ACS Publications. Most Trusted. Most Cited. Most Read
An Integrated Multilevel Analysis Profiling Biosafety and Toxicity Induced by Indium- and Cadmium-Based Quantum Dots in Vivo
My Activity

Figure 1Loading Img
    Article

    An Integrated Multilevel Analysis Profiling Biosafety and Toxicity Induced by Indium- and Cadmium-Based Quantum Dots in Vivo
    Click to copy article linkArticle link copied!

    • Mariateresa Allocca
      Mariateresa Allocca
      Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
    • Lucia Mattera
      Lucia Mattera
      Univ. Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, STEP, 38000 Grenoble, France
    • Antonella Bauduin
      Antonella Bauduin
      Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
    • Beata Miedziak
      Beata Miedziak
      Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
    • Maria Moros
      Maria Moros
      Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
      More by Maria Moros
    • Luca De Trizio
      Luca De Trizio
      Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
    • Angela Tino
      Angela Tino
      Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
      More by Angela Tino
    • Peter Reiss
      Peter Reiss
      Univ. Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, STEP, 38000 Grenoble, France
      More by Peter Reiss
    • Alfredo Ambrosone*
      Alfredo Ambrosone
      Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134D, 80084 Fisciano, Italy
      *(A.A.) E-mail: [email protected]
    • Claudia Tortiglione*
      Claudia Tortiglione
      Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello”, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
      *(C.T.) E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2019, 53, 7, 3938–3947
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.est.9b00373
    Published March 1, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Indium phosphide quantum dots (QDs) have emerged as a new class of fluorescent nanocrystals for manifold applications, from biophotonics to nanomedicine. Recent efforts in improving the photoluminescence quantum yield, the chemical stability and the biocompatibility turned them into a valid alternative to well established Cd-based nanocrystals. In vitro studies provided first evidence for the lower toxicity of In-based QDs. Nonetheless, an urgent need exists for further assessment of the potential toxic effects in vivo. Here we use the freshwater polyp Hydra vulgaris, a well-established model previously adopted to assess the toxicity of CdSe/CdS nanorods and CdTe QDs. A systematic multilevel analysis was carried out in vivo, ex vivo, and in vitro comparing toxicity end points of CdSe- and InP-based QDs, passivated by ZnSe/ZnS shells and surface functionalized with penicillamine. Final results demonstrate that both the chemical composition of the QD core (InP vs CdSe) and the shell play a crucial role for final outcomes. Remarkably, in absence of in vivo alterations, cell and molecular alterations revealed hidden toxicity aspects, highlighting the biosafety of InP-based nanocrystals and outlining the importance of integrated multilevel analyses for proper QDs risk assessment.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.9b00373.

    • S1: Synthesis of InPZnS alloy nanocrystals. S2: Surface modification of QDs with Pen, S-3. Characterization of the QDs. Table S1: Primer sequences used in qRT-PCR analyses. Table S2: Hydrodynamic diameter, zeta-potential and QY values of the used In-and Cd-based QDs. Table S3. Morphological changes and associated scores for toxicological assessment in Hydra (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 43 publications.

    1. Kelly Rees, Ghinwa H. Darwish, Jasmine Bernal-Escalante, Kevin M. O’Connor, I Teng Cheong, Jonathan G. C. Veinot, W. Russ Algar. Dextran-Encapsulated Nanoparticles and Super-Nanoparticle Assemblies: Preparation from Quantum Dots, Fluorescent Polymers, and Magnetic Nanoparticles for Application to Cellular Immunolabeling. ACS Applied Materials & Interfaces 2024, 16 (47) , 64554-64567. https://doi.org/10.1021/acsami.4c14719
    2. Yu Qi, Wenyu Guan, Chuanjia Jiang, Wei Chen, Tong Zhang. Protein Corona Formation on Cadmium-Bearing Nanoparticles: Important Role of Facet-Dependent Binding of Cysteine-Rich Proteins. Environment & Health 2024, 2 (9) , 623-630. https://doi.org/10.1021/envhealth.4c00031
    3. Ezra Alexander, Matthias Kick, Alexandra R. McIsaac, Troy Van Voorhis. Understanding Trap States in InP and GaP Quantum Dots through Density Functional Theory. Nano Letters 2024, 24 (24) , 7227-7235. https://doi.org/10.1021/acs.nanolett.4c01107
    4. Lifang Zhang, Han Xu, Xuhui Zhang, Xinxin Chen, Yanbing Lv, Ruixue Zhang, Lei Wang, Ruili Wu, Huaibin Shen, Lin Song Li. Highly Sensitive, Stable InP Quantum Dot Fluorescent Probes for Quantitative Immunoassay Through Nanostructure Tailoring and Biotin–Streptavidin Coupling. Inorganic Chemistry 2024, 63 (10) , 4604-4613. https://doi.org/10.1021/acs.inorgchem.3c04153
    5. Mattia Zangoli, Andrea Cantelli, Andrea Candini, Anna Lewinska, Federica Fardella, Angela Tino, Giuseppina Tommasini, Maciej Wnuk, Matteo Moschetta, Sara Perotto, Marco Lucarini, Claudia Tortiglione, Guglielmo Lanzani, Francesca Di Maria. Photoreactivity of Thiophene-Based Core@Shell Nanoparticles: The Effect of Photoinduced Charge Separation on In Vivo ROS Production. The Journal of Physical Chemistry C 2023, 127 (9) , 4672-4683. https://doi.org/10.1021/acs.jpcc.2c06986
    6. Alfredo Ambrosone, Laura De Matteis, Inés Serrano-Sevilla, Claudia Tortiglione, Jesús M. De La Fuente. Glycogen Synthase Kinase 3β Inhibitor Delivered by Chitosan Nanocapsules Promotes Safe, Fast, and Efficient Activation of Wnt Signaling In Vivo. ACS Biomaterials Science & Engineering 2020, 6 (5) , 2893-2903. https://doi.org/10.1021/acsbiomaterials.9b01820
    7. Maria Moros, Anna Lewinska, Francesco Merola, Pietro Ferraro, Maciej Wnuk, Angela Tino, Claudia Tortiglione. Gold Nanorods and Nanoprisms Mediate Different Photothermal Cell Death Mechanisms In Vitro and In Vivo. ACS Applied Materials & Interfaces 2020, 12 (12) , 13718-13730. https://doi.org/10.1021/acsami.0c02022
    8. Yi Zhang, Jing-Yu Xiao, Yuan Zhu, Li-Jiao Tian, Wei-Kang Wang, Ting-Ting Zhu, Wen-Wei Li, Han-Qing Yu. Fluorescence Sensor Based on Biosynthetic CdSe/CdS Quantum Dots and Liposome Carrier Signal Amplification for Mercury Detection. Analytical Chemistry 2020, 92 (5) , 3990-3997. https://doi.org/10.1021/acs.analchem.9b05508
    9. Giulia Veronesi, Maria Moros, Hiram Castillo-Michel, Lucia Mattera, Giada Onorato, Karl David Wegner, Wai Li Ling, Peter Reiss, Claudia Tortiglione. In Vivo Biotransformations of Indium Phosphide Quantum Dots Revealed by X-Ray Microspectroscopy. ACS Applied Materials & Interfaces 2019, 11 (39) , 35630-35640. https://doi.org/10.1021/acsami.9b15433
    10. Paolo Emidio Costantini, Roberto Saporetti, Marika Iencharelli, Soraia Flammini, Maria Montrone, Gennaro Sanità, Vittorio De Felice, Edoardo Jun Mattioli, Mattia Zangoli, Luca Ulfo, Michela Nigro, Tommaso Rossi, Matteo Di Giosia, Emanuela Esposito, Francesca Di Maria, Angela Tino, Claudia Tortiglione, Alberto Danielli, Matteo Calvaresi. Phage‐Templated Synthesis of Targeted Photoactive 1D‐Thiophene Nanoparticles. Small 2025, 21 (1) https://doi.org/10.1002/smll.202405832
    11. Yanbing Lv, Lifang Zhang, Ruili Wu, Lin Song Li. Recent progress on eco-friendly quantum dots for bioimaging and diagnostics. Nano Research 2024, 17 (12) , 10309-10331. https://doi.org/10.1007/s12274-024-6926-5
    12. Mengqi Chen, Jingyi Hei, Yan Huang, Xiyu Liu, Yong Huang. In vivo safety evaluation method for nanomaterials for cancer therapy. Clinical and Translational Oncology 2024, 26 (9) , 2126-2141. https://doi.org/10.1007/s12094-024-03466-9
    13. Natalia Dell’Aversano, Maria Laura Amenta, Massimo Rippa, Maria Moros, Angela Tino, Claudia Tortiglione. Optical Switchers to Manipulate Intracellular Pathways and Boost Tissue Regeneration. Advanced Functional Materials 2024, 34 (38) https://doi.org/10.1002/adfm.202405400
    14. Giuseppina Tommasini, Susel Del Sol‐Fernández, Ana Cristina Flavián‐Lázaro, Anna Lewinska, Maciej Wnuk, Claudia Tortiglione, María Moros. Remote Magneto–Thermal Modulation of Reactive Oxygen Species Balance Enhances Tissue Regeneration In Vivo. Advanced Functional Materials 2024, 34 (39) https://doi.org/10.1002/adfm.202405282
    15. Faride Ranjbari, Farzaneh Fathi. Recent Advances in Chemistry, Mechanism, and Applications of Quantum Dots in Photodynamic and Photothermal Therapy. Anti-Cancer Agents in Medicinal Chemistry 2024, 24 (10) , 733-744. https://doi.org/10.2174/0118715206295598240215112910
    16. Xiaopeng Zhou, Qingshi Hu, Yuhua Wang. Magnesium ions enhanced core-shell lattice matching for Narrow-Band green emission indium phosphide QDs. Chemical Engineering Journal 2024, 488 , 151152. https://doi.org/10.1016/j.cej.2024.151152
    17. Hélio M. Gil, Zoe Booth, Thomas W. Price, Jessica Lee, Leigh Naylor‐Adamson, Michelle Avery, Alina Muravitskaya, Nicole Hondow, David Allsup, Jürgen E. Schneider, Khalid Naseem, Ali M. Adawi, Jean‐Sebastien G. Bouillard, Thomas W. Chamberlain, Simon D. J. Calaminus, Graeme J. Stasiuk. Impact of Surface Ligand on the Biocompatibility of InP/ZnS Quantum Dots with Platelets. Small 2024, 20 (12) https://doi.org/10.1002/smll.202304881
    18. Xiaolin Guan, Liyuan Zhang, Shoujun Lai, Jiaming Zhang, Jingyu Wei, Kang Wang, Wentao Zhang, Chenghao Li, Jinhui Tong, Ziqiang Lei. Green synthesis of glyco-CuInS2 QDs with visible/NIR dual emission for 3D multicellular tumor spheroid and in vivo imaging. Journal of Nanobiotechnology 2023, 21 (1) https://doi.org/10.1186/s12951-023-01859-6
    19. Xinyu Ni, Yudie Lu, Meiyu Li, Yue Liu, Miao Zhang, Fuqiang Sun, Sijun Dong, Lining Zhao. Application of Se-Met to CdTe QDs significantly reduces toxicity by modulating redox balance and inhibiting apoptosis. Ecotoxicology and Environmental Safety 2023, 267 , 115614. https://doi.org/10.1016/j.ecoenv.2023.115614
    20. Giuseppina Tommasini, Mariarosaria De Simone, Silvia Santillo, Gwennaël Dufil, Marika Iencharelli, Daniele Mantione, Eleni Stavrinidou, Angela Tino, Claudia Tortiglione. In vivo neuromodulation of animal behavior with organic semiconducting oligomers. Science Advances 2023, 9 (42) https://doi.org/10.1126/sciadv.adi5488
    21. Xinyu Wang, Tianshu Wu. An update on the biological effects of quantum dots: From environmental fate to risk assessment based on multiple biological models. Science of The Total Environment 2023, 879 , 163166. https://doi.org/10.1016/j.scitotenv.2023.163166
    22. Jesús Sanmartín-Matalobos, Pilar Bermejo-Barrera, Ignacio Pérez-Juste, Matilde Fondo, Ana M. García-Deibe, Yeneva Alves-Iglesias. Detecting CdSe Nanomaterials with a Fluorescent Schiff Base Ligand. Chemosensors 2022, 10 (10) , 394. https://doi.org/10.3390/chemosensors10100394
    23. Yogita Sahu, Ayesha Hashmi, Rajmani Patel, Ajaya K. Singh, Md. Abu Bin Hasan Susan, Sónia A. C. Carabineiro. Potential Development of N-Doped Carbon Dots and Metal-Oxide Carbon Dot Composites for Chemical and Biosensing. Nanomaterials 2022, 12 (19) , 3434. https://doi.org/10.3390/nano12193434
    24. Juan Chen, Yanhong Ding, Hang Chen, Yingyi Wu, Li Jin. Reproductive toxicity of InP/ZnS QDs in male rare minnow (Gobiocypris rarus). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2022, 259 , 109392. https://doi.org/10.1016/j.cbpc.2022.109392
    25. Nhi Le, Min Zhang, Kyoungtae Kim. Quantum Dots and Their Interaction with Biological Systems. International Journal of Molecular Sciences 2022, 23 (18) , 10763. https://doi.org/10.3390/ijms231810763
    26. Yanbin Zhang, Yanbing Lv, Lin‐Song Li, Xue‐Jie Zhao, Mei‐Xia Zhao, Huaibin Shen. Aminophosphate precursors for the synthesis of near‐unity emitting InP quantum dots and their application in liver cancer diagnosis. Exploration 2022, 2 (4) https://doi.org/10.1002/EXP.20220082
    27. Giuseppina Tommasini, Gwennaël Dufil, Federica Fardella, Xenofon Strakosas, Eugenio Fergola, Tobias Abrahamsson, David Bliman, Roger Olsson, Magnus Berggren, Angela Tino, Eleni Stavrinidou, Claudia Tortiglione. Seamless integration of bioelectronic interface in an animal model via in vivo polymerization of conjugated oligomers. Bioactive Materials 2022, 10 , 107-116. https://doi.org/10.1016/j.bioactmat.2021.08.025
    28. Juan Chen, Yanhong Ding, Hang Chen, Yingyi Wu, Li Jin. Reproductive Toxicity of Inp/Zns Qds in Male Rare Minnow (Gobiocypris Rarus). SSRN Electronic Journal 2022, 53 https://doi.org/10.2139/ssrn.4053547
    29. Maria Moros, Eugenio Fergola, Valentina Marchesano, Margherita Mutarelli, Giuseppina Tommasini, Beata Miedziak, Giuliana Palumbo, Alfredo Ambrosone, Angela Tino, Claudia Tortiglione. The Aquatic Invertebrate Hydra vulgaris Releases Molecular Messages Through Extracellular Vesicles. Frontiers in Cell and Developmental Biology 2021, 9 https://doi.org/10.3389/fcell.2021.788117
    30. Robert L. Hanson, Elaine Lazalde, Radim Knob, David H. Harris, Yesman Akuoko, Jacob B. Nielsen, Adam T. Woolley. Multilabel hybridization probes for sequence-specific detection of sepsis-related drug resistance genes in plasmids. Talanta Open 2021, 3 , 100034. https://doi.org/10.1016/j.talo.2021.100034
    31. Liang Hu, Hui Zhong, Zhiguo He. Toxicity evaluation of cadmium-containing quantum dots: A review of optimizing physicochemical properties to diminish toxicity. Colloids and Surfaces B: Biointerfaces 2021, 200 , 111609. https://doi.org/10.1016/j.colsurfb.2021.111609
    32. Benjamin Heyne, André Geßner, Armin Wedel, Andreas Taubert. Dispersion of InPZnS/ZnSe/ZnS multishell quantum dots (QDs) in water: extension to QDs with different core sizes and identical shell thickness. Zeitschrift für anorganische und allgemeine Chemie 2021, 647 (5) , 415-420. https://doi.org/10.1002/zaac.202000469
    33. Zhihui Wang, Meng Tang. The cytotoxicity of core-shell or non-shell structure quantum dots and reflection on environmental friendly: A review. Environmental Research 2021, 194 , 110593. https://doi.org/10.1016/j.envres.2020.110593
    34. Jianling Chen, Ji Yan, Baoting Dou, Qiumei Feng, Xiangmin Miao, Po Wang. Aggregatable thiol-functionalized carbon dots-based fluorescence strategy for highly sensitive detection of glucose based on target-initiated catalytic oxidation. Sensors and Actuators B: Chemical 2021, 330 , 129325. https://doi.org/10.1016/j.snb.2020.129325
    35. Hélio M. Gil, Thomas W. Price, Kanik Chelani, Jean-Sebastien G. Bouillard, Simon D.J. Calaminus, Graeme J. Stasiuk. NIR-quantum dots in biomedical imaging and their future. iScience 2021, 24 (3) , 102189. https://doi.org/10.1016/j.isci.2021.102189
    36. Li Li, Tingting Chen, Zhiwen Yang, Yajing Chen, Dongmeng Liu, Huiyu Xiao, Maixian Liu, Kan Liu, Jiangyao Xu, Shikang Liu, Xiaomei Wang, Guimiao Lin, Gaixia Xu. Nephrotoxicity Evaluation of Indium Phosphide Quantum Dots with Different Surface Modifications in BALB/c Mice. International Journal of Molecular Sciences 2020, 21 (19) , 7137. https://doi.org/10.3390/ijms21197137
    37. Benjamin Heyne, Kristin Arlt, André Geßner, Alexander F. Richter, Markus Döblinger, Jochen Feldmann, Andreas Taubert, Armin Wedel. Mixed Mercaptocarboxylic Acid Shells Provide Stable Dispersions of InPZnS/ZnSe/ZnS Multishell Quantum Dots in Aqueous Media. Nanomaterials 2020, 10 (9) , 1858. https://doi.org/10.3390/nano10091858
    38. Sohrab Nikazar, Vishnu Sankar Sivasankarapillai, Abbas Rahdar, Salim Gasmi, P S Anumol, Muhammad Salman Shanavas. Revisiting the cytotoxicity of quantum dots: an in-depth overview. Biophysical Reviews 2020, 12 (3) , 703-718. https://doi.org/10.1007/s12551-020-00653-0
    39. Maria Moros, Francesca Di Maria, Principia Dardano, Giuseppina Tommasini, Hiram Castillo-Michel, Alessandro Kovtun, Mattia Zangoli, Martina Blasio, Luca De Stefano, Angela Tino, Giovanna Barbarella, Claudia Tortiglione. In Vivo Bioengineering of Fluorescent Conductive Protein-Dye Microfibers. iScience 2020, 23 (4) , 101022. https://doi.org/10.1016/j.isci.2020.101022
    40. Tingting Chen, Li Li, Xiaotan Lin, Zhiwen Yang, Wenyi Zou, Yajing Chen, Jiangyao Xu, Dongmeng Liu, Xiaomei Wang, Guimiao Lin. In vitro and in vivo immunotoxicity of PEGylated Cd-free CuInS 2 /ZnS quantum dots. Nanotoxicology 2020, 14 (3) , 372-387. https://doi.org/10.1080/17435390.2019.1708495
    41. Yanxia Xu, Yanbing Lv, Ruili Wu, Huaibin Shen, Huawei Yang, Han Zhang, Jinjie Li, Lin Song Li. Preparation of Highly Stable and Photoluminescent Cadmium‐Free InP/GaP/ZnS Core/Shell Quantum Dots and Application to Quantitative Immunoassay. Particle & Particle Systems Characterization 2020, 37 (3) https://doi.org/10.1002/ppsc.201900441
    42. Li Li, Yajing Chen, Gaixia Xu, Dongmeng Liu, Zhiwen Yang, Tingting Chen, Xiaomei Wang, Wenxiao Jiang, Dahui Xue, Guimiao Lin. <p>In vivo Comparison of the Biodistribution and Toxicity of InP/ZnS Quantum Dots with Different Surface Modifications</p>. International Journal of Nanomedicine 2020, Volume 15 , 1951-1965. https://doi.org/10.2147/IJN.S241332
    43. Karl David Wegner, Fanny Dussert, Delphine Truffier-Boutry, Anass Benayad, David Beal, Lucia Mattera, Wai Li Ling, Marie Carrière, Peter Reiss. Influence of the Core/Shell Structure of Indium Phosphide Based Quantum Dots on Their Photostability and Cytotoxicity. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00466

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2019, 53, 7, 3938–3947
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.est.9b00373
    Published March 1, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    1391

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.