ACS Publications. Most Trusted. Most Cited. Most Read
Estimating Daily PM2.5 and PM10 over Italy Using an Ensemble Model
My Activity

Figure 1Loading Img
    Article

    Estimating Daily PM2.5 and PM10 over Italy Using an Ensemble Model
    Click to copy article linkArticle link copied!

    • Alexandra Shtein*
      Alexandra Shtein
      Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
      *E-mail: [email protected]
    • Itai Kloog
      Itai Kloog
      Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
      More by Itai Kloog
    • Joel Schwartz
      Joel Schwartz
      Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston 02115, Massachusetts, United States
    • Camillo Silibello
      Camillo Silibello
      ARIANET s.r.l., Milano 20128, Italy
    • Paola Michelozzi
      Paola Michelozzi
      Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Rome 00147, Italy
    • Claudio Gariazzo
      Claudio Gariazzo
      Occupational and Environmental Medicine, Epidemiology and Hygiene Department, Italian Workers’ Compensation Authority (INAIL), Monte Porzio Catone (RM) 00078, Italy
    • Giovanni Viegi
      Giovanni Viegi
      Institute for Biomedical Research and Innovation, National Research Council, Palermo 90146, Italy
    • Francesco Forastiere
      Francesco Forastiere
      Institute for Biomedical Research and Innovation, National Research Council, Palermo 90146, Italy
      Environmental Research Group, King’s College, London SE1 9NH, U.K.
    • Arnon Karnieli
      Arnon Karnieli
      Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel
    • Allan C. Just
      Allan C. Just
      Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
    • Massimo Stafoggia
      Massimo Stafoggia
      Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Rome 00147, Italy
      Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
    Other Access OptionsSupporting Information (1)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2020, 54, 1, 120–128
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.est.9b04279
    Published November 21, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Spatiotemporally resolved particulate matter (PM) estimates are essential for reconstructing long and short-term exposures in epidemiological research. Improved estimates of PM2.5 and PM10 concentrations were produced over Italy for 2013–2015 using satellite remote-sensing data and an ensemble modeling approach. The following modeling stages were used: (1) missing values of the satellite-based aerosol optical depth (AOD) product were imputed using a spatiotemporal land-use random-forest (RF) model incorporating AOD data from atmospheric ensemble models; (2) daily PM estimations were produced using four modeling approaches: linear mixed effects, RF, extreme gradient boosting, and a chemical transport model, the flexible air quality regional model. The filled-in MAIAC AOD together with additional spatial and temporal predictors were used as inputs in the three first models; (3) a geographically weighted generalized additive model (GAM) ensemble model was used to fuse the estimations from the four models by allowing the weights of each model to vary over space and time. The GAM ensemble model outperformed the four separate models, decreasing the cross-validated root mean squared error by 1–42%, depending on the model. The spatiotemporally resolved PM estimations produced by the suggested model can be applied in future epidemiological studies across Italy.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.9b04279.

    • Study area map, detailed description of predictors, modelling stages flowchart, details of machine learning models and the CTM, cross-validation framework, summary statistics of PM10 and PM2.5 concentrations, map of PM2.5 monitors spread along geoclimatic zones, spatial variation in the effect of different learners on PM2.5 concentrations within the GAM model, variably in performance between different station types and different zones, distribution of the percent of relative errors for the GAM ensemble model estimations, maps of mean PM10 concentrations for 2013–2015 around metropolitan areas (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 81 publications.

    1. Su Shi, Renjie Chen, Peng Wang, Hongliang Zhang, Haidong Kan, Xia Meng. An Ensemble Machine Learning Model to Enhance Extrapolation Ability of Predicting Coarse Particulate Matter with High Resolutions in China. Environmental Science & Technology 2024, 58 (43) , 19325-19337. https://doi.org/10.1021/acs.est.4c08610
    2. Li Wen, Ning Kang, Lijie Wang, Qiannan Wei, Hedi Zhang, Jianling Shen, Dingli Yue, Yuhong Zhai, Weiwei Lin. High-Resolution Spatiotemporal Modeling for PM2.5 Major Components in the Pearl River Delta and Its Implications for Epidemiological Studies. Environmental Science & Technology 2024, 58 (25) , 10920-10931. https://doi.org/10.1021/acs.est.3c11091
    3. Dominic Royé, Carmen Íñiguez, Aurelio Tobías. Comparison of Air Pollution–Mortality Associations Using Observed Particulate Matter Concentrations and Reanalysis Data in 33 Spanish Cities. Environment & Health 2024, 2 (3) , 161-169. https://doi.org/10.1021/envhealth.3c00128
    4. Yifan Wen, Shaojun Zhang, Yuan Wang, Jiani Yang, Liyin He, Ye Wu, Jiming Hao. Dynamic Traffic Data in Machine-Learning Air Quality Mapping Improves Environmental Justice Assessment. Environmental Science & Technology 2024, 58 (7) , 3118-3128. https://doi.org/10.1021/acs.est.3c07545
    5. Xiang Ren, Zhongyuan Mi, Ting Cai, Christopher G. Nolte, Panos G. Georgopoulos. Flexible Bayesian Ensemble Machine Learning Framework for Predicting Local Ozone Concentrations. Environmental Science & Technology 2022, 56 (7) , 3871-3883. https://doi.org/10.1021/acs.est.1c04076
    6. Anton Beloconi, Penelope Vounatsou. Substantial Reduction in Particulate Matter Air Pollution across Europe during 2006–2019: A Spatiotemporal Modeling Analysis. Environmental Science & Technology 2021, 55 (22) , 15505-15518. https://doi.org/10.1021/acs.est.1c03748
    7. Alaa Mhawish, Tirthankar Banerjee, Meytar Sorek-Hamer, Muhammad Bilal, Alexei I. Lyapustin, Robert Chatfield, David M. Broday. Estimation of High-Resolution PM2.5 over the Indo-Gangetic Plain by Fusion of Satellite Data, Meteorology, and Land Use Variables. Environmental Science & Technology 2020, 54 (13) , 7891-7900. https://doi.org/10.1021/acs.est.0c01769
    8. Yun Hang, Qiang Pu, Qiao Zhu, Xia Meng, Zhihao Jin, Fengchao Liang, Hezhong Tian, Tiantian Li, Tijian Wang, Junji Cao, Qingyan Fu, Sagnik Dey, Shenshen Li, Kan Huang, Haidong Kan, Xiaoming Shi, Yang Liu. Application of multi-angle spaceborne observations in characterizing the long-term particulate organic carbon pollution in China. Science of The Total Environment 2025, 958 , 177883. https://doi.org/10.1016/j.scitotenv.2024.177883
    9. Sombor Borjigen, Fengji Zhang, Yong Zha, Min Shao, SuYang Wang, Qing Mu. DNN model reveals sharp decline in PM 2.5 concentration in the Yangtze River Delta during COVID-19 lockdown and lift lockdown. Geomatics, Natural Hazards and Risk 2024, 15 (1) https://doi.org/10.1080/19475705.2024.2378186
    10. Huangyuan Tan, Yumin Chen, Feiyue Mao, John P. Wilson, Tengfei Zhang, Xiana Cui, Zhanghui Li. PM 2.5 estimation and its relationship with NO 2 and SO 2 in China from 2016 to 2020. International Journal of Digital Earth 2024, 17 (1) , 1-20. https://doi.org/10.1080/17538947.2024.2398055
    11. Jiawei Wang. A novel ensemble machine learning exposure model system for ground-level ozone at the national scale: A case of mainland China from 2013 to 2020. Environmental Impact Assessment Review 2024, 109 , 107630. https://doi.org/10.1016/j.eiar.2024.107630
    12. Shin Araki, Hikari Shimadera, Satoru Chatani, Kyo Kitayama, Masayuki Shima. Long-term spatiotemporal variation of benzo[a]pyrene in Japan: Significant decrease in ambient concentrations, human exposure, and health risk. Environmental Pollution 2024, 360 , 124650. https://doi.org/10.1016/j.envpol.2024.124650
    13. Arturo de la Cruz Libardi, Pierre Masselot, Rochelle Schneider, Emily Nightingale, Ai Milojevic, Jacopo Vanoli, Malcolm N. Mistry, Antonio Gasparrini. High resolution mapping of nitrogen dioxide and particulate matter in Great Britain (2003–2021) with multi-stage data reconstruction and ensemble machine learning methods. Atmospheric Pollution Research 2024, 15 (11) , 102284. https://doi.org/10.1016/j.apr.2024.102284
    14. Heng Su, Yumin Chen, Huangyuan Tan, John P. Wilson, Lanhua Bao, Ruoxuan Chen, Jiaxin Luo. An improved geographic pattern based residual neural network model for estimating PM2.5 concentrations. International Journal of Applied Earth Observation and Geoinformation 2024, 134 , 104174. https://doi.org/10.1016/j.jag.2024.104174
    15. Shanmuka Sai Kumar Padimala, Chandra Sekhar Matli. A comprehensive review delineates advancements in retrieving particulate matter utilising satellite aerosol optical depth: Parameter consideration, data processing, models development and future perspectives. Atmospheric Research 2024, 308 , 107514. https://doi.org/10.1016/j.atmosres.2024.107514
    16. Amjad Alkhodaidi, Afraa Attiah, Alaa Mhawish, Abeer Hakeem. The Role of Machine Learning in Enhancing Particulate Matter Estimation: A Systematic Literature Review. Technologies 2024, 12 (10) , 198. https://doi.org/10.3390/technologies12100198
    17. Guillaume Barbalat, Ian Hough, Michael Dorman, Johanna Lepeule, Itai Kloog. A multi-resolution ensemble model of three decision-tree-based algorithms to predict daily NO2 concentration in France 2005–2022. Environmental Research 2024, 257 , 119241. https://doi.org/10.1016/j.envres.2024.119241
    18. Lingtong Meng, Xiangqing Xu, Xiaona Huang, Xinju Li, Xiaoyan Chang, Dongyun Xu. High-resolution estimation of PM2.5 concentrations across China using multiple machine learning approaches and model fusion. Atmospheric Pollution Research 2024, 15 (6) , 102110. https://doi.org/10.1016/j.apr.2024.102110
    19. Nurul Amalin Fatihah Kamarul Zaman, Kasturi Devi Kanniah, Dimitris G. Kaskaoutis, Mohd Talib Latif. Improving the quantification of fine particulates (PM2.5) concentrations in Malaysia using simplified and computationally efficient models. Journal of Cleaner Production 2024, 448 , 141559. https://doi.org/10.1016/j.jclepro.2024.141559
    20. Siddhartha Mandal, Ajit Rajiva, Itai Kloog, Jyothi S Menon, Kevin J Lane, Heresh Amini, Gagandeep K Walia, Shweta Dixit, Amruta Nori-Sarma, Anubrati Dutta, Praggya Sharma, Suganthi Jaganathan, Kishore K Madhipatla, Gregory A Wellenius, Jeroen de Bont, Chandra Venkataraman, Dorairaj Prabhakaran, Poornima Prabhakaran, Petter Ljungman, Joel Schwartz, . Nationwide estimation of daily ambient PM2.5 from 2008 to 2020 at 1 km2 in India using an ensemble approach. PNAS Nexus 2024, 3 (3) https://doi.org/10.1093/pnasnexus/pgae088
    21. Wilawan Kumharn, Sumridh Sudhibrabha, Kesrin Hanprasert, Serm Janjai, Itsara Masiri, Sumaman Buntoung, Somjet Pattarapanitchai, Rungrat Wattan, Choedtrakool Homchampa, Terathan Srimaha, Oradee Pilahome, Waichaya Nissawan, Yuttapichai Jankondee. Estimating hourly full-coverage PM2.5 concentrations model based on MODIS data over the northeast of Thailand. Modeling Earth Systems and Environment 2024, 10 (1) , 1273-1280. https://doi.org/10.1007/s40808-023-01839-7
    22. Yu Ding, Siwei Li, Jia Xing, Xi Li, Xin Ma, Ge Song, Mengfan Teng, Jie Yang, Jiaxin Dong, Shiyao Meng. Retrieving hourly seamless PM2.5 concentration across China with physically informed spatiotemporal connection. Remote Sensing of Environment 2024, 301 , 113901. https://doi.org/10.1016/j.rse.2023.113901
    23. Zhiguo Zhang, Christer Johansson, Magnuz Engardt, Massimo Stafoggia, Xiaoliang Ma. Improving 3-day deterministic air pollution forecasts using machine learning algorithms. Atmospheric Chemistry and Physics 2024, 24 (2) , 807-851. https://doi.org/10.5194/acp-24-807-2024
    24. Angelo Riccio, Elena Chianese. Technical note: Accurate, reliable, and high-resolution air quality predictions by improving the Copernicus Atmosphere Monitoring Service using a novel statistical post-processing method. Atmospheric Chemistry and Physics 2024, 24 (3) , 1673-1689. https://doi.org/10.5194/acp-24-1673-2024
    25. George William Kibirige, Chiao Cheng Huang, Chao Lin Liu, Meng Chang Chen. Influence of land-sea breeze on PM$$_{2.5}$$ prediction in central and southern Taiwan using composite neural network. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-29845-w
    26. Amirhossein Hassani, Sebastian Bykuć, Philipp Schneider, Paweł Zawadzki, Patryk Chaja, Núria Castell. Low-cost sensors and Machine Learning aid in identifying environmental factors affecting particulate matter emitted by household heating. Atmospheric Environment 2023, 314 , 120108. https://doi.org/10.1016/j.atmosenv.2023.120108
    27. Carles Milà, Joan Ballester, Xavier Basagaña, Mark J. Nieuwenhuijsen, Cathryn Tonne. Estimating daily air temperature and pollution in Catalonia: A comprehensive spatiotemporal modelling of multiple exposures. Environmental Pollution 2023, 337 , 122501. https://doi.org/10.1016/j.envpol.2023.122501
    28. Zhiguo Zhang, Xiaoliang Ma, Christer Johansson, Junchen Jin, Magnuz Engardt. A Meta-Graph Deep Learning Framework for Forecasting Air Pollutants in Stockholm. 2023, 01-06. https://doi.org/10.1109/WF-IoT58464.2023.10539442
    29. Brian T. Dinkelacker, Pablo Garcia Rivera, Julian D. Marshall, Peter J. Adams, Spyros N. Pandis. High-resolution downscaling of source resolved PM2.5 predictions using machine learning models. Atmospheric Environment 2023, 310 , 119967. https://doi.org/10.1016/j.atmosenv.2023.119967
    30. Pimchanok Wongnakae, Pakkapong Chitchum, Rungduen Sripramong, Arthit Phosri. Application of satellite remote sensing data and random forest approach to estimate ground-level PM2.5 concentration in Northern region of Thailand. Environmental Science and Pollution Research 2023, 30 (38) , 88905-88917. https://doi.org/10.1007/s11356-023-28698-0
    31. Bo Li, Cheng Liu, Qihou Hu, Mingzhai Sun, Chengxin Zhang, Yizhi Zhu, Ting Liu, Yike Guo, Gregory R. Carmichael, Meng Gao. A Deep Learning Approach to Increase the Value of Satellite Data for PM2.5 Monitoring in China. Remote Sensing 2023, 15 (15) , 3724. https://doi.org/10.3390/rs15153724
    32. Jie Li, Lanjia Pan, Zhiwei Li, Yin Wang. Unveiling the migration of Cr and Cd to biochar from pyrolysis of manure and sludge using machine learning. Science of The Total Environment 2023, 885 , 163895. https://doi.org/10.1016/j.scitotenv.2023.163895
    33. Sara Maio, Salvatore Fasola, Alessandro Marcon, Anna Angino, Sandra Baldacci, Maria Beatrice Bilò, Roberto Bono, Stefania La Grutta, Pierpaolo Marchetti, Giuseppe Sarno, Giulia Squillacioti, Ilaria Stanisci, Pietro Pirina, Sofia Tagliaferro, Giuseppe Verlato, Simona Villani, Claudio Gariazzo, Massimo Stafoggia, Giovanni Viegi. Relationship of long-term air pollution exposure with asthma and rhinitis in Italy: an innovative multipollutant approach. Environmental Research 2023, 224 , 115455. https://doi.org/10.1016/j.envres.2023.115455
    34. George William Kibirige, Ming-Chuan Yang, Chao-Lin Liu, Meng Chang Chen, . Using satellite data on remote transportation of air pollutants for PM2.5 prediction in northern Taiwan. PLOS ONE 2023, 18 (3) , e0282471. https://doi.org/10.1371/journal.pone.0282471
    35. Tin Thongthammachart, Hikari Shimadera, Shin Araki, Tomohito Matsuo, Akira Kondo. Land use regression model established using Light Gradient Boosting Machine incorporating the WRF/CMAQ model for highly accurate spatiotemporal PM2.5 estimation in the central region of Thailand. Atmospheric Environment 2023, 297 , 119595. https://doi.org/10.1016/j.atmosenv.2023.119595
    36. Pei-Yi Wong, Huey-Jen Su, Shih-Chun Candice Lung, Chih-Da Wu. An ensemble mixed spatial model in estimating long-term and diurnal variations of PM2.5 in Taiwan. Science of The Total Environment 2023, 866 , 161336. https://doi.org/10.1016/j.scitotenv.2022.161336
    37. Wenhua Yu, Tingting Ye, Yiwen Zhang, Rongbin Xu, Yadong Lei, Zhuying Chen, Zhengyu Yang, Yuxi Zhang, Jiangning Song, Xu Yue, Shanshan Li, Yuming Guo. Global estimates of daily ambient fine particulate matter concentrations and unequal spatiotemporal distribution of population exposure: a machine learning modelling study. The Lancet Planetary Health 2023, 7 (3) , e209-e218. https://doi.org/10.1016/S2542-5196(23)00008-6
    38. Debao Chen, Hong Guo, Xingfa Gu, Tianhai Cheng, Jian Yang, Yulin Zhan, Xiangqin Wei. A Spatial Neighborhood Deep Neural Network Model for PM 2.5 Estimation Across China. IEEE Transactions on Geoscience and Remote Sensing 2023, 61 , 1-15. https://doi.org/10.1109/TGRS.2023.3317905
    39. Su Shi, Weidong Wang, Xinyue Li, Yun Hang, Jian Lei, Haidong Kan, Xia Meng. Optimizing modeling windows to better capture the long-term variation of PM2.5 concentrations in China during 2005–2019. Science of The Total Environment 2023, 854 , 158624. https://doi.org/10.1016/j.scitotenv.2022.158624
    40. Xiangyu Jiang, Youngseob Eum, Eun-Hye Yoo. The impact of fire-specific PM2.5 calibration on health effect analyses. Science of The Total Environment 2023, 857 , 159548. https://doi.org/10.1016/j.scitotenv.2022.159548
    41. Shuqin Jia, Min Han, Chengkun Zhang. Long short-term memory network model to estimate PM2.5 concentrations with missing-filled satellite data in Beijing. Stochastic Environmental Research and Risk Assessment 2022, 36 (12) , 4175-4184. https://doi.org/10.1007/s00477-022-02253-8
    42. Abdulwaheed Tella, Abdul-Lateef Balogun. GIS-based air quality modelling: spatial prediction of PM10 for Selangor State, Malaysia using machine learning algorithms. Environmental Science and Pollution Research 2022, 29 (57) , 86109-86125. https://doi.org/10.1007/s11356-021-16150-0
    43. Serdar Gündoğdu, Gizem Tuna Tuygun, Zhanqing Li, Jing Wei, Tolga Elbir. Estimating daily PM2.5 concentrations using an extreme gradient boosting model based on VIIRS aerosol products over southeastern Europe. Air Quality, Atmosphere & Health 2022, 15 (12) , 2185-2198. https://doi.org/10.1007/s11869-022-01245-5
    44. Qiang Pu, Eun-Hye Yoo. A gap-filling hybrid approach for hourly PM2.5 prediction at high spatial resolution from multi-sourced AOD data. Environmental Pollution 2022, 315 , 120419. https://doi.org/10.1016/j.envpol.2022.120419
    45. Oluwaseyi Olalekan Arowosegbe, Martin Röösli, Nino Künzli, Apolline Saucy, Temitope C. Adebayo-Ojo, Joel Schwartz, Moses Kebalepile, Mohamed Fareed Jeebhay, Mohamed Aqiel Dalvie, Kees de Hoogh. Ensemble averaging using remote sensing data to model spatiotemporal PM10 concentrations in sparsely monitored South Africa. Environmental Pollution 2022, 310 , 119883. https://doi.org/10.1016/j.envpol.2022.119883
    46. Jun Chai, Jun Song, Yawen Xu, Le Zhang, Bing Guo, . Enhancing the Applicability of Satellite Remote Sensing for PM 2.5 Estimation Using Machine Learning Models in China. Journal of Sensors 2022, 2022 , 1-8. https://doi.org/10.1155/2022/7148682
    47. Pei-Yi Wong, Hsiao-Yun Lee, Ling-Jyh Chen, Yu-Cheng Chen, Nai-Tzu Chen, Shih-Chun Candice Lung, Huey-Jen Su, Chih-Da Wu, Jose Guillermo Cedeno Laurent, Gary Adamkiewicz, John D. Spengler. An alternative approach for estimating large-area indoor PM2.5 concentration – A case study of schools. Building and Environment 2022, 219 , 109249. https://doi.org/10.1016/j.buildenv.2022.109249
    48. Rong Guo, Ying Qi, Bu Zhao, Ziyu Pei, Fei Wen, Shun Wu, Qiang Zhang. High-Resolution Urban Air Quality Mapping for Multiple Pollutants Based on Dense Monitoring Data and Machine Learning. International Journal of Environmental Research and Public Health 2022, 19 (13) , 8005. https://doi.org/10.3390/ijerph19138005
    49. Massimo Stafoggia, Giorgio Cattani, Carla Ancona, Antonio Gasparrini, Andrea Ranzi. Comment on “Deep Ensemble Machine Learning Framework for the Estimation of PM2.5 Concentrations”. Environmental Health Perspectives 2022, 130 (6) https://doi.org/10.1289/EHP11385
    50. Siqin Zhou, Yuan Wang, Qiangqiang Yuan, Linwei Yue, Liangpei Zhang. Spatiotemporal estimation of 6-hour high-resolution precipitation across China based on Himawari-8 using a stacking ensemble machine learning model. Journal of Hydrology 2022, 609 , 127718. https://doi.org/10.1016/j.jhydrol.2022.127718
    51. Shin Araki, Hikari Shimadera, Hideki Hasunuma, Yoshiko Yoda, Masayuki Shima. Predicting Daily PM2.5 Exposure with Spatially Invariant Accuracy Using Co-Existing Pollutant Concentrations as Predictors. Atmosphere 2022, 13 (5) , 782. https://doi.org/10.3390/atmos13050782
    52. Xiaomin Hu, Jing Zhang, Wenhao Xue, Lihua Zhou, Yunfei Che, Tian Han. Estimation of the Near-Surface Ozone Concentration with Full Spatiotemporal Coverage across the Beijing-Tianjin-Hebei Region Based on Extreme Gradient Boosting Combined with a WRF-Chem Model. Atmosphere 2022, 13 (4) , 632. https://doi.org/10.3390/atmos13040632
    53. Yan Xia, Linhui Jiang, Lu Wang, Xue Chen, Jianjie Ye, Tangyan Hou, Liqiang Wang, Yibo Zhang, Mengying Li, Zhen Li, Zhe Song, Yaping Jiang, Weiping Liu, Pengfei Li, Daniel Rosenfeld, John H. Seinfeld, Shaocai Yu. Rapid assessments of light-duty gasoline vehicle emissions using on-road remote sensing and machine learning. Science of The Total Environment 2022, 815 , 152771. https://doi.org/10.1016/j.scitotenv.2021.152771
    54. Wenhua Yu, Shanshan Li, Tingting Ye, Rongbin Xu, Jiangning Song, Yuming Guo. Deep Ensemble Machine Learning Framework for the Estimation of PM2.5 Concentrations. Environmental Health Perspectives 2022, 130 (3) https://doi.org/10.1289/EHP9752
    55. Li Fang, Jianbing Jin, Arjo Segers, Hai Xiang Lin, Mijie Pang, Cong Xiao, Tuo Deng, Hong Liao. Development of a regional feature selection-based machine learning system (RFSML v1.0) for air pollution forecasting over China. Geoscientific Model Development 2022, 15 (20) , 7791-7807. https://doi.org/10.5194/gmd-15-7791-2022
    56. Soyoung Park, Sanghun Son, Jaegu Bae, Doi Lee, Jae-Jin Kim, Jinsoo Kim. Robust Spatiotemporal Estimation of PM Concentrations Using Boosting-Based Ensemble Models. Sustainability 2021, 13 (24) , 13782. https://doi.org/10.3390/su132413782
    57. Ian Hough, Ron Sarafian, Alexandra Shtein, Bin Zhou, Johanna Lepeule, Itai Kloog. Gaussian Markov random fields improve ensemble predictions of daily 1 km PM2.5 and PM10 across France. Atmospheric Environment 2021, 264 , 118693. https://doi.org/10.1016/j.atmosenv.2021.118693
    58. Yuan Wang, Qiangqiang Yuan, Tongwen Li, Siyu Tan, Liangpei Zhang. Full-coverage spatiotemporal mapping of ambient PM2.5 and PM10 over China from Sentinel-5P and assimilated datasets: Considering the precursors and chemical compositions. Science of The Total Environment 2021, 793 , 148535. https://doi.org/10.1016/j.scitotenv.2021.148535
    59. Ibrahim Khalil Umar, Vahid Nourani, Hüseyin Gökçekuş. A novel multi-model data-driven ensemble approach for the prediction of particulate matter concentration. Environmental Science and Pollution Research 2021, 28 (36) , 49663-49677. https://doi.org/10.1007/s11356-021-14133-9
    60. Chau-Ren Jung, Wei-Ting Chen, Shoji F. Nakayama. A National-Scale 1-km Resolution PM2.5 Estimation Model over Japan Using MAIAC AOD and a Two-Stage Random Forest Model. Remote Sensing 2021, 13 (18) , 3657. https://doi.org/10.3390/rs13183657
    61. Xinghan Xu, Chengkun Zhang, Yi Liang. Review of satellite-driven statistical models PM 2.5 concentration estimation with comprehensive information. Atmospheric Environment 2021, 256 , 118302. https://doi.org/10.1016/j.atmosenv.2021.118302
    62. Camillo Silibello, Giuseppe Carlino, Massimo Stafoggia, Claudio Gariazzo, Sandro Finardi, Nicola Pepe, Paola Radice, Francesco Forastiere, Giovanni Viegi. Spatial-temporal prediction of ambient nitrogen dioxide and ozone levels over Italy using a Random Forest model for population exposure assessment. Air Quality, Atmosphere & Health 2021, 14 (6) , 817-829. https://doi.org/10.1007/s11869-021-00981-4
    63. Pei-Yi Wong, Hsiao-Yun Lee, Yu-Cheng Chen, Yu-Ting Zeng, Yinq-Rong Chern, Nai-Tzu Chen, Shih-Chun Candice Lung, Huey-Jen Su, Chih-Da Wu. Using a land use regression model with machine learning to estimate ground level PM2.5. Environmental Pollution 2021, 277 , 116846. https://doi.org/10.1016/j.envpol.2021.116846
    64. Ying Zhang, Zhengqiang Li, Kaixu Bai, Yuanyuan Wei, Yisong Xie, Yuanxun Zhang, Yang Ou, Jason Cohen, Yuhuan Zhang, Zongren Peng, Xingying Zhang, Cheng Chen, Jin Hong, Hua Xu, Jie Guang, Yang Lv, Kaitao Li, Donghui Li. Satellite remote sensing of atmospheric particulate matter mass concentration: Advances, challenges, and perspectives. Fundamental Research 2021, 1 (3) , 240-258. https://doi.org/10.1016/j.fmre.2021.04.007
    65. Binjie Chen, Shixue You, Yang Ye, Yongyong Fu, Ziran Ye, Jinsong Deng, Ke Wang, Yang Hong. An interpretable self-adaptive deep neural network for estimating daily spatially-continuous PM2.5 concentrations across China. Science of The Total Environment 2021, 768 , 144724. https://doi.org/10.1016/j.scitotenv.2020.144724
    66. Daroonwan Kamthonkiat, Juthasinee Thanyapraneedkul, Nithima Nuengjumnong, Sarawut Ninsawat, Kessinee Unapumnuk, Tuong Thuy Vu. Identifying priority air pollution management areas during the burning season in Nan Province, Northern Thailand. Environment, Development and Sustainability 2021, 23 (4) , 5865-5884. https://doi.org/10.1007/s10668-020-00850-7
    67. Jianhua Yin, Feiyue Mao, Lin Zang, Jiangping Chen, Xin Lu, Jia Hong. Retrieving PM2.5 with high spatio-temporal coverage by TOA reflectance of Himawari-8. Atmospheric Pollution Research 2021, 12 (4) , 14-20. https://doi.org/10.1016/j.apr.2021.02.007
    68. Qiang Pu, Eun-Hye Yoo. Ground PM2.5 prediction using imputed MAIAC AOD with uncertainty quantification. Environmental Pollution 2021, 274 , 116574. https://doi.org/10.1016/j.envpol.2021.116574
    69. Binjie Chen, Yi Lin, Jinsong Deng, Zheyu Li, Li Dong, Yibo Huang, Ke Wang. Spatiotemporal dynamics and exposure analysis of daily PM2.5 using a remote sensing-based machine learning model and multi-time meteorological parameters. Atmospheric Pollution Research 2021, 12 (2) , 23-31. https://doi.org/10.1016/j.apr.2020.10.005
    70. Eun-hye Yoo, Qiang Pu, Youngseob Eum, Xiangyu Jiang. The Impact of Individual Mobility on Long-Term Exposure to Ambient PM2.5: Assessing Effect Modification by Travel Patterns and Spatial Variability of PM2.5. International Journal of Environmental Research and Public Health 2021, 18 (4) , 2194. https://doi.org/10.3390/ijerph18042194
    71. Claudio Gariazzo, Giuseppe Carlino, Camillo Silibello, Gianni Tinarelli, Matteo Renzi, Sandro Finardi, Nicola Pepe, Daniela Barbero, Paola Radice, Alessandro Marinaccio, Francesco Forastiere, Paola Michelozzi, Giovanni Viegi, Massimo Stafoggia, Ancona Carla, Angelini Paola, Argentini Stefania, Baldacci Sandra, Bisceglia Lucia, Bonafede Michela, Bonomo Sergio, Bonvicini Laura, Broccoli Serena, Brusasca Giuseppe, Bucci Simone, Calori Giuseppe, Carlino Giuseppe, Cernigliaro Achille, Chieti Antonio, Colacci Annamaria, de' Donato Francesca, Fasola Salvatore, Finardi Sandro, Forastiere Francesco, Galassi Claudia, Gariazzo Claudio, Giorgi Rossi Paolo, La Grutta Stefania, Licitra Gaetano, Maio Sara, Marinaccio Alessandro, Michelozzi Paola, Migliore Enrica, Moro Antonino, Nanni Alessandro, Ottone Marta, Parmagnani Federica, Pepe Nicola, Radice Paola, Ranzi Andrea, Renzi Matteo, Scondotto Salvatore, Scortichini Matteo, Silibello Camillo, Sozzi Roberto, Stafoggia Massimo, Tinarelli Gianni, Uboldi Francesco, Viegi Giovanni. Impact of different exposure models and spatial resolution on the long-term effects of air pollution. Environmental Research 2021, 192 , 110351. https://doi.org/10.1016/j.envres.2020.110351
    72. Hyung Joo Lee. Advancing Exposure Assessment of PM2.5 Using Satellite Remote Sensing: A Review. Asian Journal of Atmospheric Environment 2020, 14 (4) , 319-334. https://doi.org/10.5572/ajae.2020.14.4.319
    73. Qin He, Kai Qin, Jason Blake Cohen, Diego Loyola, Ding Li, Jincheng Shi, Yong Xue. Spatially and temporally coherent reconstruction of tropospheric NO 2 over China combining OMI and GOME-2B measurements. Environmental Research Letters 2020, 15 (12) , 125011. https://doi.org/10.1088/1748-9326/abc7df
    74. N Bruni Zani, G Lonati, M I Mead, M T Latif, P Crippa. Long-term satellite-based estimates of air quality and premature mortality in Equatorial Asia through deep neural networks. Environmental Research Letters 2020, 15 (10) , 104088. https://doi.org/10.1088/1748-9326/abb733
    75. Claudio Gariazzo, Giuseppe Carlino, Camillo Silibello, Matteo Renzi, Sandro Finardi, Nicola Pepe, Paola Radice, Francesco Forastiere, Paola Michelozzi, Giovanni Viegi, Massimo Stafoggia. A multi-city air pollution population exposure study: Combined use of chemical-transport and random-Forest models with dynamic population data. Science of The Total Environment 2020, 724 , 138102. https://doi.org/10.1016/j.scitotenv.2020.138102
    76. JoonHo Jang, Seungjae Shin, Hyunjin Lee, Il-Chul Moon. Forecasting the Concentration of Particulate Matter in the Seoul Metropolitan Area Using a Gaussian Process Model. Sensors 2020, 20 (14) , 3845. https://doi.org/10.3390/s20143845
    77. Bin Zhou, Evyatar Erell, Ian Hough, Alexandra Shtein, Allan C. Just, Victor Novack, Jonathan Rosenblatt, Itai Kloog. Estimation of Hourly near Surface Air Temperature Across Israel Using an Ensemble Model. Remote Sensing 2020, 12 (11) , 1741. https://doi.org/10.3390/rs12111741
    78. Shaohua Liao, Ya Zhao, Wencai Li, Lu Yang. Effect of Dust Fall in an Emerging Industrial City on the Growth of Eichhornia Crassipes. IOP Conference Series: Earth and Environmental Science 2020, 514 (5) , 052028. https://doi.org/10.1088/1755-1315/514/5/052028
    79. Muhammad Muhitur Rahman, Md Shafiullah, Syed Masiur Rahman, Abu Nasser Khondaker, Abduljamiu Amao, Md. Hasan Zahir. Soft Computing Applications in Air Quality Modeling: Past, Present, and Future. Sustainability 2020, 12 (10) , 4045. https://doi.org/10.3390/su12104045
    80. Massimo Stafoggia, Christer Johansson, Paul Glantz, Matteo Renzi, Alexandra Shtein, Kees de Hoogh, Itai Kloog, Marina Davoli, Paola Michelozzi, Tom Bellander. A Random Forest Approach to Estimate Daily Particulate Matter, Nitrogen Dioxide, and Ozone at Fine Spatial Resolution in Sweden. Atmosphere 2020, 11 (3) , 239. https://doi.org/10.3390/atmos11030239
    81. Shaked Yarza, Lior Hassan, Alexandra Shtein, Dan Lesser, Lena Novack, Itzhak Katra, Itai Kloog, Victor Novack. Novel Approaches to Air Pollution Exposure and Clinical Outcomes Assessment in Environmental Health Studies. Atmosphere 2020, 11 (2) , 122. https://doi.org/10.3390/atmos11020122

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2020, 54, 1, 120–128
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.est.9b04279
    Published November 21, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    2192

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.