Pamela L. Campbell, Francois Oberhaensli, Marc Metian, Marc Besson, Hugo Jacob, Peter W. Swarzenski. Evaluating Microplastic Experimental Design and Exposure Studies in Aquatic Organisms. 2022, 69-85. https://doi.org/10.1007/978-3-030-78627-4_3
    31. Martin Wagner. Solutions to Plastic Pollution: A Conceptual Framework to Tackle a Wicked Problem. 2022, 333-352. https://doi.org/10.1007/978-3-030-78627-4_11
    32. Atsuhiko Isobe, Takafumi Azuma, Muhammad Reza Cordova, Andrés Cózar, Francois Galgani, Ryuichi Hagita, La Daana Kanhai, Keiri Imai, Shinsuke Iwasaki, Shin’ichro Kako, Nikolai Kozlovskii, Amy L. Lusher, Sherri A. Mason, Yutaka Michida, Takahisa Mituhasi, Yasuhiro Morii, Tohru Mukai, Anna Popova, Kenichi Shimizu, Tadashi Tokai, Keiichi Uchida, Mitsuharu Yagi, Weiwei Zhang. A multilevel dataset of microplastic abundance in the world’s upper ocean and the Laurentian Great Lakes. Microplastics and Nanoplastics 2021, 1 (1) https://doi.org/10.1186/s43591-021-00013-z
    33. Christina J. Thiele, Malcolm D. Hudson. Uncertainty about the risks associated with microplastics among lay and topic-experienced respondents. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-86569-5
    34. Emily E. Burns, Iain A. Davies. Coral Ecotoxicological Data Evaluation for the Environmental Safety Assessment of Ultraviolet Filters. Environmental Toxicology and Chemistry 2021, 40 (12) , 3441-3464. https://doi.org/10.1002/etc.5229
    35. Didier L. Baho, Mirco Bundschuh, Martyn N. Futter. Microplastics in terrestrial ecosystems: Moving beyond the state of the art to minimize the risk of ecological surprise. Global Change Biology 2021, 27 (17) , 3969-3986. https://doi.org/10.1111/gcb.15724
    36. Anne Gammelgaard Ballantyne, Jean-Paul de Cros Péronard, Rune Aa. Hansen, Allan Gross. Media Issue Crystallization: The Case of Microplastic in Denmark. Environmental Communication 2021, 15 (5) , 610-624. https://doi.org/10.1080/17524032.2021.1877761
    37. Joana C. Prata, João P. da Costa, Isabel Lopes, Anthony L. Andrady, Armando C. Duarte, Teresa Rocha-Santos. A One Health perspective of the impacts of microplastics on animal, human and environmental health. Science of The Total Environment 2021, 777 , 146094. https://doi.org/10.1016/j.scitotenv.2021.146094
    38. Ana I. Catarino, Johanna Kramm, Carolin Völker, Theodore B. Henry, Gert Everaert. Risk posed by microplastics: Scientific evidence and public perception. Current Opinion in Green and Sustainable Chemistry 2021, 29 , 100467. https://doi.org/10.1016/j.cogsc.2021.100467
    39. Junyu Wang, Xiaoli Zhao, Fengchang Wu, Lin Niu, Zhi Tang, Weigang Liang, Tianhui Zhao, Mengyuan Fang, Hongzhan Wang, Xiaolei Wang. Characterization, occurrence, environmental behaviors, and risks of nanoplastics in the aquatic environment: Current status and future perspectives. Fundamental Research 2021, 1 (3) , 317-328. https://doi.org/10.1016/j.fmre.2021.05.001
    40. Oldamur Hollóczki. Evidence for protein misfolding in the presence of nanoplastics. International Journal of Quantum Chemistry 2021, 121 (3) https://doi.org/10.1002/qua.26372
    41. Andrew Barrick, Olivier Champeau, Amélie Chatel, Nicolas Manier, Grant Northcott, Louis A. Tremblay. Plastic additives: challenges in ecotox hazard assessment. PeerJ 2021, 9 , e11300. https://doi.org/10.7717/peerj.11300
    42. Ying Zhang, Shengyan Pu, Xue Lv, Ya Gao, Long Ge. Global trends and prospects in microplastics research: A bibliometric analysis. Journal of Hazardous Materials 2020, 400 , 123110. https://doi.org/10.1016/j.jhazmat.2020.123110
    43. Yujie Zhou, Junxiao Wang, Mengmeng Zou, Zhenyi Jia, Shenglu Zhou, Yan Li. Microplastics in soils: A review of methods, occurrence, fate, transport, ecological and environmental risks. Science of The Total Environment 2020, 748 , 141368. https://doi.org/10.1016/j.scitotenv.2020.141368
    44. Gurusamy Kutralam-Muniasamy, Fermín Pérez-Guevara, I. Elizalde-Martínez, V.C. Shruti. An overview of recent advances in micro/nano beads and microfibers research: Critical assessment and promoting the less known. Science of The Total Environment 2020, 740 , 139991. https://doi.org/10.1016/j.scitotenv.2020.139991
    45. Jun-Nan Huang, Bin Wen, Jian-Guo Zhu, Yan-Shen Zhang, Jian-Zhong Gao, Zai-Zhong Chen. Exposure to microplastics impairs digestive performance, stimulates immune response and induces microbiota dysbiosis in the gut of juvenile guppy (Poecilia reticulata). Science of The Total Environment 2020, 733 , 138929. https://doi.org/10.1016/j.scitotenv.2020.138929
    46. Mark L. Hanson, Richard A. Brain. Context and Perspective in Ecotoxicology. Environmental Toxicology and Chemistry 2020, 39 (9) , 1655-1655. https://doi.org/10.1002/etc.4826
    47. Amy E. Valine, Ashley E. Peterson, Dorothy A. Horn, Kaegan M. Scully‐Engelmeyer, Elise F. Granek. Microplastic Prevalence in 4 Oregon Rivers Along a Rural to Urban Gradient Applying a Cost‐Effective Validation Technique. Environmental Toxicology and Chemistry 2020, 39 (8) , 1590-1598. https://doi.org/10.1002/etc.4755
    48. Hui Ma, Shengyan Pu, Shibin Liu, Yingchen Bai, Sandip Mandal, Baoshan Xing. Microplastics in aquatic environments: Toxicity to trigger ecological consequences. Environmental Pollution 2020, 261 , 114089. https://doi.org/10.1016/j.envpol.2020.114089
    49. Prasun Goswami, Nambali Valsalan Vinithkumar, Gopal Dharani. First evidence of microplastics bioaccumulation by marine organisms in the Port Blair Bay, Andaman Islands. Marine Pollution Bulletin 2020, 155 , 111163. https://doi.org/10.1016/j.marpolbul.2020.111163
    50. Omoniyi Pereao, Beatrice Opeolu, Olalekan Fatoki. Microplastics in aquatic environment: characterization, ecotoxicological effect, implications for ecosystems and developments in South Africa. Environmental Science and Pollution Research 2020, 27 (18) , 22271-22291. https://doi.org/10.1007/s11356-020-08688-2
    51. Carolin Völker, Johanna Kramm, Martin Wagner. On the Creation of Risk: Framing of Microplastics Risks in Science and Media. Global Challenges 2020, 4 (6) https://doi.org/10.1002/gch2.201900010
    52. Thomas Backhaus, Martin Wagner. Microplastics in the Environment: Much Ado about Nothing? A Debate. Global Challenges 2020, 4 (6) https://doi.org/10.1002/gch2.201900022
    53. Garrath T. Wilson, Tracy Bhamra. Design for Sustainability: The Need for a New Agenda. Sustainability 2020, 12 (9) , 3615. https://doi.org/10.3390/su12093615
    54. Kryss Waldschläger, Simone Lechthaler, Georg Stauch, Holger Schüttrumpf. The way of microplastic through the environment – Application of the source-pathway-receptor model (review). Science of The Total Environment 2020, 713 , 136584. https://doi.org/10.1016/j.scitotenv.2020.136584
    55. Christian Scherer, Raoul Wolf, Johannes Völker, Friederike Stock, Nicole Brennhold, Georg Reifferscheid, Martin Wagner. Toxicity of microplastics and natural particles in the freshwater dipteran Chironomus riparius: Same same but different?. Science of The Total Environment 2020, 711 , 134604. https://doi.org/10.1016/j.scitotenv.2019.134604
    56. Oldamur Hollóczki, Sascha Gehrke. Can Nanoplastics Alter Cell Membranes?. ChemPhysChem 2020, 21 (1) , 9-12. https://doi.org/10.1002/cphc.201900481
    57. Lei Su, Simon M. Sharp, Vincent J. Pettigrove, Nicholas J. Craig, Bingxu Nan, Fangni Du, Huahong Shi. Superimposed microplastic pollution in a coastal metropolis. Water Research 2020, 168 , 115140. https://doi.org/10.1016/j.watres.2019.115140
    58. Salla Selonen, Andraž Dolar, Anita Jemec Kokalj, Tina Skalar, Lidia Parramon Dolcet, Rachel Hurley, Cornelis A.M. van Gestel. Exploring the impacts of plastics in soil – The effects of polyester textile fibers on soil invertebrates. Science of The Total Environment 2020, 700 , 134451. https://doi.org/10.1016/j.scitotenv.2019.134451
    59. Zhiqiang Dong, Ling Zhu, Wen Zhang, Rui Huang, XiangWei Lv, Xinyu Jing, Zhenglong Yang, Junliang Wang, Yuping Qiu. Role of surface functionalities of nanoplastics on their transport in seawater-saturated sea sand. Environmental Pollution 2019, 255 , 113177. https://doi.org/10.1016/j.envpol.2019.113177
    60. Zandra Gerdes, Markus Hermann, Martin Ogonowski, Elena Gorokhova. A novel method for assessing microplastic effect in suspension through mixing test and reference materials. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-47160-1
    61. Oldamur Hollóczki, Sascha Gehrke. Nanoplastics can change the secondary structure of proteins. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-52495-w
    62. G. Allen Burton, Eduardo Cimino Cervi. Environmental Stressor Importance: Science versus Media. Environmental Toxicology and Chemistry 2019, 38 (12) , 2587-2592. https://doi.org/10.1002/etc.4606
    63. Teng Wang, Baojie Li, Xinqing Zou, Ying Wang, Yali Li, Yongjiang Xu, Longjiang Mao, Chuchu Zhang, Wenwen Yu. Emission of primary microplastics in mainland China: Invisible but not negligible. Water Research 2019, 162 , 214-224. https://doi.org/10.1016/j.watres.2019.06.042
    64. Todd Gouin, Richard A. Becker, Anne‐Gaelle Collot, John W. Davis, Brett Howard, Kunifumi Inawaka, Mark Lampi, Blanca Serrano Ramon, Jay Shi, Philipp W. Hopp. Toward the Development and Application of an Environmental Risk Assessment Framework for Microplastic. Environmental Toxicology and Chemistry 2019, 38 (10) , 2087-2100. https://doi.org/10.1002/etc.4529
    65. Bor Luen Tang. On Some Possible Ramifications of the “Microplastics in Fish” Case. Science and Engineering Ethics 2019, 25 (4) , 1303-1310. https://doi.org/10.1007/s11948-018-0063-z
    66. Beatriz Fernández, Marina Albentosa. Insights into the uptake, elimination and accumulation of microplastics in mussel. Environmental Pollution 2019, 249 , 321-329. https://doi.org/10.1016/j.envpol.2019.03.037
    67. Richard Stafford, Peter J.S. Jones. Viewpoint – Ocean plastic pollution: A convenient but distracting truth?. Marine Policy 2019, 103 , 187-191. https://doi.org/10.1016/j.marpol.2019.02.003
    68. Lingyun Li, Lei Su, Huiwen Cai, Chelsea M. Rochman, Qipei Li, Prabhu Kolandhasamy, Jinping Peng, Huahong Shi. The uptake of microfibers by freshwater Asian clams (Corbicula fluminea) varies based upon physicochemical properties. Chemosphere 2019, 221 , 107-114. https://doi.org/10.1016/j.chemosphere.2019.01.024
    69. Lei Su, Hua Deng, Bowen Li, Qiqing Chen, Vincent Pettigrove, Chenxi Wu, Huahong Shi. The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of east China. Journal of Hazardous Materials 2019, 365 , 716-724. https://doi.org/10.1016/j.jhazmat.2018.11.024
    70. Maria Arias-Andres, Keilor Rojas-Jimenez, Hans-Peter Grossart. Collateral effects of microplastic pollution on aquatic microorganisms: An ecological perspective. TrAC Trends in Analytical Chemistry 2019, 112 , 234-240. https://doi.org/10.1016/j.trac.2018.11.041
    71. Teng Wang, Xinqing Zou, Baojie Li, Yulong Yao, Zheng Zang, Yali Li, Wenwen Yu, Wanzhi Wang. Preliminary study of the source apportionment and diversity of microplastics: Taking floating microplastics in the South China Sea as an example. Environmental Pollution 2019, 245 , 965-974. https://doi.org/10.1016/j.envpol.2018.10.110
    72. Shaoliang Zhang, Jiuqi Wang, Xu Liu, Fengjuan Qu, Xueshan Wang, Xinrui Wang, Yu Li, Yankun Sun. Microplastics in the environment: A review of analytical methods, distribution, and biological effects. TrAC Trends in Analytical Chemistry 2019, 111 , 62-72. https://doi.org/10.1016/j.trac.2018.12.002
    73. Gero Benckiser. Plastics, Micro- and Nanomaterials, and Virus-Soil Microbe-Plant Interactions in the Environment. 2019, 83-101. https://doi.org/10.1007/978-3-030-12496-0_4
    74. Ying Wang, Dian Zhang, Mingxing Zhang, Jingli Mu, Guanghui Ding, Zheng Mao, Yifei Cao, Fei Jin, Yi Cong, Lijun Wang, Weiwei Zhang, Juying Wang. Effects of ingested polystyrene microplastics on brine shrimp, Artemia parthenogenetica. Environmental Pollution 2019, 244 , 715-722. https://doi.org/10.1016/j.envpol.2018.10.024
    75. Aikaterini Anastasopoulou, Tomaso Fortibuoni. Impact of Plastic Pollution on Marine Life in the Mediterranean Sea. 2019, 135-196. https://doi.org/10.1007/698_2019_421
    76. Chantal M. Lanctôt, Maya Al-Sid-Cheikh, Ana I. Catarino, Tom Cresswell, Bruno Danis, Hrissi K. Karapanagioti, Tracy Mincer, François Oberhänsli, Peter Swarzenski, Imma Tolosa, Marc Metian. Application of nuclear techniques to environmental plastics research. Journal of Environmental Radioactivity 2018, 192 , 368-375. https://doi.org/10.1016/j.jenvrad.2018.07.019
    77. Xiaoxia Sun, Junhua Liang, Mingliang Zhu, Yongfang Zhao, Bo Zhang. Microplastics in seawater and zooplankton from the Yellow Sea. Environmental Pollution 2018, 242 , 585-595. https://doi.org/10.1016/j.envpol.2018.07.014
    78. D.J. Perez-Venegas, M. Seguel, H. Pavés, J. Pulgar, M. Urbina, C. Ahrendt, C. Galbán-Malagón. First detection of plastic microfibers in a wild population of South American fur seals (Arctocephalus australis) in the Chilean Northern Patagonia. Marine Pollution Bulletin 2018, 136 , 50-54. https://doi.org/10.1016/j.marpolbul.2018.08.065
    79. Xiaoxia Sun, Tao Liu, Mingliang Zhu, Junhua Liang, Yongfang Zhao, Bo Zhang. Retention and characteristics of microplastics in natural zooplankton taxa from the East China Sea. Science of The Total Environment 2018, 640-641 , 232-242. https://doi.org/10.1016/j.scitotenv.2018.05.308
    80. Emily E. Burns, Alistair B.A. Boxall. Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps. Environmental Toxicology and Chemistry 2018, 37 (11) , 2776-2796. https://doi.org/10.1002/etc.4268
    81. Antonio Di Guardo, Todd Gouin, Matthew MacLeod, Martin Scheringer. Environmental fate and exposure models: advances and challenges in 21 st century chemical risk assessment. Environmental Science: Processes & Impacts 2018, 20 (1) , 58-71. https://doi.org/10.1039/C7EM00568G
    • Abstract

    • References

      ARTICLE SECTIONS
      Jump To

      This article references 18 other publications.

      1. 1
        Burton, G. A., Jr. Losing sight of science in the regulatory push to ban microbeads from consumer products and industrial use Integr. Environ. Assess. Manage. 2015, 11 (3) 346 347 DOI: 10.1002/ieam.1645
      2. 2
        Cable, R. N.; Beletsky, D.; Beletsky, R.; Wigginton, K.; Locke, B. W.; Duhaime, M. B. Distribution and modeled transport of plastic pollution in the Great Lakes, the world’s largest freshwater resource Front Environ. Sci. 2017,  DOI: 10.3389/fenvs.2017.00045
      3. 3
        Connors, K. A.; Dyer, S. D.; Belanger, S. E. Advancing the quality of environmental microplastic research Environ. Toxicol. Chem. 2017, 36, 1697 1703 DOI: 10.1002/etc.3829
      4. 4
        Galloway, T.; Cole, M.; Lewis, C. Interactions of microplastic debris throughout the marine ecosystem Nat. Ecol. Evol. 2017, 1, 0116 DOI: 10.1038/s41559-017-0116
      5. 5
        Koelmans, A. A.; Bakir, A.; Burton, G. A.; Janssen, C. R. Microplastic as a vector for chemicals in the aquatic environt: Critical review and model-supported reinterpretation of empirical studies Environ. Sci. Technol. 2016, 50, 3315 3326 DOI: 10.1021/acs.est.5b06069
      6. 6
        Koelmans, A. A.; Besseling, E.; Foekema, E.; Kooi, M.; Mintenig, S.; Ossendorp, B. C.; Redondo-Hasselerharm, P. E.; Verschoor, A.; van Wezel, A. P.; Scheffer, M. Risks of plastic debris: Unravelling fact, opinion, perception, and belief Environ. Sci. Technol. 2017, 51, 11513 11519 DOI: 10.1021/acs.est.7b02219
      7. 7
        Lenz, R.; Enders, K.; Nielsen, T. G. Microplastic exposure studies should be environmentally realistic Proc. Natl. Acad. Sci. U. S. A. 2016, 113, E4121 E4122 DOI: 10.1073/pnas.1606615113
      8. 8
        Tang, B. L. Commentary: Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure Front. Environ. Sci. 2017,  DOI: 10.3389/fenvs.2017.00063
      9. 9
        Van Cauwenberghe, L.; Devriese, L.; Galgani, F.; Robbens, J.; Janssen, C. R. Microplastics in sediments: A review of techniques, occurrence and effects Mar. Environ. Res. 2015, 111, 5 17 DOI: 10.1016/j.marenvres.2015.06.007
      10. 10
        Weltje, L.; Sumpter, J. P. What makes a concentration environmentally relevant? Critique and a Proposal Environ. Sci. Technol. 2017, 51, 11520 11521 DOI: 10.1021/acs.est.7b04673
      11. 11
        Hidalgo-Ruz, V.; Gutow, L.; Thompson, R. C.; Thiel, M. Microplastics in the marine environment: A review of the metehods used for identification and quantification Environ. Sci. Technol. 2012, 46, 3060 3075 DOI: 10.1021/es2031505
      12. 12
        Vandermeersch, G.; Van Cauwenberghe, L.; Janssen, C. R.; Marques, A.; Granby, K.; Fait, G.; Kotterman, M.; Diogene, J.; Bekaert, K.; Robbens, J.; Devriese, L. A critical view on microplastic quantification in aquatic organisms Environ. Res. 2015, 143, 46 55 DOI: 10.1016/j.envres.2015.07.016
      13. 13
        Baldwin, A. K.; Corsi, S. R.; Mason, S. A. Plastic Debris in 29 Great Lakes Tributaries: Relations to Watershed Attributes and Hydrology Environ. Sci. Technol. 2016, 50, 10377 10385 DOI: 10.1021/acs.est.6b02917
      14. 14
        Beer, S.; Garm, A.; Huwer, B.; Dierking, J.; Nielsen, T. G. No increase in marine microplastic concentration over the last three decades—A case study from the Baltic Sea Sci. Total Environ. 2017,  DOI: 10.1016/j.scitotenv.2017.10.101
      15. 15
        McDevitt, J. P.; Criddle, C. S.; Morse, M.; Hale, R. C.; Bott, C. B.; Rochman, C. M. Addressing the issue of microplastics int he Wake of the Microbead-Free Water Act – A new standard can facilitate improved policy Environ. Sci. Technol. 2017, 51, 6611 6617 DOI: 10.1021/acs.est.6b05812
      16. 16
        Huffer, T.; Praetorius, A.; Wagner, S.; von der Kammer, F.; Hofmann, T. Microplastic exposure assessment in aquatic environmewnts: Learning from similarities and differences to engineered nanparticles Environ. Sci. Technol. 2017, 51, 2499 2507 DOI: 10.1021/acs.est.6b04054
      17. 17
        Syberg, K.; Khan, F. R.; Selck, H.; Palmqvist, A.; Banta, G. T.; Daley, J.; Sano, L.; Duhaime, M. B. Microplastics: Addressing ecological risk through lessons learned Environ. Toxicol. Chem. 2015, 34, 945 953 DOI: 10.1002/etc.2914
      18. 18
        Sedlak, D. Three lessons for the microplastics voyage Environ. Sci. Technol. 2017, 51, 7747 7748 DOI: 10.1021/acs.est.7b03340

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect