ACS Publications. Most Trusted. Most Cited. Most Read
Glucose as a Potential Chemical Marker for Ice Nucleating Activity in Arctic Seawater and Melt Pond Samples
My Activity

Figure 1Loading Img
    Article

    Glucose as a Potential Chemical Marker for Ice Nucleating Activity in Arctic Seawater and Melt Pond Samples
    Click to copy article linkArticle link copied!

    • Sebastian Zeppenfeld
      Sebastian Zeppenfeld
      Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig, Germany
    • Manuela van Pinxteren
      Manuela van Pinxteren
      Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig, Germany
    • Markus Hartmann
      Markus Hartmann
      Experimental Aerosol and Cloud Microphysics Department, Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig, Germany
    • Astrid Bracher
      Astrid Bracher
      Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
      Institute of Environmental Physics, University of Bremen, Bremen, Germany
    • Frank Stratmann
      Frank Stratmann
      Experimental Aerosol and Cloud Microphysics Department, Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig, Germany
    • Hartmut Herrmann*
      Hartmut Herrmann
      Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig, Germany
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2019, 53, 15, 8747–8756
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.est.9b01469
    Published June 28, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Recent studies pointed to a high ice nucleating activity (INA) in the Arctic sea surface microlayer (SML). However, related chemical information is still sparse. In the present study, INA and free glucose concentrations were quantified in Arctic SML and bulk water samples from the marginal ice zone, the ice-free ocean, melt ponds, and open waters within the ice pack. T50 (defining INA) ranged from −17.4 to −26.8 °C. Glucose concentrations varied from 0.6 to 51 μg/L with highest values in the SML from the marginal ice zone and melt ponds (median 16.3 and 13.5 μg/L) and lower values in the SML from the ice pack and the ice-free ocean (median 3.9 and 4.0 μg/L). Enrichment factors between the SML and the bulk ranged from 0.4 to 17. A positive correlation was observed between free glucose concentration and INA in Arctic water samples (T50(°C) = (−25.6 ± 0.6) + (0.15 ± 0.04)·Glucose(μg/L), RP = 0.66, n = 74). Clustering water samples based on phytoplankton pigment composition resulted in robust but different correlations within the four clusters (RP between 0.67 and 0.96), indicating a strong link to phytoplankton-related processes. Since glucose did not show significant INA itself, free glucose may serve as a potential tracer for INA in Arctic water samples.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.9b01469.

    • Locations of water sampling (SML and bulk) during cruise PASCAL/SiPCA; T50 plotted against free glucose concentration including all collected Arctic and Atlantic seawater samples; fraction frozen curves of glucose standard solutions; dendrogramm derived from hierarchical cluster analysis; TChl-a concentration and fractional phytoplankton composition in Arctic water samples; previous studies of INA in Arctic SML and bulk water samples; detailed sample information; details about the analysis of free glucose (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 26 publications.

    1. Susan Hartmann, Roland Schrödner, Brandon T. Hassett, Markus Hartmann, Manuela van Pinxteren, Khanneh Wadinga Fomba, Frank Stratmann, Hartmut Herrmann, Mira Pöhlker, Sebastian Zeppenfeld. Polysaccharides─Important Constituents of Ice-Nucleating Particles of Marine Origin. Environmental Science & Technology 2025, 59 (10) , 5098-5108. https://doi.org/10.1021/acs.est.4c08014
    2. Theresa Barthelmeß, Antonia Cristi, Stacy Deppeler, Karl Safi, Karine Sellegri, Cliff S. Law, Anja Engel. Pronounced Diel Cycling of Dissolved Carbohydrates and Amino Acids in the Surface Ocean and across Diverse Regimes. Environmental Science & Technology 2025, 59 (1) , 419-429. https://doi.org/10.1021/acs.est.4c00491
    3. Nicole M. North, Jessica B. Clark, Abigail A. A. Enders, Alex J. Grooms, Salmika G. Wairegi, Kezia A. Duah, Efthimia I. Palassis-Naziri, Abraham Badu-Tawiah, Heather C. Allen. Multi-Analyte Concentration Analysis of Marine Samples through Regression-Based Machine Learning. ACS Earth and Space Chemistry 2024, 8 (8) , 1549-1559. https://doi.org/10.1021/acsearthspacechem.4c00018
    4. Arianna Rocchi, Anabel von Jackowski, André Welti, Guangyu Li, Zamin A. Kanji, Vasiliy Povazhnyy, Anja Engel, Julia Schmale, Athanasios Nenes, Elisa Berdalet, Rafel Simó, Manuel Dall′Osto. Glucose Enhances Salinity-Driven Sea Spray Aerosol Production in Eastern Arctic Waters. Environmental Science & Technology 2024, 58 (20) , 8748-8759. https://doi.org/10.1021/acs.est.4c02826
    5. Maria G. Vazquez de Vasquez, Mickey M. Rogers, Kimberly A. Carter-Fenk, Heather C. Allen. Discerning Poly- and Monosaccharide Enrichment Mechanisms: Alginate and Glucuronate Adsorption to a Stearic Acid Sea Surface Microlayer. ACS Earth and Space Chemistry 2022, 6 (6) , 1581-1595. https://doi.org/10.1021/acsearthspacechem.2c00066
    6. Sebastian Zeppenfeld, Manuela van Pinxteren, Dominik van Pinxteren, Heike Wex, Elisa Berdalet, Dolors Vaqué, Manuel Dall’Osto, Hartmut Herrmann. Aerosol Marine Primary Carbohydrates and Atmospheric Transformation in the Western Antarctic Peninsula. ACS Earth and Space Chemistry 2021, 5 (5) , 1032-1047. https://doi.org/10.1021/acsearthspacechem.0c00351
    7. Corina Wieber, Lasse Z. Jensen, Leendert Vergeynst, Lorenz Meire, Thomas Juul-Pedersen, Kai Finster, Tina Šantl-Temkiv. Terrestrial runoff is an important source of biological ice-nucleating particles in Arctic marine systems. Atmospheric Chemistry and Physics 2025, 25 (6) , 3327-3346. https://doi.org/10.5194/acp-25-3327-2025
    8. Jessica A. Mirrielees, Rachel M. Kirpes, Emily J. Costa, Grace C. E. Porter, Benjamin J. Murray, Nurun N. Lata, Vanessa Boschi, Swarup China, Amanda M. Grannas, Andrew P. Ault, Patricia A. Matrai, Kerri A. Pratt. Marine aerosol generation experiments in the High Arctic during summertime. Elem Sci Anth 2024, 12 (1) https://doi.org/10.1525/elementa.2023.00134
    9. Minglan Xu, Narcisse Tsona Tchinda, Siyang Li, Lin Du. Enhanced saccharide enrichment in sea spray aerosols by coupling surface-active fatty acids. Science of The Total Environment 2024, 916 , 170322. https://doi.org/10.1016/j.scitotenv.2024.170322
    10. Madison M. Smith, Hélène Angot, Emelia J. Chamberlain, Elise S. Droste, Salar Karam, Morven Muilwijk, Alison L. Webb, Stephen D. Archer, Ivo Beck, Byron W. Blomquist, Jeff Bowman, Matthew Boyer, Deborah Bozzato, Melissa Chierici, Jessie Creamean, Alessandra D’Angelo, Bruno Delille, Ilker Fer, Allison A. Fong, Agneta Fransson, Niels Fuchs, Jessie Gardner, Mats A. Granskog, Clara J. M. Hoppe, Mario Hoppema, Mario Hoppmann, Thomas Mock, Sofia Muller, Oliver Müller, Marcel Nicolaus, Daiki Nomura, Tuukka Petäjä, Evgenii Salganik, Julia Schmale, Katrin Schmidt, Kirstin M. Schulz, Matthew D. Shupe, Jacqueline Stefels, Linda Thielke, Sandra Tippenhauer, Adam Ulfsbo, Maria van Leeuwe, Melinda Webster, Masaki Yoshimura, Liyang Zhan. Thin and transient meltwater layers and false bottoms in the Arctic sea ice pack—Recent insights on these historically overlooked features. Elem Sci Anth 2023, 11 (1) https://doi.org/10.1525/elementa.2023.00025
    11. Anne E. Perring, Braden Mediavilla, G. Dewey Wilbanks, James H. Churnside, Richard Marchbanks, Kara D. Lamb, Ru‐Shan Gao. Airborne Bioaerosol Observations Imply a Strong Terrestrial Source in the Summertime Arctic. Journal of Geophysical Research: Atmospheres 2023, 128 (16) https://doi.org/10.1029/2023JD039165
    12. Albert Ansmann, Kevin Ohneiser, Ronny Engelmann, Martin Radenz, Hannes Griesche, Julian Hofer, Dietrich Althausen, Jessie M. Creamean, Matthew C. Boyer, Daniel A. Knopf, Sandro Dahlke, Marion Maturilli, Henriette Gebauer, Johannes Bühl, Cristofer Jimenez, Patric Seifert, Ulla Wandinger. Annual cycle of aerosol properties over the central Arctic during MOSAiC 2019–2020 – light-extinction, CCN, and INP levels from the boundary layer to the tropopause. Atmospheric Chemistry and Physics 2023, 23 (19) , 12821-12849. https://doi.org/10.5194/acp-23-12821-2023
    13. Sebastian Zeppenfeld, Manuela van Pinxteren, Markus Hartmann, Moritz Zeising, Astrid Bracher, Hartmut Herrmann. Marine carbohydrates in Arctic aerosol particles and fog – diversity of oceanic sources and atmospheric transformations. Atmospheric Chemistry and Physics 2023, 23 (24) , 15561-15587. https://doi.org/10.5194/acp-23-15561-2023
    14. Kevin C. H. Sze, Heike Wex, Markus Hartmann, Henrik Skov, Andreas Massling, Diego Villanueva, Frank Stratmann. Ice-nucleating particles in northern Greenland: annual cycles, biological contribution and parameterizations. Atmospheric Chemistry and Physics 2023, 23 (8) , 4741-4761. https://doi.org/10.5194/acp-23-4741-2023
    15. Jessie M. Creamean, Kevin Barry, Thomas C. J. Hill, Carson Hume, Paul J. DeMott, Matthew D. Shupe, Sandro Dahlke, Sascha Willmes, Julia Schmale, Ivo Beck, Clara J. M. Hoppe, Allison Fong, Emelia Chamberlain, Jeff Bowman, Randall Scharien, Ola Persson. Annual cycle observations of aerosols capable of ice formation in central Arctic clouds. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31182-x
    16. Iris Papakonstantinou‐Presvelou, Odran Sourdeval, Johannes Quaas. Strong Ocean/Sea‐Ice Contrasts Observed in Satellite‐Derived Ice Crystal Number Concentrations in Arctic Ice Boundary‐Layer Clouds. Geophysical Research Letters 2022, 49 (13) https://doi.org/10.1029/2022GL098207
    17. Manuela van Pinxteren, Tiera-Brandy Robinson, Sebastian Zeppenfeld, Xianda Gong, Enno Bahlmann, Khanneh Wadinga Fomba, Nadja Triesch, Frank Stratmann, Oliver Wurl, Anja Engel, Heike Wex, Hartmut Herrmann. High number concentrations of transparent exopolymer particles in ambient aerosol particles and cloud water – a case study at the tropical Atlantic Ocean. Atmospheric Chemistry and Physics 2022, 22 (8) , 5725-5742. https://doi.org/10.5194/acp-22-5725-2022
    18. Theresa Barthelmeß, Anja Engel. How biogenic polymers control surfactant dynamics in the surface microlayer: insights from a coastal Baltic Sea study. Biogeosciences 2022, 19 (20) , 4965-4992. https://doi.org/10.5194/bg-19-4965-2022
    19. Kimberly A. Carter-Fenk, Abigail C. Dommer, Michelle E. Fiamingo, Jeongin Kim, Rommie E. Amaro, Heather C. Allen. Calcium bridging drives polysaccharide co-adsorption to a proxy sea surface microlayer. Physical Chemistry Chemical Physics 2021, 23 (30) , 16401-16416. https://doi.org/10.1039/D1CP01407B
    20. Markus Hartmann, Xianda Gong, Simonas Kecorius, Manuela van Pinxteren, Teresa Vogl, André Welti, Heike Wex, Sebastian Zeppenfeld, Hartmut Herrmann, Alfred Wiedensohler, Frank Stratmann. Terrestrial or marine – indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7° N. Atmospheric Chemistry and Physics 2021, 21 (15) , 11613-11636. https://doi.org/10.5194/acp-21-11613-2021
    21. Jessie M. Creamean, Julio E. Ceniceros, Lilyanna Newman, Allyson D. Pace, Thomas C. J. Hill, Paul J. DeMott, Matthew E. Rhodes. Evaluating the potential for Haloarchaea to serve as ice nucleating particles. Biogeosciences 2021, 18 (12) , 3751-3762. https://doi.org/10.5194/bg-18-3751-2021
    22. Jessie M Creamean, Thomas C J Hill, Paul J DeMott, Jun Uetake, Sonia Kreidenweis, Thomas A Douglas. Thawing permafrost: an overlooked source of seeds for Arctic cloud formation. Environmental Research Letters 2020, 15 (8) , 084022. https://doi.org/10.1088/1748-9326/ab87d3
    23. M. Hartmann, K. Adachi, O. Eppers, C. Haas, A. Herber, R. Holzinger, A. Hünerbein, E. Jäkel, C. Jentzsch, M. van Pinxteren, H. Wex, S. Willmes, F. Stratmann. Wintertime Airborne Measurements of Ice Nucleating Particles in the High Arctic: A Hint to a Marine, Biogenic Source for Ice Nucleating Particles. Geophysical Research Letters 2020, 47 (13) https://doi.org/10.1029/2020GL087770
    24. Elise K. Wilbourn, Daniel C. O. Thornton, Catherine Ott, Jason Graff, Patricia K. Quinn, Timothy S. Bates, Raghu Betha, Lynn M. Russell, Michael J. Behrenfeld, Sarah D. Brooks. Ice Nucleation by Marine Aerosols Over the North Atlantic Ocean in Late Spring. Journal of Geophysical Research: Atmospheres 2020, 125 (4) https://doi.org/10.1029/2019JD030913
    25. Martin J. Wolf, Megan Goodell, Eric Dong, Lilian A. Dove, Cuiqi Zhang, Lesly J. Franco, Chuanyang Shen, Emma G. Rutkowski, Domenic N. Narducci, Susan Mullen, Andrew R. Babbin, Daniel J. Cziczo. A link between the ice nucleation activity and the biogeochemistry of seawater. Atmospheric Chemistry and Physics 2020, 20 (23) , 15341-15356. https://doi.org/10.5194/acp-20-15341-2020
    26. Sebastian Zeppenfeld, Manuela van Pinxteren, Anja Engel, Hartmut Herrmann. A protocol for quantifying mono- and polysaccharides in seawater and related saline matrices by electro-dialysis (ED) – combined with HPAEC-PAD. Ocean Science 2020, 16 (4) , 817-830. https://doi.org/10.5194/os-16-817-2020

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2019, 53, 15, 8747–8756
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.est.9b01469
    Published June 28, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    907

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.