ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Water, Energy, and Carbon Footprints of Bioethanol from the U.S. and Brazil

  • Mesfin M. Mekonnen*
    Mesfin M. Mekonnen
    Robert B. Daugherty Water for Food Global Institute, University of Nebraska, Lincoln, Nebraska 68583, United States
    *Phone: +1-402-472-5392; e-mail: [email protected]
  • Thiago L. Romanelli
    Thiago L. Romanelli
    Department of Biosystems Engineering, College of Agriculture “Luiz de Queiroz” (ESALQ), University of São Paulo, São Paulo 13418-900, Brazil
  • Chittaranjan Ray
    Chittaranjan Ray
    Nebraska Water Center, Robert B. Daugherty Water for Food Global Institute, University of Nebraska, Lincoln, Nebraska 68583, United States
  • Arjen Y. Hoekstra
    Arjen Y. Hoekstra
    Twente Water Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
    Institute of Water Policy, Lee Kuan Yew School of Public Policy, National University of Singapore, 469A Bukit Timah Road, 259770, Singapore
  • Adam J. Liska
    Adam J. Liska
    Department of Biological Systems Engineering, University of Nebraska, Lincoln, Nebraska 68583, United States
  • , and 
  • Christopher M.U. Neale
    Christopher M.U. Neale
    Robert B. Daugherty Water for Food Global Institute, University of Nebraska, Lincoln, Nebraska 68583, United States
Cite this: Environ. Sci. Technol. 2018, 52, 24, 14508–14518
Publication Date (Web):November 14, 2018
https://doi.org/10.1021/acs.est.8b03359
Copyright © 2018 American Chemical Society

    Article Views

    2478

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Driven by biofuel policies, which aim to reduce greenhouse gas (GHG) emissions and increase domestic energy supply, global production and consumption of bioethanol have doubled between 2007 and 2016, with rapid growth in corn-based bioethanol in the U.S. and sugar cane-based bioethanol in Brazil. Advances in crop yields, energy use efficiency in fertilizer production, biomass-to-ethanol conversion rates, and energy efficiency in ethanol production have improved the energy balance and GHG emission reduction potential of bioethanol. In the current study, the water, energy, and carbon footprints of bioethanol from corn in the U.S. and sugar cane in Brazil were assessed. The results show that U.S. corn bioethanol has a smaller water footprint (541 L water/L bioethanol) than Brazilian sugar cane bioethanol (1115 L water/L bioethanol). Brazilian sugar cane bioethanol has, however, a better energy balance (17.7 MJ/L bioethanol) and smaller carbon footprint (38.5 g CO2e/MJ) than U.S. bioethanol, which has an energy balance of 11.2 MJ/L bioethanol and carbon footprint of 44.9 g CO2e/MJ. The results show regional differences in the three footprints and highlight the need to take these differences into consideration to understand the implications of biofuel production for local water resources, net energy production, and climate change mitigation.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.8b03359.

    • Additional information as noted in the text (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 58 publications.

    1. Hon Chung Lau, Seeram Ramakrishna, Kai Zhang, Adiyodi Veettil Radhamani. The Role of Carbon Capture and Storage in the Energy Transition. Energy & Fuels 2021, 35 (9) , 7364-7386. https://doi.org/10.1021/acs.energyfuels.1c00032
    2. C. E. Cabrera Camacho, Bernabe Alonso-Fariñas, A. L. Villanueva Perales, F. Vidal-Barrero, Pedro Ollero. Techno-economic and Life-Cycle Assessment of One-Step Production of 1,3-Butadiene from Bioethanol Using Reaction Data under Industrial Operating Conditions. ACS Sustainable Chemistry & Engineering 2020, 8 (27) , 10201-10211. https://doi.org/10.1021/acssuschemeng.0c02678
    3. . References. 2024, 629-654. https://doi.org/10.1016/B978-0-443-13784-6.00004-4
    4. Bhanu Prakash Sandaka, Jitendra Kumar, Jose Savio Melo. Biofuels from microalgae: Growing conditions, cultivation strategies, and techno-commercial challenges. 2024, 305-340. https://doi.org/10.1016/B978-0-443-13927-7.00003-7
    5. Sojung Kim, Yeona Choi, Sumin Kim. Simulation Modeling in Supply Chain Management Research of Ethanol: A Review. Energies 2023, 16 (21) , 7429. https://doi.org/10.3390/en16217429
    6. Xuan Wang, Lei Xiao, Zhenyan Fan, Yueyuan Chen, Bo Wang, Zhifang Cui. Impact-oriented assessment of carbon, water and energy footprints for maize production: a case study in Shandong, China. International Journal of Sustainable Development & World Ecology 2023, 3 , 1-12. https://doi.org/10.1080/13504509.2023.2263852
    7. Jack P. Smith, Braden J. Limb, Colin M. Beal, Kelly R. Banta, John L. Field, Steven J. Simske, Jason C. Quinn. Evaluating the sustainability of the 2017 US biofuel industry with an integrated techno-economic analysis and life cycle assessment. Journal of Cleaner Production 2023, 413 , 137364. https://doi.org/10.1016/j.jclepro.2023.137364
    8. Kuan Shiong Khoo, Imran Ahmad, Kit Wayne Chew, Koji Iwamoto, Amit Bhatnagar, Pau Loke Show. Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. Progress in Energy and Combustion Science 2023, 96 , 101071. https://doi.org/10.1016/j.pecs.2023.101071
    9. Bhanu Prakash Sandaka, Jitendra Kumar. Alternative vehicular fuels for environmental decarbonization: A critical review of challenges in using electricity, hydrogen, and biofuels as a sustainable vehicular fuel. Chemical Engineering Journal Advances 2023, 14 , 100442. https://doi.org/10.1016/j.ceja.2022.100442
    10. Graciele Angnes, Adriano Valentim Diotto, Efthymios Rodias, Thiago Libório Romanelli. Water and Carbon Footprints of Biomass Production Assets: Drip and Center Pivot Irrigation Systems. Sustainability 2023, 15 (10) , 8199. https://doi.org/10.3390/su15108199
    11. Yuanran Xian, Guangyuan Cai, Jiajun Lin, Yong Chen, Xiaolong Wang. Comparison of crop productivity, economic benefit and environmental footprints among diversified multi-cropping systems in South China. Science of The Total Environment 2023, 874 , 162407. https://doi.org/10.1016/j.scitotenv.2023.162407
    12. Ryohei Mori. Replacing all petroleum-based chemical products with natural biomass-based chemical products: a tutorial review. RSC Sustainability 2023, 1 (2) , 179-212. https://doi.org/10.1039/D2SU00014H
    13. Ihssan El Ouadi, , , , , , , , . Understanding the Climate–Water–Energy–Food Nexus and the Transition Towards a Circular Economy: The Case of Morocco. E3S Web of Conferences 2023, 364 , 01006. https://doi.org/10.1051/e3sconf/202336401006
    14. Yuanran Xian, Guangyuan Cai, Jianan Sang, Yong Chen, Xiaolong Wang. Agricultural environmental footprint index based on planetary boundary: Framework and case on Chinese agriculture. Journal of Cleaner Production 2023, 385 , 135699. https://doi.org/10.1016/j.jclepro.2022.135699
    15. Subhadip Paul, Amitava Rakshit. Optimizing Solar Photovoltaic Cells. 2023, 1-18. https://doi.org/10.1007/978-981-19-7736-7_15-1
    16. Olayomi Abiodun Falowo, Eriola Betiku. Introduction: Benefits, Prospects, and Challenges of Bioethanol Production. 2023, 1-19. https://doi.org/10.1007/978-3-031-36542-3_1
    17. Vandit Vijay, Rimika Kapoor, Priyanka Singh, Moonmoon Hiloidhari, Pooja Ghosh. Sustainable utilization of biomass resources for decentralized energy generation and climate change mitigation: A regional case study in India. Environmental Research 2022, 212 , 113257. https://doi.org/10.1016/j.envres.2022.113257
    18. S. Solomon, M. Swapna. Indian Sugar Industry: Towards Self-reliance for Sustainability. Sugar Tech 2022, 24 (3) , 630-650. https://doi.org/10.1007/s12355-022-01123-5
    19. Zhuo Chen, Tingzhou Lei, Zhiwei Wang, Xueqin Li, Peng Liu. Environmental and Economic Impacts of Biomass Liquid Fuel Conversion and Utilization—A Review. Journal of Biobased Materials and Bioenergy 2022, 16 (2) , 163-175. https://doi.org/10.1166/jbmb.2022.2172
    20. Susan Grace Karp, Caroline Carriel Schmitt, Renata Moreira, Rafaela de Oliveira Penha, Ariane Fátima Murawski de Mello, Leonardo Wedderhoff Herrmann, Carlos Ricardo Soccol. Sugarcane Biorefineries: Status and Perspectives in Bioeconomy. BioEnergy Research 2022, 15 https://doi.org/10.1007/s12155-022-10406-4
    21. Nidia Elizabeth Ramirez-Contreras, Carlos A. Fontanilla-Díaz, Lain E. Pardo, Tulia Delgado, David Munar-Florez, Birka Wicke, Jonathan Ruíz-Delgado, Floor van der Hilst, Jesús Alberto Garcia-Nuñez, Mauricio Mosquera-Montoya, André P.C. Faaij. Integral analysis of environmental and economic performance of combined agricultural intensification & bioenergy production in the Orinoquia region. Journal of Environmental Management 2022, 303 , 114137. https://doi.org/10.1016/j.jenvman.2021.114137
    22. Peerawat Saisirirat, Johannex Fefeh Rushman, Kampanart Silva, Nuwong Chollacoop. Contribution of Road Transport to the Attainment of Ghana’s Nationally Determined Contribution (NDC) through Biofuel Integration. Energies 2022, 15 (3) , 880. https://doi.org/10.3390/en15030880
    23. Miria Nakamya. How sustainable are biofuels in a natural resource-dependent economy?. Energy for Sustainable Development 2022, 66 , 296-307. https://doi.org/10.1016/j.esd.2021.12.012
    24. Abass A. Gazal, Napat Jakrawatana, Thapat Silalertruksa, Shabbir H. Gheewala. Water-Energy-Food Nexus Review for Biofuels Assessment. International Journal of Renewable Energy Development 2022, 11 (1) , 193-205. https://doi.org/10.14710/ijred.2022.41119
    25. Pieter M. F. Elshout, Marijn van der Velde, Rosalie van Zelm, Zoran J. N. Steinmann, Mark A. J. Huijbregts. Comparing greenhouse gas footprints and payback times of crop-based biofuel production worldwide. Biofuels 2022, 13 (1) , 55-61. https://doi.org/10.1080/17597269.2019.1630056
    26. Aline Brandão Mariath, Ana Paula Bortoletto Martins. Sugary drinks taxation: industry’s lobbying strategies, practices and arguments in the Brazilian Legislature. Public Health Nutrition 2022, 25 (1) , 170-179. https://doi.org/10.1017/S136898002100149X
    27. Rohit Dalal, Roshan Wathore, Nitin Labhasetwar. Sustainable Production of Biochar, Bio-Gas and Bio-Oil from Lignocellulosic Biomass and Biomass Waste. 2022, 177-205. https://doi.org/10.1007/978-981-16-8682-5_7
    28. Mesfin M. Mekonnen. Virtual Water and Embodied Energy Flows Out of Nebraska Related to Trade in Corn. 2022, 97-108. https://doi.org/10.1007/978-3-030-85728-8_5
    29. Elisa M. de Medeiros, Henk Noorman, Rubens Maciel Filho, John A. Posada. Multi-Objective Sustainability Optimization of Biomass Residues to Ethanol via Gasification and Syngas Fermentation: Trade-Offs between Profitability, Energy Efficiency, and Carbon Emissions. Fermentation 2021, 7 (4) , 201. https://doi.org/10.3390/fermentation7040201
    30. Grace N. Ijoma, Gbenga Adegbenro, Charles Rashama, Tonderayi S. Matambo. Peculiar Response in the Co-Culture Fermentation of Leuconostoc mesenteroides and Lactobacillus plantarum for the Production of ABE Solvents. Fermentation 2021, 7 (4) , 212. https://doi.org/10.3390/fermentation7040212
    31. Elias Soltani, Afshin Soltani, Majid Alimagham, Eskandar Zand. Ecological footprints of environmental resources for agricultural production in Iran: a model-based study. Environmental Science and Pollution Research 2021, 28 (48) , 68972-68981. https://doi.org/10.1007/s11356-021-15119-3
    32. Yoshinori Murata, Charles O. Nwuche, Julius E. Nweze, Ifeanyi A. Ndubuisi, James C. Ogbonna. Potentials of multi-stress tolerant yeasts, Saccharomyces cerevisiae and Pichia kudriavzevii for fuel ethanol production from industrial cassava wastes. Process Biochemistry 2021, 111 , 305-314. https://doi.org/10.1016/j.procbio.2021.11.014
    33. A.F.R. Silva, Y.L. Brasil, K. Koch, M.C.S. Amaral. Resource recovery from sugarcane vinasse by anaerobic digestion – A review. Journal of Environmental Management 2021, 295 , 113137. https://doi.org/10.1016/j.jenvman.2021.113137
    34. Erick Escobar Dallantonia, Marcia Helena Machado da Rocha Fernandes, Abmael da Silva Cardoso, Rhaony Gonçalves Leite, Adriana Ferrari, Fernando Ongaratto, Josiane Fonseca Lage, Marco Antonio Alvares Balsalobre, Ricardo Andrade Reis. Performance and greenhouse gas emission of Nellore and F1 Angus × Nellore yearling bulls in tropical production systems during backgrounding and finishing. Livestock Science 2021, 251 , 104646. https://doi.org/10.1016/j.livsci.2021.104646
    35. Shaobin Li, Matthew Thompson, Sussan Moussavi, Bruce Dvorak. Life cycle and economic assessment of corn production practices in the western US Corn Belt. Sustainable Production and Consumption 2021, 27 , 1762-1774. https://doi.org/10.1016/j.spc.2021.04.021
    36. Zhaopeng Xu, Yuzhou Tang, Qingsong Wang, Yue Xu, Xueliang Yuan, Qiao Ma, Guangxu Wang, Mingqiang Liu, Hongli Hao. Emergy based optimization of regional straw comprehensive utilization scheme. Journal of Cleaner Production 2021, 297 , 126638. https://doi.org/10.1016/j.jclepro.2021.126638
    37. Melissa J Scully, Gregory A Norris, Tania M Alarcon Falconi, David L MacIntosh. Carbon intensity of corn ethanol in the United States: state of the science. Environmental Research Letters 2021, 16 (4) , 043001. https://doi.org/10.1088/1748-9326/abde08
    38. A Amrullah, H Irawansyah, A Syarif, M H Anshari. Influence of composition and compaction pressure on the physical quality of wood residue and bottom ash mixture briquettes. IOP Conference Series: Earth and Environmental Science 2021, 758 (1) , 012012. https://doi.org/10.1088/1755-1315/758/1/012012
    39. Nidia Elizabeth Ramírez-Contreras, David Munar-Florez, Floor van der Hilst, Juan Carlos Espinosa, Álvaro Ocampo-Duran, Jonathan Ruíz-Delgado, Diego L. Molina-López, Birka Wicke, Jesús Alberto Garcia-Nunez, André P.C. Faaij. GHG Balance of Agricultural Intensification & Bioenergy Production in the Orinoquia Region, Colombia. Land 2021, 10 (3) , 289. https://doi.org/10.3390/land10030289
    40. Di Wang, Dong Jiang, Jingying Fu, Mengmeng Hao, Ting Peng. Assessment of liquid biofuel potential from energy crops within the sustainable water–land–energy–carbon nexus. Sustainable Energy & Fuels 2021, 5 (2) , 351-366. https://doi.org/10.1039/D0SE00814A
    41. Fanqiang Meng, Xiaoyu Zhu, Haizhen Zhao, Fengxia Lu, Yingjian Lu, Zhaoxin Lu. Improve Production of Pullulanase of Bacillus subtilis in Batch and Fed-Batch Cultures. Applied Biochemistry and Biotechnology 2021, 193 (1) , 296-306. https://doi.org/10.1007/s12010-020-03419-2
    42. Mesfin M. Mekonnen, Arjen Y. Hoekstra. Blue water footprint linked to national consumption and international trade is unsustainable. Nature Food 2020, 1 (12) , 792-800. https://doi.org/10.1038/s43016-020-00198-1
    43. Weijing Ma, Christian Opp, Dewei Yang. Past, Present, and Future of Virtual Water and Water Footprint. Water 2020, 12 (11) , 3068. https://doi.org/10.3390/w12113068
    44. Edemilson J. Mantoam, Graciele Angnes, Mesfin M. Mekonnen, Thiago L. Romanelli. Energy, carbon and water footprints on agricultural machinery. Biosystems Engineering 2020, 198 , 304-322. https://doi.org/10.1016/j.biosystemseng.2020.08.019
    45. KHS Peiris, SR Bean, M Tilley, SVK Jagadish. Analysis of sorghum content in corn–sorghum flour bioethanol feedstock by near infrared spectroscopy. Journal of Near Infrared Spectroscopy 2020, 28 (5-6) , 267-274. https://doi.org/10.1177/0967033520924494
    46. Stefan Gehrmann, Nils Tenhumberg. Production and Use of Sustainable C2‐C4 Alcohols – An Industrial Perspective. Chemie Ingenieur Technik 2020, 92 (10) , 1444-1458. https://doi.org/10.1002/cite.202000077
    47. Betty Osei Bonsu, Mohammed Takase, Jones Mantey. Preparation of charcoal briquette from palm kernel shells: case study in Ghana. Heliyon 2020, 6 (10) , e05266. https://doi.org/10.1016/j.heliyon.2020.e05266
    48. Olwen M. Grace, Jon C. Lovett, Charles J. N. Gore, Justin Moat, Ian Ondo, Samuel Pironon, Moses K. Langat, Oscar A. Pérez‐Escobar, Andrew Ross, Mary Suzan Abbo, Krishna K. Shrestha, Balakrishna Gowda, Kerrie Farrar, Jessica Adams, Rodrigo Cámara‐Leret, Mauricio Diazgranados, Tiziana Ulian, Saut Sagala, Elisabeth Rianawati, Amit Hazra, Omar R. Masera, Alexandre Antonelli, Paul Wilkin. Plant Power: Opportunities and challenges for meeting sustainable energy needs from the plant and fungal kingdoms. PLANTS, PEOPLE, PLANET 2020, 2 (5) , 446-462. https://doi.org/10.1002/ppp3.10147
    49. Enze Jin, Nicolas Al Fahel, Pinki Mondal, Hong Li, Cristina L. Archer. Energy footprint of food: The case of corn production in Delaware. Food and Energy Security 2020, 9 (3) https://doi.org/10.1002/fes3.222
    50. Antonio García, Javier Monsalve-Serrano, Santiago Martínez-Boggio, Vinícius Rückert Roso, Nathália Duarte Souza Alvarenga Santos. Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles. Renewable Energy 2020, 150 , 58-77. https://doi.org/10.1016/j.renene.2019.12.102
    51. Idiano D'Adamo, Pasquale Marcello Falcone, Massimo Gastaldi, Piergiuseppe Morone. Corrigendum to “RES-T trajectories and an integrated SWOT-AHP analysis for biomethane. Policy implications to support a green revolution in European transport” [Energy Pol. in press (2020) 111220]. Energy Policy 2020, 140 , 111380. https://doi.org/10.1016/j.enpol.2020.111380
    52. Idiano D'Adamo, Pasquale Marcello Falcone, Massimo Gastaldi, Piergiuseppe Morone. RES-T trajectories and an integrated SWOT-AHP analysis for biomethane. Policy implications to support a green revolution in European transport. Energy Policy 2020, 138 , 111220. https://doi.org/10.1016/j.enpol.2019.111220
    53. Bamidele Victor Ayodele, May Ali Alsaffar, Siti Indati Mustapa. An overview of integration opportunities for sustainable bioethanol production from first- and second-generation sugar-based feedstocks. Journal of Cleaner Production 2020, 245 , 118857. https://doi.org/10.1016/j.jclepro.2019.118857
    54. Edith Mier-Alba, Salvador Sánchez-Muñoz, Fernanda Gonçalves Barbosa, Vijay Kumar Garlapati, Nagamani Balagurusamy, Silvio Silvério da Silva, Júlio César dos Santos, Anuj Kumar Chandel. Comparative Analysis of Biogas with Renewable Fuels and Energy: Physicochemical Properties and Carbon Footprints. 2020, 125-143. https://doi.org/10.1007/978-3-030-58827-4_7
    55. Lorena Fernández-Cabezón, Pablo I. Nikel. Advanced metabolic engineering strategies for the development of sustainable microbial processes. 2020, 225-246. https://doi.org/10.1016/B978-0-444-64301-8.00011-1
    56. Mesfin M. Mekonnen, Christopher M.U. Neale, Chittaranjan Ray, Galen E. Erickson, Arjen Y. Hoekstra. Water productivity in meat and milk production in the US from 1960 to 2016. Environment International 2019, 132 , 105084. https://doi.org/10.1016/j.envint.2019.105084
    57. Hafiz Usman Ghani, Thapat Silalertruksa, Shabbir H. Gheewala. Water-energy-food nexus of bioethanol in Pakistan: A life cycle approach evaluating footprint indicators and energy performance. Science of The Total Environment 2019, 687 , 867-876. https://doi.org/10.1016/j.scitotenv.2019.05.465
    58. Eduardo Bittencourt Sydney, Luiz Alberto Junior Letti, Susan Grace Karp, Alessandra Cristine Novak Sydney, Luciana Porto de Souza Vandenberghe, Júlio Cesar de Carvalho, Adenise Lorenci Woiciechowski, Adriane Bianchi Pedroni Medeiros, Vanete Thomaz Soccol, Carlos Ricardo Soccol. Current analysis and future perspective of reduction in worldwide greenhouse gases emissions by using first and second generation bioethanol in the transportation sector. Bioresource Technology Reports 2019, 7 , 100234. https://doi.org/10.1016/j.biteb.2019.100234

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect