An Ensemble Machine-Learning Model To Predict Historical PM2.5 Concentrations in China from Satellite DataClick to copy article linkArticle link copied!
- Qingyang XiaoQingyang XiaoDepartment of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, Georgia 30322, United StatesMore by Qingyang Xiao
- Howard H. ChangHoward H. ChangDepartment of Biostatistics and Bioinformatics, Emory University, Rollins School of Public Health, Atlanta, Georgia 30322, United StatesMore by Howard H. Chang
- Guannan GengGuannan GengDepartment of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, Georgia 30322, United StatesMore by Guannan Geng
- Yang Liu*Yang Liu*Mailing address: Emory University, Rollins School of Public Health, 1518 Clifton Road NE, Atlanta, GA 30322, USA. Phone: (404) 727-2131. E-mail: [email protected]Department of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, Georgia 30322, United StatesMore by Yang Liu
Abstract

The long satellite aerosol data record enables assessments of historical PM2.5 level in regions where routine PM2.5 monitoring began only recently. However, most previous models reported decreased prediction accuracy when predicting PM2.5 levels outside the model-training period. In this study, we proposed an ensemble machine learning approach that provided reliable PM2.5 hindcast capabilities. The missing satellite data were first filled by multiple imputation. Then the modeling domain, China, was divided into seven regions using a spatial clustering method to control for unobserved spatial heterogeneity. A set of machine learning models including random forest, generalized additive model, and extreme gradient boosting were trained in each region separately. Finally, a generalized additive ensemble model was developed to combine predictions from different algorithms. The ensemble prediction characterized the spatiotemporal distribution of daily PM2.5 well with the cross-validation (CV) R2 (RMSE) of 0.79 (21 μg/m3). The cluster-based subregion models outperformed national models and improved the CV R2 by ∼0.05. Compared with previous studies, our model provided more accurate out-of-range predictions at the daily level (R2 = 0.58, RMSE = 29 μg/m3) and monthly level (R2 = 0.76, RMSE = 16 μg/m3). Our hindcast modeling system allows for the construction of unbiased historical PM2.5 levels.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 248 publications.
- Su Shi, Renjie Chen, Peng Wang, Hongliang Zhang, Haidong Kan, Xia Meng. An Ensemble Machine Learning Model to Enhance Extrapolation Ability of Predicting Coarse Particulate Matter with High Resolutions in China. Environmental Science & Technology 2024, 58
(43)
, 19325-19337. https://doi.org/10.1021/acs.est.4c08610
- Siyuan Shen, Chi Li, Aaron van Donkelaar, Nathan Jacobs, Chenguang Wang, Randall V. Martin. Enhancing Global Estimation of Fine Particulate Matter Concentrations by Including Geophysical a Priori Information in Deep Learning. ACS ES&T Air 2024, 1
(5)
, 332-345. https://doi.org/10.1021/acsestair.3c00054
- Riyang Liu, Zongwei Ma, Antonio Gasparrini, Arturo de la Cruz, Jun Bi, Kai Chen. Integrating Augmented In Situ Measurements and a Spatiotemporal Machine Learning Model To Back Extrapolate Historical Particulate Matter Pollution over the United Kingdom: 1980–2019. Environmental Science & Technology 2023, 57
(51)
, 21605-21615. https://doi.org/10.1021/acs.est.3c05424
- Zhiyang Liao, Jinrong Lu, Kunting Xie, Yi Wang, Yong Yuan. Prediction of Photochemical Properties of Dissolved Organic Matter Using Machine Learning. Environmental Science & Technology 2023, 57
(46)
, 17971-17980. https://doi.org/10.1021/acs.est.2c07545
- Jun-Jie Zhu, Meiqi Yang, Zhiyong Jason Ren. Machine Learning in Environmental Research: Common Pitfalls and Best Practices. Environmental Science & Technology 2023, 57
(46)
, 17671-17689. https://doi.org/10.1021/acs.est.3c00026
- Ning Wei, Zhenyu Jia, Zhengyu Men, Chunzhe Ren, Yanjie Zhang, Jianfei Peng, Lin Wu, Ting Wang, Qijun Zhang, Hongjun Mao. Machine Learning Predicts Emissions of Brake Wear PM2.5: Model Construction and Interpretation. Environmental Science & Technology Letters 2022, 9
(5)
, 352-358. https://doi.org/10.1021/acs.estlett.2c00117
- Xiang Ren, Zhongyuan Mi, Ting Cai, Christopher G. Nolte, Panos G. Georgopoulos. Flexible Bayesian Ensemble Machine Learning Framework for Predicting Local Ozone Concentrations. Environmental Science & Technology 2022, 56
(7)
, 3871-3883. https://doi.org/10.1021/acs.est.1c04076
- Xian Liu, Dawei Lu, Aiqian Zhang, Qian Liu, Guibin Jiang. Data-Driven Machine Learning in Environmental Pollution: Gains and Problems. Environmental Science & Technology 2022, 56
(4)
, 2124-2133. https://doi.org/10.1021/acs.est.1c06157
- Jianzhao Bi, K. Emma Knowland, Christoph A. Keller, Yang Liu. Combining Machine Learning and Numerical Simulation for High-Resolution PM2.5 Concentration Forecast. Environmental Science & Technology 2022, 56
(3)
, 1544-1556. https://doi.org/10.1021/acs.est.1c05578
- Shifa Zhong, Kai Zhang, Majid Bagheri, Joel G. Burken, April Gu, Baikun Li, Xingmao Ma, Babetta L. Marrone, Zhiyong Jason Ren, Joshua Schrier, Wei Shi, Haoyue Tan, Tianbao Wang, Xu Wang, Bryan M. Wong, Xusheng Xiao, Xiong Yu, Jun-Jie Zhu, Huichun Zhang. Machine Learning: New Ideas and Tools in Environmental Science and Engineering. Environmental Science & Technology 2021, 55
(19)
, 12741-12754. https://doi.org/10.1021/acs.est.1c01339
- Shupeng Zhu, Michael Mac Kinnon, Andre Paradise, Donald Dabdub, G. Scott Samuelsen. Health Benefits in California of Strengthening the Fine Particulate Matter Standards. Environmental Science & Technology 2021, 55
(18)
, 12223-12232. https://doi.org/10.1021/acs.est.1c03177
- Guannan Geng, Qingyang Xiao, Shigan Liu, Xiaodong Liu, Jing Cheng, Yixuan Zheng, Tao Xue, Dan Tong, Bo Zheng, Yiran Peng, Xiaomeng Huang, Kebin He, Qiang Zhang. Tracking Air Pollution in China: Near Real-Time PM2.5 Retrievals from Multisource Data Fusion. Environmental Science & Technology 2021, 55
(17)
, 12106-12115. https://doi.org/10.1021/acs.est.1c01863
- Conghong Huang, Jianlin Hu, Tao Xue, Hao Xu, Meng Wang. High-Resolution Spatiotemporal Modeling for Ambient PM2.5 Exposure Assessment in China from 2013 to 2019. Environmental Science & Technology 2021, 55
(3)
, 2152-2162. https://doi.org/10.1021/acs.est.0c05815
- Fangwen Bao, Ying Li, Tianhai Cheng, Jinhui Gao, Shuyun Yuan. Estimating the Columnar Concentrations of Black Carbon Aerosols in China Using MODIS Products. Environmental Science & Technology 2020, 54
(18)
, 11025-11036. https://doi.org/10.1021/acs.est.0c00816
- Xingcheng Lu, Dehao Yuan, Yiang Chen, Jimmy C.H. Fung, Wenkai Li, Alexis K.H. Lau. Estimations of Long-Term nss-SO42– and NO3– Wet Depositions over East Asia by Use of Ensemble Machine-Learning Method. Environmental Science & Technology 2020, 54
(18)
, 11118-11126. https://doi.org/10.1021/acs.est.0c01068
- Jianxin Li, Fangchao Liu, Fengchao Liang, Keyong Huang, Xueli Yang, Qingyang Xiao, Jichun Chen, Xiaoqing Liu, Jie Cao, Shufeng Chen, Chong Shen, Ling Yu, Fanghong Lu, Xianping Wu, Liancheng Zhao, Xigui Wu, Ying Li, Dongsheng Hu, Jianfeng Huang, Yang Liu, Xiangfeng Lu, Dongfeng Gu. Long-Term Effects of High Exposure to Ambient Fine Particulate Matter on Coronary Heart Disease Incidence: A Population-Based Chinese Cohort Study. Environmental Science & Technology 2020, 54
(11)
, 6812-6821. https://doi.org/10.1021/acs.est.9b06663
- Baolei Lyu, Yongtao Hu, Wenxian Zhang, Yunsong Du, Bin Luo, Xiaoling Sun, Zhe Sun, Zhu Deng, Xiaojiang Wang, Jun Liu, Xuesong Wang, Armistead G. Russell. Fusion Method Combining Ground-Level Observations with Chemical Transport Model Predictions Using an Ensemble Deep Learning Framework: Application in China to Estimate Spatiotemporally-Resolved PM2.5 Exposure Fields in 2014–2017. Environmental Science & Technology 2019, 53
(13)
, 7306-7315. https://doi.org/10.1021/acs.est.9b01117
- Chaitanya Baliram Pande, Neyara Radwan, Salim Heddam, Kaywan Othman Ahmed, Fahad Alshehri, Subodh Chandra Pal, Malay Pramanik. Forecasting of monthly air quality index and understanding the air pollution in the urban city, India based on machine learning models and cross-validation. Journal of Atmospheric Chemistry 2025, 82
(1)
https://doi.org/10.1007/s10874-024-09466-x
- Siqi Li, Guoqiang Liu, Li Li, Zhongyuan Zhang, Wenhao Fei, Haolong Xiang. A Review on Air-Ground Coordination in Mobile Edge Computing: Key Technologies, Applications and Future Directions. Tsinghua Science and Technology 2025, 30
(3)
, 1359-1386. https://doi.org/10.26599/TST.2024.9010142
- Sicong He, Yanbin Yuan, Zhen Li, Heng Dong, Xiaopang Zhang, Zili Zhang, Lan Luo. Tracking diurnal variation of NO2 at high spatial resolution in China using a time-constrained machine learning model. International Journal of Applied Earth Observation and Geoinformation 2025, 138 , 104470. https://doi.org/10.1016/j.jag.2025.104470
- David Galán-Madruga, Parya Broomandi, Alfrendo Satyanaga, Ali Jahanbakhshi, Mehdi Bagheri, Aram Fathian, Rasoul Sarvestan, J. Cárdenas-Escudero, J.O. Cáceres, Prashant Kumar, Jong Ryeol Kim. A methodological framework for estimating ambient PM2.5 particulate matter concentrations in the UK. Journal of Environmental Sciences 2025, 150 , 676-691. https://doi.org/10.1016/j.jes.2023.11.019
- Shifen Cheng, Wenhui Zhang, Peng Luo, Lizeng Wang, Feng Lu. An explainable spatial interpolation method considering spatial stratified heterogeneity. International Journal of Geographical Information Science 2025, 39
(3)
, 600-626. https://doi.org/10.1080/13658816.2024.2426067
- Dilna Anand M, Anurag Sahu, Jai Prakash. Assessment of Fine Aerosol in Two Different Climate Regions of India Using MERRA-2 Products, Ground-based Measurements, and Machine Learning. Aerosol Science and Engineering 2025, 396 https://doi.org/10.1007/s41810-024-00279-9
- Yu Ma, Chen Zhou, Manchun Li, Qin Huang. High-resolution monthly assessment of population exposure to PM2.5 and its relationship with socioeconomic activities using multisource geospatial data. Environmental Monitoring and Assessment 2025, 197
(3)
https://doi.org/10.1007/s10661-025-13806-z
- Meng Wang, Michael Young, Julian D. Marshall, Logan Piepmeier, Jianzhao Bi, Joel D. Kaufman, Adam A. Szpiro. National PM2.5 spatiotemporal model integrating intensive monitoring data and land use regression in a likelihood-based universal kriging framework in the United States: 2000–2019. Environmental Pollution 2025, 366 , 125405. https://doi.org/10.1016/j.envpol.2024.125405
- Shobitha Shetty, Paul D. Hamer, Kerstin Stebel, Arve Kylling, Amirhossein Hassani, Terje Koren Berntsen, Philipp Schneider. Daily high-resolution surface PM2.5 estimation over Europe by ML-based downscaling of the CAMS regional forecast. Environmental Research 2025, 264 , 120363. https://doi.org/10.1016/j.envres.2024.120363
- Yun Hang, Qiang Pu, Qiao Zhu, Xia Meng, Zhihao Jin, Fengchao Liang, Hezhong Tian, Tiantian Li, Tijian Wang, Junji Cao, Qingyan Fu, Sagnik Dey, Shenshen Li, Kan Huang, Haidong Kan, Xiaoming Shi, Yang Liu. Application of multi-angle spaceborne observations in characterizing the long-term particulate organic carbon pollution in China. Science of The Total Environment 2025, 958 , 177883. https://doi.org/10.1016/j.scitotenv.2024.177883
- Jijing Cai, Tongcun Liu, Tingting Wang, Hailin Feng, Kai Fang, Ali Kashif Bashir, Wei Wang. Multisource-Fusion-Enhanced Power-Efficient Sustainable Computing for Air Quality Monitoring. IEEE Internet of Things Journal 2024, 11
(24)
, 39041-39055. https://doi.org/10.1109/JIOT.2024.3420956
- Quang-Oai Lu, Wei-Hsiang Chang, Hone-Jay Chu, Ching-Chang Lee. Enhancing indoor PM2.5 predictions based on land use and indoor environmental factors by applying machine learning and spatial modeling approaches. Environmental Pollution 2024, 363 , 125093. https://doi.org/10.1016/j.envpol.2024.125093
- Anibal Flores, Hugo Tito-Chura, Osmar Cuentas-Toledo, Victor Yana-Mamani, Deymor Centty-Villafuerte. PM2.5 Time Series Imputation with Moving Averages, Smoothing, and Linear Interpolation. Computers 2024, 13
(12)
, 312. https://doi.org/10.3390/computers13120312
- Jiawei Wang. A novel ensemble machine learning exposure model system for ground-level ozone at the national scale: A case of mainland China from 2013 to 2020. Environmental Impact Assessment Review 2024, 109 , 107630. https://doi.org/10.1016/j.eiar.2024.107630
- Shuai Yin, Chong Shi, Husi Letu, Akihiko Ito, Huazhe Shang, Dabin Ji, Lei Li, Sude Bilige, Tangzhe Nie, Kunpeng Yi, Meng Guo, Zhongyi Sun, Ao Li. Reconstruction of PM2.5 Concentrations in East Asia on the Basis of a Wide–Deep Ensemble Machine Learning Framework and Estimation of the Potential Exposure Level from 1981 to 2020. Engineering 2024, 248 https://doi.org/10.1016/j.eng.2024.09.025
- Aymen Zegaar, Abdelmoutia Telli, Samira Ounoki, Himan Shahabi, Francisco Rueda. Data-driven approach for land surface temperature retrieval with machine learning and sentinel-2 data. Remote Sensing Applications: Society and Environment 2024, 36 , 101357. https://doi.org/10.1016/j.rsase.2024.101357
- Xiaorong Shan, Joan A. Casey, Jenni A. Shearston, Lucas R. F. Henneman. Methods for Quantifying Source‐Specific Air Pollution Exposure to Serve Epidemiology, Risk Assessment, and Environmental Justice. GeoHealth 2024, 8
(11)
https://doi.org/10.1029/2024GH001188
- Saleh Alotaibi, Hamad Almujibah, Khalaf Alla Adam Mohamed, Adil A. M. Elhassan, Badr T. Alsulami, Abdullah Alsaluli, Afaq Khattak. Towards Cleaner Cities: Estimating Vehicle-Induced PM2.5 with Hybrid EBM-CMA-ES Modeling. Toxics 2024, 12
(11)
, 827. https://doi.org/10.3390/toxics12110827
- Shanmuka Sai Kumar Padimala, Chandra Sekhar Matli. A comprehensive review delineates advancements in retrieving particulate matter utilising satellite aerosol optical depth: Parameter consideration, data processing, models development and future perspectives. Atmospheric Research 2024, 308 , 107514. https://doi.org/10.1016/j.atmosres.2024.107514
- Wenwen Sun, Kuangyi Lu, Rui Li. Global estimates of ambient NO2 concentrations and long-term health effects during 2000–2019. Environmental Pollution 2024, 359 , 124562. https://doi.org/10.1016/j.envpol.2024.124562
- Tuo Deng, Astrid Manders, Arjo Segers, Arnold Willem Heemink, Hai Xiang Lin. Ozone exceedance forecasting with enhanced extreme instance augmentation: A case study in Germany. Environmental Modelling & Software 2024, 181 , 106162. https://doi.org/10.1016/j.envsoft.2024.106162
- Amjad Alkhodaidi, Afraa Attiah, Alaa Mhawish, Abeer Hakeem. The Role of Machine Learning in Enhancing Particulate Matter Estimation: A Systematic Literature Review. Technologies 2024, 12
(10)
, 198. https://doi.org/10.3390/technologies12100198
- Yue Qiu, Yufeng Chi, Stijn Janssen, Lei Gao, Ying Su, Abiot Molla, Yin Ren. Optimizing NO2 monitoring network using a background map for spatial heterogeneity stratification. Atmospheric Environment 2024, 333 , 120639. https://doi.org/10.1016/j.atmosenv.2024.120639
- Peng Wei, Song Hao, Yuan Shi, Abhishek Anand, Ya Wang, Mengyuan Chu, Zhi Ning. Combining Google traffic map with deep learning model to predict street-level traffic-related air pollutants in a complex urban environment. Environment International 2024, 191 , 108992. https://doi.org/10.1016/j.envint.2024.108992
- Fangwen Bao, Shengbiao Wu, Jinhui Gao, Shuyun Yuan, Yiwen Liu, Kai Huang. Continental aerosol properties and absorption retrieval using random forest machine learning method specific to geostationary remote sensing. Remote Sensing of Environment 2024, 311 , 114275. https://doi.org/10.1016/j.rse.2024.114275
- Seongeun Jeong, Yoon-Hee Kang, Eunhye Kim, Soontae Kim. Role of air stagnation in determining daily average PM2.5 concentrations in areas with significant impact of long-range transport. Atmospheric Pollution Research 2024, 15
(7)
, 102147. https://doi.org/10.1016/j.apr.2024.102147
- Zhukai Ning, Song Gao, Zhan Gu, Chaoqiong Ni, Fang Fang, Yongyou Nie, Zheng Jiao, Chunguang Wang. Prediction and explanation for ozone variability using cross-stacked ensemble learning model. Science of The Total Environment 2024, 935 , 173382. https://doi.org/10.1016/j.scitotenv.2024.173382
- Zizheng Li, Weihang Wang, Qingqing He, Xiuzhen Chen, Jiejun Huang, Ming Zhang. Estimating ground-level high-resolution ozone concentration across China using a stacked machine-learning method. Atmospheric Pollution Research 2024, 15
(6)
, 102114. https://doi.org/10.1016/j.apr.2024.102114
- Xingwei Man, Rui Liu, Yu Zhang, Weiqiang Yu, Fanhao Kong, Li Liu, Yan Luo, Tao Feng. High-spatial resolution ground-level ozone in Yunnan, China: A spatiotemporal estimation based on comparative analyses of machine learning models. Environmental Research 2024, 251 , 118609. https://doi.org/10.1016/j.envres.2024.118609
- Mostafa Khalil, Ahmed AlSayed, Yang Liu, Peter A. Vanrolleghem. An integrated feature selection and hyperparameter optimization algorithm for balanced machine learning models predicting N2O emissions from wastewater treatment plants. Journal of Water Process Engineering 2024, 63 , 105512. https://doi.org/10.1016/j.jwpe.2024.105512
- Shuai Zhang, Jiating Zhao, Lizhong Zhu. Predicting removal efficiency of organic pollutants by soil vapor extraction based on an optimized machine learning method. Science of The Total Environment 2024, 927 , 172438. https://doi.org/10.1016/j.scitotenv.2024.172438
- Baishan Guo, Lei Wang, Rui Pan, Xuening Zhu. A grouped spatial-temporal model for PM
2.5
data and its applications on outlier detection. Communications in Statistics - Simulation and Computation 2024, 53
(5)
, 2565-2577. https://doi.org/10.1080/03610918.2022.2081707
- Zheng Du, Yibin Yao, Bao Zhang, Qingzhi Zhao. Precipitable water vapor estimation from Himawari-8/AHI observations using a stacking machine learning model. Atmospheric Research 2024, 301 , 107281. https://doi.org/10.1016/j.atmosres.2024.107281
- Kehua Chen, Guangbo Li, Hewen Li, Yuqi Wang, Wenzhe Wang, Qingyi Liu, Hongcheng Wang. Quantifying uncertainty: Air quality forecasting based on dynamic spatial-temporal denoising diffusion probabilistic model. Environmental Research 2024, 249 , 118438. https://doi.org/10.1016/j.envres.2024.118438
- Sang-Jin Lee, Jeong-Tae Ju, Jong-Jae Lee, Chang-Keun Song, Sun-A Shin, Hae-Jin Jung, Hye Jung Shin, Sung-Deuk Choi. Mapping nationwide concentrations of sulfate and nitrate in ambient PM2.5 in South Korea using machine learning with ground observation data. Science of The Total Environment 2024, 926 , 171884. https://doi.org/10.1016/j.scitotenv.2024.171884
- Mohamed N. Hegazi, Shaimaa El-Jaafary, Nourhan Shebl, Hassan El-Fawal, Mie Rizig, Mohamed Salama. Remote Sensing Data as a Tool for Studying Environmental Aspects of Parkinson’s Disease. Journal of Parkinson’s Disease 2024, 14
(3)
, 619-622. https://doi.org/10.3233/JPD-230382
- Die Tang, Yu Zhan, Fumo Yang. A review of machine learning for modeling air quality: Overlooked but important issues. Atmospheric Research 2024, 300 , 107261. https://doi.org/10.1016/j.atmosres.2024.107261
- Yanhui Jia, Zhi He, Fangchao Liu, Jianxin Li, Fengchao Liang, Keyong Huang, Jichun Chen, Jie Cao, Hongfan Li, Chong Shen, Ling Yu, Xiaoqing Liu, Dongsheng Hu, Jianfeng Huang, Yingxin Zhao, Yang Liu, Xiangfeng Lu, Dongfeng Gu, Shufeng Chen. Dietary intake changes the associations between long-term exposure to fine particulate matter and the surrogate indicators of insulin resistance. Environment International 2024, 186 , 108626. https://doi.org/10.1016/j.envint.2024.108626
- Nurul Amalin Fatihah Kamarul Zaman, Kasturi Devi Kanniah, Dimitris G. Kaskaoutis, Mohd Talib Latif. Improving the quantification of fine particulates (PM2.5) concentrations in Malaysia using simplified and computationally efficient models. Journal of Cleaner Production 2024, 448 , 141559. https://doi.org/10.1016/j.jclepro.2024.141559
- Weiliang Tao, Malin Song, Shimei Weng, Xueli Chen, Lianbiao Cui. Assessing the impact of environmental regulation on ecological risk induced by PM2.5 pollution: Evidence from China. Journal of Cleaner Production 2024, 451 , 142029. https://doi.org/10.1016/j.jclepro.2024.142029
- Tiantian Li, Chen Chen, Mengxue Zhang, Liang Zhao, Yuanyuan Liu, Yafei Guo, Qing Wang, Hang Du, Qingyang Xiao, Yang Liu, Mike Z He, Patrick L Kinney, Aaron J Cohen, Shilu Tong, Xiaoming Shi, . Accountability analysis of health benefits related to National Action Plan on Air Pollution Prevention and Control in China. PNAS Nexus 2024, 3
(4)
https://doi.org/10.1093/pnasnexus/pgae142
- Chenliang Tao, Man Jia, Guoqiang Wang, Yuqiang Zhang, Qingzhu Zhang, Xianfeng Wang, Qiao Wang, Wenxing Wang. Time-sensitive prediction of NO2 concentration in China using an ensemble machine learning model from multi-source data. Journal of Environmental Sciences 2024, 137 , 30-40. https://doi.org/10.1016/j.jes.2023.02.026
- Anna Boser. Validating spatio-temporal environmental machine learning models: Simpson’s paradox and data splits. Environmental Research Communications 2024, 6
(3)
, 031003. https://doi.org/10.1088/2515-7620/ad2e44
- Siddhartha Mandal, Ajit Rajiva, Itai Kloog, Jyothi S Menon, Kevin J Lane, Heresh Amini, Gagandeep K Walia, Shweta Dixit, Amruta Nori-Sarma, Anubrati Dutta, Praggya Sharma, Suganthi Jaganathan, Kishore K Madhipatla, Gregory A Wellenius, Jeroen de Bont, Chandra Venkataraman, Dorairaj Prabhakaran, Poornima Prabhakaran, Petter Ljungman, Joel Schwartz, . Nationwide estimation of daily ambient PM2.5 from 2008 to 2020 at 1 km2 in India using an ensemble approach. PNAS Nexus 2024, 3
(3)
https://doi.org/10.1093/pnasnexus/pgae088
- Yanming Liu, Yuxi Zhang, Pei Yu, Tingting Ye, Yiwen Zhang, Rongbin Xu, Shanshan Li, Yuming Guo. Applying traffic camera and deep learning-based image analysis to predict PM2.5 concentrations. Science of The Total Environment 2024, 912 , 169233. https://doi.org/10.1016/j.scitotenv.2023.169233
- Zhishu Shen, Jiong Jin, Cheng Tan, Atsushi Tagami, Shangguang Wang, Qing Li, Qiushi Zheng, Jingling Yuan. A Survey of Next-generation Computing Technologies in Space-air-ground Integrated Networks. ACM Computing Surveys 2024, 56
(1)
, 1-40. https://doi.org/10.1145/3606018
- Dulcemaría Gavito-Covarrubias, Ivonne Ramírez-Díaz, Josué Guzmán-Linares, Ilhuicamina Daniel Limón, Dulce María Manuel-Sánchez, Alejandro Molina-Herrera, Miguel Ángel Coral-García, Estela Anastasio, Arely Anaya-Hernández, Primavera López-Salazar, Gabriel Juárez-Díaz, Javier Martínez-Juárez, Julián Torres-Jácome, Alondra Albarado-Ibáñez, Ygnacio Martínez-Laguna, Carolina Morán, Karla Rubio. Epigenetic mechanisms of particulate matter exposure: air pollution and hazards on human health. Frontiers in Genetics 2024, 14 https://doi.org/10.3389/fgene.2023.1306600
- Pongsakon Punpukdee, Ekbordin Winijkul, Pyae Phyo Kyaw, Salvatore G. P. Virdis, Wenchao Xue, Thi Phuoc Lai Nguyen. Estimation of hourly one square kilometer fine particulate matter concentration over Thailand using aerosol optical depth. Frontiers in Environmental Science 2024, 11 https://doi.org/10.3389/fenvs.2023.1303152
- Farnaz Hosseinpour, Naresh Kumar, Trang Tran, Eladio Knipping. Using machine learning to improve the estimate of U.S. background ozone. Atmospheric Environment 2024, 316 , 120145. https://doi.org/10.1016/j.atmosenv.2023.120145
- Hamad Almujibah, Abdulrazak H. Almaliki, Caroline Mongina Matara, Adil Abdallah Mohammed Elhassan, Khalaf Alla Adam Mohamed, Mudthir Bakri, Afaq Khattak. TPE-LCE-SHAP: A Hybrid Framework for Assessing Vehicle-Related PM2.5 Concentrations. IEEE Access 2024, 12 , 179219-179234. https://doi.org/10.1109/ACCESS.2024.3505116
- Jia Mao, Amos P. K. Tai, David H. Y. Yung, Tiangang Yuan, Kong T. Chau, Zhaozhong Feng. Multidecadal ozone trends in China and implications for human health and crop yields: a hybrid approach combining a chemical transport model and machine learning. Atmospheric Chemistry and Physics 2024, 24
(1)
, 345-366. https://doi.org/10.5194/acp-24-345-2024
- Chenliang Tao, Yanbo Peng, Qingzhu Zhang, Yuqiang Zhang, Bing Gong, Qiao Wang, Wenxing Wang. Diagnosing ozone–NO
x
–VOC–aerosol sensitivity and uncovering causes of urban–nonurban discrepancies in Shandong, China, using transformer-based estimations. Atmospheric Chemistry and Physics 2024, 24
(7)
, 4177-4192. https://doi.org/10.5194/acp-24-4177-2024
- Fuzhen Shen, Michaela I. Hegglin, Yue Yuan. Impact of weather patterns and meteorological factors on PM
2.5
and O
3
responses to the COVID-19 lockdown in China. Atmospheric Chemistry and Physics 2024, 24
(11)
, 6539-6553. https://doi.org/10.5194/acp-24-6539-2024
- Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, Yun Hang. Long-term variability in black carbon emissions constrained by gap-filled absorption aerosol optical depth and associated premature mortality in China. Atmospheric Chemistry and Physics 2024, 24
(11)
, 6593-6612. https://doi.org/10.5194/acp-24-6593-2024
- Siwei Li, Yu Ding, Jia Xing, Joshua S. Fu. Retrieving ground-level PM
2.5
concentrations in China (2013–2021) with a numerical-model-informed testbed to mitigate sample-imbalance-induced biases. Earth System Science Data 2024, 16
(8)
, 3781-3793. https://doi.org/10.5194/essd-16-3781-2024
- Martín Rodríguez Núñez, Iván Tavera Busso, Hebe Alejandra Carreras. Quantifying the contribution of environmental variables to cyclists’ exposure to PM2.5 using machine learning techniques. Heliyon 2024, 10
(2)
, e24724. https://doi.org/10.1016/j.heliyon.2024.e24724
- Zuhan Liu, Xuehu Liu, Kexin Zhao. Haze prediction method based on stacking learning. Stochastic Environmental Research and Risk Assessment 2023, 45 https://doi.org/10.1007/s00477-023-02619-6
- Yanchuan Shao, Wei Zhao, Riyang Liu, Jianxun Yang, Miaomiao Liu, Wen Fang, Litiao Hu, Matthew Adams, Jun Bi, Zongwei Ma. Estimation of daily NO2 with explainable machine learning model in China, 2007–2020. Atmospheric Environment 2023, 314 , 120111. https://doi.org/10.1016/j.atmosenv.2023.120111
- Bingqing Lu, Xue Meng, Shanshan Dong, Zekun Zhang, Chao Liu, Jiakui Jiang, Hartmut Herrmann, Xiang Li. High-resolution mapping of regional VOCs using the enhanced space-time extreme gradient boosting machine (XGBoost) in Shanghai. Science of The Total Environment 2023, 905 , 167054. https://doi.org/10.1016/j.scitotenv.2023.167054
- George William Kibirige, Chiao Cheng Huang, Chao Lin Liu, Meng Chang Chen. Influence of land-sea breeze on PM$$_{2.5}$$ prediction in central and southern Taiwan using composite neural network. Scientific Reports 2023, 13
(1)
https://doi.org/10.1038/s41598-023-29845-w
- Huang Zheng, Shaofei Kong, Shixian Zhai, Xiaoyun Sun, Yi Cheng, Liquan Yao, Congbo Song, Zhonghua Zheng, Zongbo Shi, Roy M. Harrison. An intercomparison of weather normalization of PM2.5 concentration using traditional statistical methods, machine learning, and chemistry transport models. npj Climate and Atmospheric Science 2023, 6
(1)
https://doi.org/10.1038/s41612-023-00536-7
- Yufeng Chi, Yu Zhan, Kai Wang, Hong Ye. Spatial Distribution of Multiple Atmospheric Pollutants in China from 2015 to 2020. Remote Sensing 2023, 15
(24)
, 5705. https://doi.org/10.3390/rs15245705
- Rashmi Choudhary, Amit Agarwal. Impact of grid size on spatiotemporal prediction of fine particulate matter. Atmospheric Pollution Research 2023, 14
(11)
, 101887. https://doi.org/10.1016/j.apr.2023.101887
- Qingqing He, Tong Ye, Ming Zhang, Yanbin Yuan. Enhancing the reliability of hindcast modeling for air pollution using history-informed machine learning and satellite remote sensing in China. Atmospheric Environment 2023, 312 , 119994. https://doi.org/10.1016/j.atmosenv.2023.119994
- Yihui Ge, Zhenchun Yang, Yan Lin, Philip K. Hopke, Albert A. Presto, Meng Wang, David Q. Rich, Junfeng Zhang. Generating high spatial resolution exposure estimates from sparse regulatory monitoring data. Atmospheric Environment 2023, 313 , 120076. https://doi.org/10.1016/j.atmosenv.2023.120076
- Abisheg Dhandapani, Jawed Iqbal, R. Naresh Kumar. Application of machine learning (individual vs stacking) models on MERRA-2 data to predict surface PM2.5 concentrations over India. Chemosphere 2023, 340 , 139966. https://doi.org/10.1016/j.chemosphere.2023.139966
- Tong Lyu, Yilin Tang, Hongbin Cao, Yue Gao, Xu Zhou, Wei Zhang, Ruidi Zhang, Yanxue Jiang. Estimating the geographical patterns and health risks associated with PM2.5-bound heavy metals to guide PM2.5 control targets in China based on machine-learning algorithms. Environmental Pollution 2023, 337 , 122558. https://doi.org/10.1016/j.envpol.2023.122558
- Yutong Wang, Yu Zhao, Yiming Liu, Yueqi Jiang, Bo Zheng, Jia Xing, Yang Liu, Shuai Wang, Chris P. Nielsen. Sustained emission reductions have restrained the ozone pollution over China. Nature Geoscience 2023, 16
(11)
, 967-974. https://doi.org/10.1038/s41561-023-01284-2
- Lian Zong, Yuanjian Yang, Haiyun Xia, Jinlong Yuan, Min Guo. Elucidating the Impacts of Various Atmospheric Ventilation Conditions on Local and Transboundary Ozone Pollution Patterns: A Case Study of Beijing, China. Journal of Geophysical Research: Atmospheres 2023, 128
(20)
https://doi.org/10.1029/2023JD039141
- Junwei Wang, Kun Gao, Xiuqing Hu, Xiaodian Zhang, Hong Wang, Zibo Hu, Zhijia Yang, Peng Zhang. PM2.5 Estimation in Day/Night-Time from Himawari-8 Infrared Bands via a Deep Learning Neural Network. Remote Sensing 2023, 15
(20)
, 4905. https://doi.org/10.3390/rs15204905
- Vikas Kumar, Vasudev Malyan, Manoranjan Sahu, Basudev Biswal, Manasi Pawar, Isha Dev. Spatiotemporal analysis of fine particulate matter for India (1980–2021) from MERRA-2 using ensemble machine learning. Atmospheric Pollution Research 2023, 14
(8)
, 101834. https://doi.org/10.1016/j.apr.2023.101834
- Anibal Flores, Hugo Tito-Chura, Deymor Centty-Villafuerte, Alejandro Ecos-Espino. Pm2.5 Time Series Imputation with Deep Learning and Interpolation. Computers 2023, 12
(8)
, 165. https://doi.org/10.3390/computers12080165
- Bo Li, Cheng Liu, Qihou Hu, Mingzhai Sun, Chengxin Zhang, Yizhi Zhu, Ting Liu, Yike Guo, Gregory R. Carmichael, Meng Gao. A Deep Learning Approach to Increase the Value of Satellite Data for PM2.5 Monitoring in China. Remote Sensing 2023, 15
(15)
, 3724. https://doi.org/10.3390/rs15153724
- Shuai Wang, Peng Wang, Ruhan Zhang, Xia Meng, Haidong Kan, Hongliang Zhang. Estimating particulate matter concentrations and meteorological contributions in China during 2000–2020. Chemosphere 2023, 330 , 138742. https://doi.org/10.1016/j.chemosphere.2023.138742
- Yanwen Wang, Mahdi Khodadadzadeh, Raúl Zurita-Milla. Spatial+: A new cross-validation method to evaluate geospatial machine learning models. International Journal of Applied Earth Observation and Geoinformation 2023, 121 , 103364. https://doi.org/10.1016/j.jag.2023.103364
- Suhaimee Buya, Sasiporn Usanavasin, Hideomi Gokon, Jessada Karnjana. An Estimation of Daily PM2.5 Concentration in Thailand Using Satellite Data at 1-Kilometer Resolution. Sustainability 2023, 15
(13)
, 10024. https://doi.org/10.3390/su151310024
- Yuming Tang, Ruru Deng, Yeheng Liang, Ruihao Zhang, Bin Cao, Yongming Liu, Zhenqun Hua, Jie Yu. Estimating high-spatial-resolution daily PM2.5 mass concentration from satellite top-of-atmosphere reflectance based on an improved random forest model. Atmospheric Environment 2023, 302 , 119724. https://doi.org/10.1016/j.atmosenv.2023.119724
- Mengfan Teng, Siwei Li, Jia Xing, Chunying Fan, Jie Yang, Shuo Wang, Ge Song, Yu Ding, Jiaxin Dong, Shansi Wang. 72-hour real-time forecasting of ambient PM2.5 by hybrid graph deep neural network with aggregated neighborhood spatiotemporal information. Environment International 2023, 176 , 107971. https://doi.org/10.1016/j.envint.2023.107971
- Xiaohua Liang, Fengchao Liang, Fangchao Liu, Yanling Ren, Jishuang Tong, Wei Feng, Ping Qu, Shunqing Luo. The policy implemented by the government and the protection effect of PM2.5 decreasing on blood pressure in adolescents: From a quasi-experimental study. Journal of Global Health 2023, 13 https://doi.org/10.7189/jogh.13.04050
- Kai Hu, Qingqing He. Administrative hierarchy, city characteristics and impacts of the Clean Air Act: A quasi-experimental study on PM2.5 pollution in China 2000–2020. Urban Climate 2023, 49 , 101428. https://doi.org/10.1016/j.uclim.2023.101428
- Ai Zhang, Qihua Wang, Xueli Yang, Yuanyuan Liu, Jiayu He, Anqi Shan, Naixiu Sun, Qianfeng Liu, Baoqun Yao, Fengchao Liang, Ze Yang, Xiaochang Yan, Shaoye Bo, Yang Liu, Hongjun Mao, Xi Chen, Nai-jun Tang, Hua Yan. Impacts of heatwaves and cold spells on glaucoma in rural China: a national cross-sectional study. Environmental Science and Pollution Research 2023, 30
(16)
, 47248-47261. https://doi.org/10.1007/s11356-023-25591-8
- Shuai Wang, Peng Wang, Qi Qi, Siyu Wang, Xia Meng, Haidong Kan, Shengqiang Zhu, Hongliang Zhang. Improved estimation of particulate matter in China based on multisource data fusion. Science of The Total Environment 2023, 869 , 161552. https://doi.org/10.1016/j.scitotenv.2023.161552
- George William Kibirige, Ming-Chuan Yang, Chao-Lin Liu, Meng Chang Chen, . Using satellite data on remote transportation of air pollutants for PM2.5 prediction in northern Taiwan. PLOS ONE 2023, 18
(3)
, e0282471. https://doi.org/10.1371/journal.pone.0282471
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.