ACS Publications. Most Trusted. Most Cited. Most Read
New Insights into 99Tc(VII) Removal by Pyrite: A Spectroscopic Approach
My Activity

Figure 1Loading Img
    Article

    New Insights into 99Tc(VII) Removal by Pyrite: A Spectroscopic Approach
    Click to copy article linkArticle link copied!

    • Diana M. Rodríguez
      Diana M. Rodríguez
      Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
    • Natalia Mayordomo*
      Natalia Mayordomo
      Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
      *E-mail: [email protected]. Tel.: +49 351 260 3487.
    • Andreas C. Scheinost
      Andreas C. Scheinost
      Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
      The Rossendorf Beamline (ROBL), 71, Avenue des Martyrs, 38043 Grenoble, France
    • Dieter Schild
      Dieter Schild
      Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
    • Vinzenz Brendler
      Vinzenz Brendler
      Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
    • Katharina Müller*
      Katharina Müller
      Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
      *E-mail: [email protected]. Tel.: +49 351 260 2439.
    • Thorsten Stumpf
      Thorsten Stumpf
      Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
    Other Access OptionsSupporting Information (1)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2020, 54, 5, 2678–2687
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.est.9b05341
    Published January 21, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    99Tc(VII) uptake by synthetic pure pyrite at 21 °C was studied in a wide pH range from 3.50 to 10.50 using batch experiments combined with scanning electron microscopy, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and Raman microscopy. We found that pyrite removes Tc quantitatively from solution (log Kd = 5.0 ± 0.1) within 1 day at pH ≥ 5.50 ± 0.08. At pH < 5.50 ± 0.08, the uptake process is slower, leading to 98% Tc removal (log Kd = 4.5 ± 0.1) after 35 days. The slower Tc uptake was explained by higher pyrite solubility under acidic conditions. After 2 months in contact with oxygen at pH 6.00 ± 0.07 and 10.00 ± 0.04, Tc was neither reoxidized nor redissolved. XAS showed that the uptake mechanism involves the reduction from Tc(VII) to Tc(IV) and subsequent inner-sphere complexation of Tc(IV)–Tc(IV) dimers onto a Fe oxide like hematite at pH 6.00 ± 0.07, and Tc(IV) incorporation into magnetite via Fe(III) substitution at pH 10.00 ± 0.04. Calculations of Fe speciation under the experimental conditions predict the formation of hematite at pH < 7.50 and magnetite at pH > 7.50, explaining the formation of the two different Tc species depending on the pH. XPS spectra showed the formation of TcSx at pH 10.00 ± 0.04, being a small fraction of a surface complex, potentially a transient phase in the total redox process.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.9b05341.

    • Pyrite solubility determination, X-ray powder diffraction, ζ-potential measurements, Raman microscopy and modeling; pyrite characterization, pH effect on pyrite solubility, pH adjustment; %Tc released to solution during the reoxidation assays; identification of Fe(III) minerals with SEM micrographs; Raman spectra of the pyrite + Tc 1000 ppm at pH 6; shell fit of the sorption complex; calculated iron speciation; S 2p XPS spectra; isotherms (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 27 publications.

    1. Carolina Guida, Vivien Ramothe, Anthony Chappaz, Pauline Simonnin, Kevin M. Rosso, Rong-Rong Ding, Damien Prieur, Andreas C. Scheinost, Laurent Charlet. Revisiting Selenium Interactions with Pyrite: From Adsorption to Coprecipitation. ACS Earth and Space Chemistry 2024, 8 (1) , 67-78. https://doi.org/10.1021/acsearthspacechem.3c00219
    2. Diana M. Rodríguez, Natalia Mayordomo, Andrés Parra-Puerto, Dieter Schild, Vinzenz Brendler, Thorsten Stumpf, Katharina Müller. Exploring the Reduction Mechanism of 99Tc(VII) in NaClO4: A Spectro-Electrochemical Approach. Inorganic Chemistry 2022, 61 (26) , 10159-10166. https://doi.org/10.1021/acs.inorgchem.2c01278
    3. Adam J. Williamson, Jonathan R. Lloyd, Christopher Boothman, Gareth T. W. Law, Samuel Shaw, Joe S. Small, Gianni F. Vettese, Heather A. Williams, Katherine Morris. Biogeochemical Cycling of 99Tc in Alkaline Sediments. Environmental Science & Technology 2021, 55 (23) , 15862-15872. https://doi.org/10.1021/acs.est.1c04416
    4. Norbert Maes, Sergey Churakov, Martin Glaus, Bart Baeyens, Rainer Dähn, Sylvain Grangeon, Laurent Charlet, Felix Brandt, Jenna Poonoosamy, Alwina Hoving, Vaclava Havlova, Cornelius Fischer, Ulrich Noseck, Susan Britz, Marja Siitari-Kauppi, Xiaodong Li, Otto Fabritius, Tiziana Missana. EURAD state-of-the-art report on the understanding of radionuclide retention and transport in clay and crystalline rocks. Frontiers in Nuclear Engineering 2024, 3 https://doi.org/10.3389/fnuen.2024.1417827
    5. Meiyun Xu, Song Gu, Fulong Chen, Zhe Zhao, Peng Liu, Daoben Hua. Rapid and scalable preparation of highly quaternized polymer networks to achieve efficient simultaneous adsorption of iodide and pertechnetate. Science China Chemistry 2024, 33 https://doi.org/10.1007/s11426-024-2236-1
    6. Haoqing Zhang, Bo Li, Xiaona Liu, Tianwei Qian, Dongye Zhao, Jianhui Wang, Lei Zhang, Ting Wang. Pyrite-stimulated bio-reductive immobilization of perrhenate: Insights from integrated biotic and abiotic perspectives. Water Research 2024, 262 , 122089. https://doi.org/10.1016/j.watres.2024.122089
    7. Wujian Jin, Mingliang Kang, Yixiao Kang, Jingye She, Danwen Qin, Hanyu Wu, Kehang Wu, Chao Chen, Hai Liu. Kinetics study on the temperature-dependent reduction of aqueous U(VI) by natural pyrite. Geochimica et Cosmochimica Acta 2024, 380 , 18-30. https://doi.org/10.1016/j.gca.2024.07.006
    8. Yanting Qian, Andreas C. Scheinost, Sylvain Grangeon, Alwina Hoving, Sergey V. Churakov, Maria Marques Fernandes. Influence of structural Fe content in clay minerals on selenite redox reactions: Kinetics and structural transformations. Geochimica et Cosmochimica Acta 2024, 377 , 19-33. https://doi.org/10.1016/j.gca.2024.05.012
    9. Yuri A. Ustynyuk, Nelly I. Zhokhova, Zoia A. Sizova, Valentine G. Nenajdenko. Recent progress in separation of technetium-99 from spent nuclear fuel and radioactive waste. Challenges and prospects. Coordination Chemistry Reviews 2024, 508 , 215759. https://doi.org/10.1016/j.ccr.2024.215759
    10. Mingliang Kang, Yixiao Kang, Wujian Jin, Jingye She, Danwen Qin, Hanyu Wu, Hanqin Weng, Chao Chen, Jiuqiang Li. Enhance U(VI) reduction on natural pyrite surfaces by gamma irradiation. Chemical Engineering Journal 2024, 489 , 151473. https://doi.org/10.1016/j.cej.2024.151473
    11. Erik Strub, Dennis Grödler, Daniele Zaratti, Clarence Yong, Lisa Dünnebier, Sonja Bazhenova, Maximilian Roca Jungfer, Martin Breugst, Markus Zegke. Pertechnetates – A Structural Study Across the Periodic Table. Chemistry – A European Journal 2024, 30 (26) https://doi.org/10.1002/chem.202400131
    12. K. I. Maslakov, A. Yu. Teterin, A. V. Safonov, A. V. Makarov, G. D. Artemiev, Yu. A. Teterin, S. V. Dvoriak. XPS determination of the oxidation state of 99Тс isotope absorbed on the surface of pirrhotite FenSn+1 and stibnite Sb2S3. Радиохимия 2024, 66 (2) https://doi.org/10.31857/S0033831124020039
    13. Hui Hu, Sizhuo Yu, Tian Wang, Chenguang Lv. Efficient and selective separation of Re(VII), an analogue of Tc(VII), by a defective biochar with honeycomb‐like porous structure. Journal of Chemical Technology & Biotechnology 2024, 99 (4) , 946-958. https://doi.org/10.1002/jctb.7598
    14. Marek Hupian, Michal Galamboš, Eva Viglašová, Oľga Rosskopfová, Vipul Vilas Kusumkar, Martin Daňo. Activated carbon treated with different chemical agents for pertechnetate adsorption. Journal of Radioanalytical and Nuclear Chemistry 2024, 333 (4) , 1815-1829. https://doi.org/10.1007/s10967-024-09399-5
    15. K. I. Maslakov, A. Yu. Teterin, A. V. Safonov, A. V. Makarov, G. D. Artemiev, Yu. A. Teterin, S. V. Dvoriak. XPS Determination of the Oxidation State of 99Тс Isotope Absorbed on the Surface of Pyrrhotite FenSn+1 and Stibnite Sb2S3. Radiochemistry 2024, 66 (2) , 145-155. https://doi.org/10.1134/S1066362224020036
    16. enwen Wang, Meiyun Xu, Peng Liu, Haisheng Yu, Linjuan Zhang, Daoben Hua. Voltage-regulated ion sieving assisted by a highly cationic polymer network achieves selective 99TcO4− adsorption with record-high capacity. Separation and Purification Technology 2024, 4 , 127294. https://doi.org/10.1016/j.seppur.2024.127294
    17. Anthony W. N. Kilber, Maxim I. Boyanov, Kenneth M. Kemner, Edward J. O’Loughlin. Interactions of Perrhenate (Re(VII)O4−) with Fe(II)-Bearing Minerals. Minerals 2024, 14 (2) , 181. https://doi.org/10.3390/min14020181
    18. Jianlong Wang, Bowen Xu. Removal of radionuclide 99Tc from aqueous solution by various adsorbents: A review. Journal of Environmental Radioactivity 2023, 270 , 107267. https://doi.org/10.1016/j.jenvrad.2023.107267
    19. Duan-Rui Cai, Heng Yan, Jun Han, Jun Wen, Chu-Ting Yang, Ning Wang. Efficient and selective removal of ReO 4 − from highly acid solutions by SnS nanoflowers: implications for TcO 4 − sequestration. Environmental Science: Nano 2023, 10 (5) , 1494-1503. https://doi.org/10.1039/D3EN00126A
    20. Ying Zhou, Yuanyuan Tang, Changzhong Liao, Minhua Su, Kaimin Shih. Recent advances toward structural incorporation for stabilizing heavy metal contaminants: A critical review. Journal of Hazardous Materials 2023, 448 , 130977. https://doi.org/10.1016/j.jhazmat.2023.130977
    21. Natalia Mayordomo, Diana M. Rodríguez, Vinzenz Brendler, André Rossberg, Andreas C. Scheinost, Dieter Schild, Irene Cardaio, Arkadz Bureika, Caroline Börner, Katharina Müller. Immobilization of technetium by iron corrosion phases: lessons learned and future perspectives. Safety of Nuclear Waste Disposal 2023, 2 , 155-156. https://doi.org/10.5194/sand-2-155-2023
    22. Makarov Alexey, Safonov Alexey, Sitanskaia Anastasiia, Martynov Konstantin, Zakharova Elena, Kulyukhin Sergey. Clay and carbon materials-based engineered barriers for technetium immobilization. Progress in Nuclear Energy 2022, 152 , 104398. https://doi.org/10.1016/j.pnucene.2022.104398
    23. Yuwei Xu, Yin Tian, Bo Chen, Zijun Yan, Jie Ding, Yalin Huang, Jinyang Kang, Shanyong Chen, Yongdong Jin, Chuanqin Xia. Porphyrin-based cationic conjugated network prepared by Zincke reaction and its adsorption for TcO4−/ReO4−. Journal of Radioanalytical and Nuclear Chemistry 2021, 330 (3) , 1165-1176. https://doi.org/10.1007/s10967-021-08039-6
    24. Diana M. Rodríguez, Natalia Mayordomo, Dieter Schild, Salim Shams Aldin Azzam, Vinzenz Brendler, Katharina Müller, Thorsten Stumpf. Reductive immobilization of 99Tc(VII) by FeS2: The effect of marcasite. Chemosphere 2021, 281 , 130904. https://doi.org/10.1016/j.chemosphere.2021.130904
    25. Dan Zhou, Yao Lin, Haoqi Long, Yuwei Xu, Bo Wang, Liang Xian, Chuanqin Xia, Xiandeng Hou, Chengbin Zheng. Simultaneous total and speciation analysis of rhenium by capillary electrophoresis-inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2021, 180 , 106211. https://doi.org/10.1016/j.sab.2021.106211
    26. Rahul Ram, Chris Kalnins, Mark I. Pownceby, Kathy Ehrig, Barbara Etschmann, Nigel Spooner, Joël Brugger. Selective radionuclide co-sorption onto natural minerals in environmental and anthropogenic conditions. Journal of Hazardous Materials 2021, 409 , 124989. https://doi.org/10.1016/j.jhazmat.2020.124989
    27. Katja Schmeide, André Rossberg, Frank Bok, Salim Shams Aldin Azzam, Stephan Weiss, Andreas C. Scheinost. Technetium immobilization by chukanovite and its oxidative transformation products: Neural network analysis of EXAFS spectra. Science of The Total Environment 2021, 770 , 145334. https://doi.org/10.1016/j.scitotenv.2021.145334

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2020, 54, 5, 2678–2687
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.est.9b05341
    Published January 21, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    1027

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.