Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

New Insights into 99Tc(VII) Removal by Pyrite: A Spectroscopic Approach

  • Diana M. Rodríguez
    Diana M. Rodríguez
    Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
  • Natalia Mayordomo*
    Natalia Mayordomo
    Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
    *E-mail: [email protected]. Tel.: +49 351 260 3487.
  • Andreas C. Scheinost
    Andreas C. Scheinost
    Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
    The Rossendorf Beamline (ROBL), 71, Avenue des Martyrs, 38043 Grenoble, France
  • Dieter Schild
    Dieter Schild
    Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
  • Vinzenz Brendler
    Vinzenz Brendler
    Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
  • Katharina Müller*
    Katharina Müller
    Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
    *E-mail: [email protected]. Tel.: +49 351 260 2439.
  • , and 
  • Thorsten Stumpf
    Thorsten Stumpf
    Institute of Resource Ecology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
Cite this: Environ. Sci. Technol. 2020, 54, 5, 2678–2687
Publication Date (Web):January 21, 2020
https://doi.org/10.1021/acs.est.9b05341
Copyright © 2020 American Chemical Society

    Article Views

    952

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    99Tc(VII) uptake by synthetic pure pyrite at 21 °C was studied in a wide pH range from 3.50 to 10.50 using batch experiments combined with scanning electron microscopy, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and Raman microscopy. We found that pyrite removes Tc quantitatively from solution (log Kd = 5.0 ± 0.1) within 1 day at pH ≥ 5.50 ± 0.08. At pH < 5.50 ± 0.08, the uptake process is slower, leading to 98% Tc removal (log Kd = 4.5 ± 0.1) after 35 days. The slower Tc uptake was explained by higher pyrite solubility under acidic conditions. After 2 months in contact with oxygen at pH 6.00 ± 0.07 and 10.00 ± 0.04, Tc was neither reoxidized nor redissolved. XAS showed that the uptake mechanism involves the reduction from Tc(VII) to Tc(IV) and subsequent inner-sphere complexation of Tc(IV)–Tc(IV) dimers onto a Fe oxide like hematite at pH 6.00 ± 0.07, and Tc(IV) incorporation into magnetite via Fe(III) substitution at pH 10.00 ± 0.04. Calculations of Fe speciation under the experimental conditions predict the formation of hematite at pH < 7.50 and magnetite at pH > 7.50, explaining the formation of the two different Tc species depending on the pH. XPS spectra showed the formation of TcSx at pH 10.00 ± 0.04, being a small fraction of a surface complex, potentially a transient phase in the total redox process.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.9b05341.

    • Pyrite solubility determination, X-ray powder diffraction, ζ-potential measurements, Raman microscopy and modeling; pyrite characterization, pH effect on pyrite solubility, pH adjustment; %Tc released to solution during the reoxidation assays; identification of Fe(III) minerals with SEM micrographs; Raman spectra of the pyrite + Tc 1000 ppm at pH 6; shell fit of the sorption complex; calculated iron speciation; S 2p XPS spectra; isotherms (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 22 publications.

    1. Carolina Guida, Vivien Ramothe, Anthony Chappaz, Pauline Simonnin, Kevin M. Rosso, Rong-Rong Ding, Damien Prieur, Andreas C. Scheinost, Laurent Charlet. Revisiting Selenium Interactions with Pyrite: From Adsorption to Coprecipitation. ACS Earth and Space Chemistry 2024, 8 (1) , 67-78. https://doi.org/10.1021/acsearthspacechem.3c00219
    2. Diana M. Rodríguez, Natalia Mayordomo, Andrés Parra-Puerto, Dieter Schild, Vinzenz Brendler, Thorsten Stumpf, Katharina Müller. Exploring the Reduction Mechanism of 99Tc(VII) in NaClO4: A Spectro-Electrochemical Approach. Inorganic Chemistry 2022, 61 (26) , 10159-10166. https://doi.org/10.1021/acs.inorgchem.2c01278
    3. Adam J. Williamson, Jonathan R. Lloyd, Christopher Boothman, Gareth T. W. Law, Samuel Shaw, Joe S. Small, Gianni F. Vettese, Heather A. Williams, Katherine Morris. Biogeochemical Cycling of 99Tc in Alkaline Sediments. Environmental Science & Technology 2021, 55 (23) , 15862-15872. https://doi.org/10.1021/acs.est.1c04416
    4. Yanting Qian, Andreas C. Scheinost, Sylvain Grangeon, Alwina Hoving, Sergey V. Churakov, Maria Marques Fernandes. Influence of structural Fe content in clay minerals on selenite redox reactions: Kinetics and structural transformations. Geochimica et Cosmochimica Acta 2024, 377 , 19-33. https://doi.org/10.1016/j.gca.2024.05.012
    5. Yuri A. Ustynyuk, Nelly I. Zhokhova, Zoia A. Sizova, Valentine G. Nenajdenko. Recent progress in separation of technetium-99 from spent nuclear fuel and radioactive waste. Challenges and prospects. Coordination Chemistry Reviews 2024, 508 , 215759. https://doi.org/10.1016/j.ccr.2024.215759
    6. Mingliang Kang, Yixiao Kang, Wujian Jin, Jingye She, Danwen Qin, Hanyu Wu, Hanqin Weng, Chao Chen, Jiuqiang Li. Enhance U(VI) reduction on natural pyrite surfaces by gamma irradiation. Chemical Engineering Journal 2024, 489 , 151473. https://doi.org/10.1016/j.cej.2024.151473
    7. Erik Strub, Dennis Grödler, Daniele Zaratti, Clarence Yong, Lisa Dünnebier, Sonja Bazhenova, Maximilian Roca Jungfer, Martin Breugst, Markus Zegke. Pertechnetates – A Structural Study Across the Periodic Table. Chemistry – A European Journal 2024, 30 (26) https://doi.org/10.1002/chem.202400131
    8. Hui Hu, Sizhuo Yu, Tian Wang, Chenguang Lv. Efficient and selective separation of Re(VII), an analogue of Tc(VII), by a defective biochar with honeycomb‐like porous structure. Journal of Chemical Technology & Biotechnology 2024, 99 (4) , 946-958. https://doi.org/10.1002/jctb.7598
    9. Marek Hupian, Michal Galamboš, Eva Viglašová, Oľga Rosskopfová, Vipul Vilas Kusumkar, Martin Daňo. Activated carbon treated with different chemical agents for pertechnetate adsorption. Journal of Radioanalytical and Nuclear Chemistry 2024, 333 (4) , 1815-1829. https://doi.org/10.1007/s10967-024-09399-5
    10. K. I. Maslakov, A. Yu. Teterin, A. V. Safonov, A. V. Makarov, G. D. Artemiev, Yu. A. Teterin, S. V. Dvoriak. XPS Determination of the Oxidation State of 99Тс Isotope Absorbed on the Surface of Pyrrhotite FenSn+1 and Stibnite Sb2S3. Radiochemistry 2024, 66 (2) , 145-155. https://doi.org/10.1134/S1066362224020036
    11. enwen Wang, Meiyun Xu, Peng Liu, Haisheng Yu, Linjuan Zhang, Daoben Hua. Voltage-regulated ion sieving assisted by a highly cationic polymer network achieves selective 99TcO4− adsorption with record-high capacity. Separation and Purification Technology 2024, 4 , 127294. https://doi.org/10.1016/j.seppur.2024.127294
    12. Anthony W. N. Kilber, Maxim I. Boyanov, Kenneth M. Kemner, Edward J. O’Loughlin. Interactions of Perrhenate (Re(VII)O4−) with Fe(II)-Bearing Minerals. Minerals 2024, 14 (2) , 181. https://doi.org/10.3390/min14020181
    13. Jianlong Wang, Bowen Xu. Removal of radionuclide 99Tc from aqueous solution by various adsorbents: A review. Journal of Environmental Radioactivity 2023, 270 , 107267. https://doi.org/10.1016/j.jenvrad.2023.107267
    14. Duan-Rui Cai, Heng Yan, Jun Han, Jun Wen, Chu-Ting Yang, Ning Wang. Efficient and selective removal of ReO 4 − from highly acid solutions by SnS nanoflowers: implications for TcO 4 − sequestration. Environmental Science: Nano 2023, 10 (5) , 1494-1503. https://doi.org/10.1039/D3EN00126A
    15. Ying Zhou, Yuanyuan Tang, Changzhong Liao, Minhua Su, Kaimin Shih. Recent advances toward structural incorporation for stabilizing heavy metal contaminants: A critical review. Journal of Hazardous Materials 2023, 448 , 130977. https://doi.org/10.1016/j.jhazmat.2023.130977
    16. Natalia Mayordomo, Diana M. Rodríguez, Vinzenz Brendler, André Rossberg, Andreas C. Scheinost, Dieter Schild, Irene Cardaio, Arkadz Bureika, Caroline Börner, Katharina Müller. Immobilization of technetium by iron corrosion phases: lessons learned and future perspectives. Safety of Nuclear Waste Disposal 2023, 2 , 155-156. https://doi.org/10.5194/sand-2-155-2023
    17. Makarov Alexey, Safonov Alexey, Sitanskaia Anastasiia, Martynov Konstantin, Zakharova Elena, Kulyukhin Sergey. Clay and carbon materials-based engineered barriers for technetium immobilization. Progress in Nuclear Energy 2022, 152 , 104398. https://doi.org/10.1016/j.pnucene.2022.104398
    18. Yuwei Xu, Yin Tian, Bo Chen, Zijun Yan, Jie Ding, Yalin Huang, Jinyang Kang, Shanyong Chen, Yongdong Jin, Chuanqin Xia. Porphyrin-based cationic conjugated network prepared by Zincke reaction and its adsorption for TcO4−/ReO4−. Journal of Radioanalytical and Nuclear Chemistry 2021, 330 (3) , 1165-1176. https://doi.org/10.1007/s10967-021-08039-6
    19. Diana M. Rodríguez, Natalia Mayordomo, Dieter Schild, Salim Shams Aldin Azzam, Vinzenz Brendler, Katharina Müller, Thorsten Stumpf. Reductive immobilization of 99Tc(VII) by FeS2: The effect of marcasite. Chemosphere 2021, 281 , 130904. https://doi.org/10.1016/j.chemosphere.2021.130904
    20. Dan Zhou, Yao Lin, Haoqi Long, Yuwei Xu, Bo Wang, Liang Xian, Chuanqin Xia, Xiandeng Hou, Chengbin Zheng. Simultaneous total and speciation analysis of rhenium by capillary electrophoresis-inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 2021, 180 , 106211. https://doi.org/10.1016/j.sab.2021.106211
    21. Rahul Ram, Chris Kalnins, Mark I. Pownceby, Kathy Ehrig, Barbara Etschmann, Nigel Spooner, Joël Brugger. Selective radionuclide co-sorption onto natural minerals in environmental and anthropogenic conditions. Journal of Hazardous Materials 2021, 409 , 124989. https://doi.org/10.1016/j.jhazmat.2020.124989
    22. Katja Schmeide, André Rossberg, Frank Bok, Salim Shams Aldin Azzam, Stephan Weiss, Andreas C. Scheinost. Technetium immobilization by chukanovite and its oxidative transformation products: Neural network analysis of EXAFS spectra. Science of The Total Environment 2021, 770 , 145334. https://doi.org/10.1016/j.scitotenv.2021.145334