ACS Publications. Most Trusted. Most Cited. Most Read
Incorporating Low-Cost Sensor Measurements into High-Resolution PM2.5 Modeling at a Large Spatial Scale
My Activity

    Article

    Incorporating Low-Cost Sensor Measurements into High-Resolution PM2.5 Modeling at a Large Spatial Scale
    Click to copy article linkArticle link copied!

    • Jianzhao Bi
      Jianzhao Bi
      Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
      More by Jianzhao Bi
    • Avani Wildani
      Avani Wildani
      Department of Computer Science, Emory University, Atlanta, Georgia 30307, United States
    • Howard H. Chang
      Howard H. Chang
      Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
    • Yang Liu*
      Yang Liu
      Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
      *E-mail: [email protected]
      More by Yang Liu
    Other Access OptionsSupporting Information (1)

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2020, 54, 4, 2152–2162
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.est.9b06046
    Published January 12, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Low-cost air quality sensors are promising supplements to regulatory monitors for PM2.5 exposure assessment. However, little has been done to incorporate the low-cost sensor measurements in large-scale PM2.5 exposure modeling. We conducted spatially varying calibration and developed a downweighting strategy to optimize the use of low-cost sensor data in PM2.5 estimation. In California, PurpleAir low-cost sensors were paired with air quality system (AQS) regulatory stations, and calibration of the sensors was performed by geographically weighted regression. The calibrated PurpleAir measurements were then given lower weights according to their residual errors and fused with AQS measurements into a random forest model to generate 1 km daily PM2.5 estimates. The calibration reduced PurpleAir’s systematic bias to ∼0 μg/m3 and residual errors by 36%. Increased sensor bias was found to be associated with higher temperature and humidity, as well as longer operating time. The weighted prediction model outperformed the AQS-based prediction model with an improved random cross-validation (CV) R2 of 0.86, an improved spatial CV R2 of 0.81, and a lower prediction error. The temporal CV R2 did not improve due to the temporal discontinuity of PurpleAir. The inclusion of PurpleAir data allowed the predictions to better reflect PM2.5 spatial details and hotspots.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.est.9b06046.

    • Quality control for PurpleAir PM2.5 measurements (Section 1); evaluation of PurpleAir PM2.5 measurements (Section 2); nonlinearity of PurpleAir systematic bias (Section 3); validation of scale factor ρ (Section 4); PurpleAir calibration based on subsets of AQS stations (Table S1); HAC clustering feature space (Table S2); numbers and densities of continuous AQS stations (Table S3); spatial distribution of GWR slopes (Figure S1); clustered subdomains (Figure S2); ten-fold CV scatter plots (Figure S3); PM2.5 predictions at Ferguson Fire (Figure S4); PM2.5 predictions of the nonweighted model (Figure S5); PurpleAir dual-channel hourly measurements (Figure S6); AQS and PurpleAir hourly measurements (Figure S7); determination of scale factor ρ (Figure S8) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 152 publications.

    1. Jingzhuo Zhang, Li Bai, Na Li, Yu Wang, Yibing Lv, Yaolong Shi, Chao Yang, Chi Xu. Low-Cost Particulate Matter Mass Sensors: Review of the Status, Challenges, and Opportunities for Single-Instrument and Network Calibration. ACS Sensors 2025, 10 (5) , 3207-3221. https://doi.org/10.1021/acssensors.4c03293
    2. Dimple Pruthi, Qingyang Zhu, Wenhao Wang, Yang Liu. Multiresolution Analysis of HRRR Meteorological Parameters and GOES-R AOD for Hourly PM2.5 Prediction. Environmental Science & Technology 2024, 58 (45) , 20040-20048. https://doi.org/10.1021/acs.est.4c03795
    3. Yuzhou Wang, Julian D. Marshall, Joshua S. Apte. U.S. Ambient Air Monitoring Network Has Inadequate Coverage under New PM2.5 Standard. Environmental Science & Technology Letters 2024, 11 (11) , 1220-1226. https://doi.org/10.1021/acs.estlett.4c00605
    4. Karoline K. Barkjohn, Andrea Clements, Corey Mocka, Colin Barrette, Ashley Bittner, Wyatt Champion, Brett Gantt, Elizabeth Good, Amara Holder, Berkley Hillis, Matthew S. Landis, Menaka Kumar, Megan MacDonald, Eben Thoma, Tim Dye, Jan-Michael Archer, Michael Bergin, Wilton Mui, Brandon Feenstra, Michael Ogletree, Christi Chester-Schroeder, Naomi Zimmerman. Air Quality Sensor Experts Convene: Current Quality Assurance Considerations for Credible Data. ACS ES&T Air 2024, 1 (10) , 1203-1214. https://doi.org/10.1021/acsestair.4c00125
    5. Chengzhe Li, Jun Wang, Huanxin Zhang, David J. Diner, Sina Hasheminassab, Nathan Janechek. Improvement of Surface PM2.5 Diurnal Variation Simulations in East Africa for the MAIA Satellite Mission. ACS ES&T Air 2024, 1 (4) , 223-233. https://doi.org/10.1021/acsestair.3c00008
    6. Danlu Zhang, Wenhao Wang, Yuzhi Xi, Jianzhao Bi, Yun Hang, Qingyang Zhu, Qiang Pu, Howard Chang, Yang Liu. Wildland Fires Worsened Population Exposure to PM2.5 Pollution in the Contiguous United States. Environmental Science & Technology 2023, 57 (48) , 19990-19998. https://doi.org/10.1021/acs.est.3c05143
    7. Jacquelyn Q. Schmidt, Branko Kerkez. Machine Learning-Assisted, Process-Based Quality Control for Detecting Compromised Environmental Sensors. Environmental Science & Technology 2023, 57 (46) , 18058-18066. https://doi.org/10.1021/acs.est.3c00360
    8. Ellen M. Considine, Jiayuan Hao, Priyanka deSouza, Danielle Braun, Colleen E. Reid, Rachel C. Nethery. Evaluation of Model-Based PM2.5 Estimates for Exposure Assessment during Wildfire Smoke Episodes in the Western U.S.. Environmental Science & Technology 2023, 57 (5) , 2031-2041. https://doi.org/10.1021/acs.est.2c06288
    9. Jun Song, Hongwei Fan, Meng Gao, Yibo Xu, Maohao Ran, Xiaoran Liu, Yike Guo. Toward High-Performance Map-Recovery of Air Pollution Using Machine Learning. ACS ES&T Engineering 2023, 3 (1) , 73-85. https://doi.org/10.1021/acsestengg.2c00248
    10. Misti Levy Zamora, Colby Buehler, Hao Lei, Abhirup Datta, Fulizi Xiong, Drew R. Gentner, Kirsten Koehler. Evaluating the Performance of Using Low-Cost Sensors to Calibrate for Cross-Sensitivities in a Multipollutant Network. ACS ES&T Engineering 2022, 2 (5) , 780-793. https://doi.org/10.1021/acsestengg.1c00367
    11. Jianzhao Bi, K. Emma Knowland, Christoph A. Keller, Yang Liu. Combining Machine Learning and Numerical Simulation for High-Resolution PM2.5 Concentration Forecast. Environmental Science & Technology 2022, 56 (3) , 1544-1556. https://doi.org/10.1021/acs.est.1c05578
    12. Amirhosein Mousavi, Jun Wu. Indoor-Generated PM2.5 During COVID-19 Shutdowns Across California: Application of the PurpleAir Indoor–Outdoor Low-Cost Sensor Network. Environmental Science & Technology 2021, 55 (9) , 5648-5656. https://doi.org/10.1021/acs.est.0c06937
    13. Benjamin Krebs, Jennifer Burney, Joshua Graff Zivin, Matthew Neidell. Using Crowd-Sourced Data to Assess the Temporal and Spatial Relationship between Indoor and Outdoor Particulate Matter. Environmental Science & Technology 2021, 55 (9) , 6107-6115. https://doi.org/10.1021/acs.est.0c08469
    14. Stephanie E. Cleland, J. Jason West, Yiqin Jia, Stephen Reid, Sean Raffuse, Susan O’Neill, Marc L. Serre. Estimating Wildfire Smoke Concentrations during the October 2017 California Fires through BME Space/Time Data Fusion of Observed, Modeled, and Satellite-Derived PM2.5. Environmental Science & Technology 2020, 54 (21) , 13439-13447. https://doi.org/10.1021/acs.est.0c03761
    15. Kemal Maulana Alhasa, Hernani Yulinawati, Deni Kurnia, Heru Dwi Wahyono, Satmoko Yudo, Irwan Kustianto, Dodi Rusjadi Tatang Endi. Mapping trends and analyzing key themes in low-cost sensors for air quality monitoring. Earth Science Informatics 2025, 18 (3) https://doi.org/10.1007/s12145-025-01927-5
    16. Die Tang, Tan Mi, Xi Zheng, Mingle Yang, Michael L. Grieneisen, Yu Zhan, Fumo Yang. Harmonizing low-cost and regulatory air quality monitoring networks with interpretable semi-supervised learning: Reducing exposure misclassification in underrepresented communities. Journal of Hazardous Materials 2025, 491 , 137893. https://doi.org/10.1016/j.jhazmat.2025.137893
    17. Xiaocan Bai, Yuhan Huang, Yanhui Wang, Ziyi Wang, Xue Li, Ruixue Du, Manyun Long, Huawei Zhang, Yan Tan, Ting Liu, Chun Chen, Xianhui Fan, Yanru Xu, Jinping Cheng, Shengao Jing, Zizhen Ma, Zehui Li, Jingkun Jiang. Identification of VOC emission hotspots in industrial parks by high-spatiotemporal-resolution sensor networks. Environment International 2025, 145 , 109628. https://doi.org/10.1016/j.envint.2025.109628
    18. Masoud Ghahremanloo, Yunsoo Choi, Mahmoudreza Momeni. Deep learning calibration model for PurpleAir PM2.5 measurements: Comprehensive Investigation of the PurpleAir network. Atmospheric Environment 2025, 348 , 121118. https://doi.org/10.1016/j.atmosenv.2025.121118
    19. Justin Tse, Lu Liang. Evaluating PurpleAir Sensors: Do They Accurately Reflect Ambient Air Temperature?. Sensors 2025, 25 (10) , 3044. https://doi.org/10.3390/s25103044
    20. Patrick Attey-Yeboah, Christian Afful, Kelvin Yeboah, Carl H. Korkpoe, Eric S. Coker, R. Subramanian, A. Kofi Amegah. Utility of low-cost sensor measurement for predicting ambient PM 2.5 concentrations: evidence from a monitoring network in Accra, Ghana. Environmental Science: Atmospheres 2025, 5 (4) , 517-529. https://doi.org/10.1039/D4EA00140K
    21. Gregory S. Jenkins. The Lack of Real-Time Air Pollution Monitoring in Africa Supports Environmental Injustice. Environmental Justice 2025, 18 (2) , 85-89. https://doi.org/10.1089/env.2023.0030
    22. Slawomir Koziel, Anna Pietrenko-Dabrowska, Marek Wójcikowski, Bogdan Pankiewicz. Nitrogen Dioxide Monitoring by Means of a Low-Cost Autonomous Platform and Sensor Calibration via Machine Learning with Global Data Correlation Enhancement. Sensors 2025, 25 (8) , 2352. https://doi.org/10.3390/s25082352
    23. Christopher Zuidema, Jianzhao Bi, Dustin Burnham, Nancy Carmona, Amanda J. Gassett, David L. Slager, Cooper Schumacher, Elena Austin, Edmund Seto, Adam A. Szpiro, Lianne Sheppard. Leveraging low-cost sensors to predict nitrogen dioxide for epidemiologic exposure assessment. Journal of Exposure Science & Environmental Epidemiology 2025, 35 (2) , 169-179. https://doi.org/10.1038/s41370-024-00667-w
    24. Amirhossein Hassani, Vasileios Salamalikis, Philipp Schneider, Kerstin Stebel, Núria Castell. A scalable framework for harmonizing, standardization, and correcting crowd-sourced low-cost sensor PM2.5 data across Europe. Journal of Environmental Management 2025, 380 , 125100. https://doi.org/10.1016/j.jenvman.2025.125100
    25. Sandeep Kumar Chaudhry, Sachchida Nand Tripathi, Tondapu Venkata Ramesh Reddy, Sandeep Madhwal, Amit Kumar Yadav, Ravi Sahu, Pranav Kumar Pradhan. Assessment of seasonal variation in PM2.5 concentration using low-cost sensors: A case study of Jaipur city, India. Atmospheric Environment 2025, 345 , 121067. https://doi.org/10.1016/j.atmosenv.2025.121067
    26. Ayako Kawano, Makoto Kelp, Minghao Qiu, Kirat Singh, Eeshan Chaturvedi, Sunil Dahiya, Inés Azevedo, Marshall Burke. Improved daily PM 2.5 estimates in India reveal inequalities in recent enhancement of air quality. Science Advances 2025, 11 (4) https://doi.org/10.1126/sciadv.adq1071
    27. Anastasia Kakouri, Themistoklis Kontos, Georgios Grivas, Georgios Filippis, Marios-Bruno Korras-Carraca, Christos Matsoukas, Antonis Gkikas, Eleni Athanasopoulou, Orestis Speyer, Charalampos Chatzidiakos, Evangelos Gerasopoulos. Spatiotemporal modeling of long-term PM2.5 concentrations and population exposure in Greece, using machine learning and statistical methods. Science of The Total Environment 2025, 958 , 178113. https://doi.org/10.1016/j.scitotenv.2024.178113
    28. Byeongseong Choi, Michelle A Hummel. Spatiotemporal air quality prediction using stochastic advection–diffusion model for multimodal data fusion. Environmental Research Letters 2025, 20 (1) , 014065. https://doi.org/10.1088/1748-9326/ada397
    29. Vaishali Jain, Avideep Mukherjee, Soumya Banerjee, Sandeep Madhwal, Michael H. Bergin, Prakash Bhave, David Carlson, Ziyang Jiang, Tongshu Zheng, Piyush Rai, Sachchida Nand Tripathi. A hybrid approach for integrating micro-satellite images and sensors network-based ground measurements using deep learning for high-resolution prediction of fine particulate matter (PM2.5) over an indian city, lucknow. Atmospheric Environment 2024, 338 , 120798. https://doi.org/10.1016/j.atmosenv.2024.120798
    30. Anna C. O'Regan, Henrik Grythe, Stig Hellebust, Susana Lopez-Aparicio, Colin O'Dowd, Paul D. Hamer, Gabriela Sousa Santos, Marguerite M. Nyhan. Data fusion for enhancing urban air quality modeling using large-scale citizen science data. Sustainable Cities and Society 2024, 116 , 105896. https://doi.org/10.1016/j.scs.2024.105896
    31. Jeongwoo Lee, Caryl Anne M. Barquilla, Kitae Park, Andy Hong. Urban form and seasonal PM2.5 dynamics: Enhancing air quality prediction using interpretable machine learning and IoT sensor data. Sustainable Cities and Society 2024, 117 , 105976. https://doi.org/10.1016/j.scs.2024.105976
    32. Slawomir Koziel, Anna Pietrenko-Dabrowska, Marek Wojcikowski, Bogdan Pankiewicz. Statistical data pre-processing and time series incorporation for high-efficacy calibration of low-cost NO2 sensor using machine learning. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-59993-6
    33. Slawomir Koziel, Anna Pietrenko-Dabrowska, Marek Wojcikowski, Bogdan Pankiewicz. High-performance machine-learning-based calibration of low-cost nitrogen dioxide sensor using environmental parameter differentials and global data scaling. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-77214-y
    34. Mark J. Grosvenor, Vissia Ardiyani, Martin J. Wooster, Stefan Gillott, David C. Green, Puji Lestari, Wiranda Suri. Catastrophic impact of extreme 2019 Indonesian peatland fires on urban air quality and health. Communications Earth & Environment 2024, 5 (1) https://doi.org/10.1038/s43247-024-01813-w
    35. Masrur Ahmed, Jing Kong, Ningbo Jiang, Hiep Nguyen Duc, Praveen Puppala, Merched Azzi, Matthew Riley, Xavier Barthelemy. A Bayesian-Optimized Surrogate Model Integrating Deep Learning Algorithms for Correcting PurpleAir Sensor Measurements. Atmosphere 2024, 15 (12) , 1535. https://doi.org/10.3390/atmos15121535
    36. Carl Malings, K. Emma Knowland, Nathan Pavlovic, Justin G. Coughlin, Daniel King, Christoph Keller, Stephen Cohn, Randall V. Martin. Air Quality Estimation and Forecasting via Data Fusion With Uncertainty Quantification: Theoretical Framework and Preliminary Results. Journal of Geophysical Research: Machine Learning and Computation 2024, 1 (4) https://doi.org/10.1029/2024JH000183
    37. Michael Biancardi, Yuye Zhou, Wei Kang, Ting Xiao, Tony Grubesic, Jake Nelson, Lu Liang. Exploring spatiotemporal dynamics, seasonality, and time-of-day trends of PM2.5 pollution with a low-cost sensor network: Insights from classic and spatially explicit Markov chains. Applied Geography 2024, 172 , 103414. https://doi.org/10.1016/j.apgeog.2024.103414
    38. Priscila Caroline de Souza Zorzenão, Jéssica Caroline dos Santos Silva, Camila Arielle Bufato Moreira, Victória Milla Pinto, Yara de Souza Tadano, Carlos Itsuo Yamamoto, Ricardo Henrique Moreton Godoi. Impacts of PM2.5 exposure near cement facilities on human health and years of life lost: A case study in Brazil. Journal of Environmental Management 2024, 370 , 122975. https://doi.org/10.1016/j.jenvman.2024.122975
    39. Tong Zhang, Amber X. Ren, Mingkun Tong, Yang Li, Pauline Mendola, Xushen Chen, Meng Wang. Gestational exposure to wildfire PM2.5 and its specific components and the risk of gestational hypertension and eclampsia in the southwestern United States. Science of The Total Environment 2024, 951 , 175781. https://doi.org/10.1016/j.scitotenv.2024.175781
    40. Nicolas Borchers-Arriagada, Geoffrey G. Morgan, Joseph Van Buskirk, Karthik Gopi, Cassandra Yuen, Fay H. Johnston, Yuming Guo, Martin Cope, Ivan C. Hanigan. Daily PM2.5 and Seasonal-Trend Decomposition to Identify Extreme Air Pollution Events from 2001 to 2020 for Continental Australia Using a Random Forest Model. Atmosphere 2024, 15 (11) , 1341. https://doi.org/10.3390/atmos15111341
    41. Priscilla Adong, Arjun Pakrashi, Soumyabrata Dev. Using Random Forest to Estimate Low-Cost Sensor PM 2 . 5 from MODIS MAIAC AOD in Kampala. 2024, 1-5. https://doi.org/10.1109/CISP-BMEI64163.2024.10906267
    42. Lang Chen, Xiaobing Pang, Zhentao Wu, Riyang Huang, Junyu Hu, Yi Liu, Lei Zhou, Jue Zhou, Zhiwen Wang. Unmanned aerial vehicles equipped with sensor packages to study spatiotemporal variations of air pollutants in industry parks. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2024, 382 (2281) https://doi.org/10.1098/rsta.2023.0314
    43. Irfan Yaqoob, Vijay Kumar, Shafique Ahmad Chaudhry. Machine Learning Calibration of Low-Cost Sensor PM 2.5 data. 2024, 1-8. https://doi.org/10.1109/ISSE63315.2024.10741149
    44. Shanmuka Sai Kumar Padimala, Chandra Sekhar Matli. A comprehensive review delineates advancements in retrieving particulate matter utilising satellite aerosol optical depth: Parameter consideration, data processing, models development and future perspectives. Atmospheric Research 2024, 308 , 107514. https://doi.org/10.1016/j.atmosres.2024.107514
    45. Anna Pietrenko-Dabrowska, Slawomir Koziel, Marek Wojcikowski, Bogdan Pankiewicz, Artur Rydosz, Tuan-Vu Cao, Krystian Wojtkiewicz. Cost-Efficient measurement platform and machine-learning-based sensor calibration for precise NO2 pollution monitoring. Measurement 2024, 237 , 115168. https://doi.org/10.1016/j.measurement.2024.115168
    46. Jiazhen Lu, Junjie Liu, Xiaoxia Han, Yue Liu, Bo Xu, Ji Xiao. Calibration method of particulate matter sensor based on density peaks clustering combined with stacking algorithm. Atmospheric Environment 2024, 326 , 120460. https://doi.org/10.1016/j.atmosenv.2024.120460
    47. Armita Kar, Mohammed Ahmed, Andrew A. May, Huyen T.K. Le. High spatio-temporal resolution predictions of PM2.5 using low-cost sensor data. Atmospheric Environment 2024, 326 , 120486. https://doi.org/10.1016/j.atmosenv.2024.120486
    48. Luis A. Garcia-Garza, Edgar Tello-Leal, Bárbara A. Macías-Hernández, Gerardo Romero, Jaciel David Hernandez-Resendiz. Particulate matter 1µm (PM1) dataset collected by low-cost sensors in residential and industrial areas at the neighborhood level. Data in Brief 2024, 54 , 110411. https://doi.org/10.1016/j.dib.2024.110411
    49. Slawomir Koziel, Anna Pietrenko-Dabrowska, Marek Wojcikowski, Bogdan Pankiewicz. Machine-learning-based precise cost-efficient NO2 sensor calibration by means of time series matching and global data pre-processing. Engineering Science and Technology, an International Journal 2024, 54 , 101729. https://doi.org/10.1016/j.jestch.2024.101729
    50. Giovanni Gualtieri, Lorenzo Brilli, Federico Carotenuto, Alice Cavaliere, Tommaso Giordano, Simone Putzolu, Carolina Vagnoli, Alessandro Zaldei, Beniamino Gioli. Performance Assessment of Two Low-Cost PM2.5 and PM10 Monitoring Networks in the Padana Plain (Italy). Sensors 2024, 24 (12) , 3946. https://doi.org/10.3390/s24123946
    51. Michael A. Johnson, Timothy Abuya, Anneka Wickramanayake, Heather Miller, Deborah Sambu, Daniel Mwanga, George Odwe, Charity Ndwiga, Ricardo Piedrahita, Madeleine Rossanese, Michael J. Gatari, Michael R. Giordano, Daniel M. Westervelt, Laura Wotton, Sathyanath Rajasekharan. Patterns and drivers of maternal personal exposure to PM 2.5 in informal settlements in Nairobi, Kenya. Environmental Science: Atmospheres 2024, 4 (5) , 578-591. https://doi.org/10.1039/D3EA00074E
    52. Rebecca A. Sugrue, Chelsea V. Preble, James D.A. Butler, Alaia J. Redon-Gabel, Pietro Marconi, Karan D. Shetty, Lee Ann L. Hill, Audrey M. Amezcua-Smith, Boris R. Lukanov, Thomas W. Kirchstetter. The value of adding black carbon to community monitoring of particulate matter. Atmospheric Environment 2024, 325 , 120434. https://doi.org/10.1016/j.atmosenv.2024.120434
    53. Manzhu Yu, Shiyan Zhang, Huan Ning, Zhenlong Li, Kai Zhang. Assessing the 2023 Canadian wildfire smoke impact in Northeastern US: Air quality, exposure and environmental justice. Science of The Total Environment 2024, 926 , 171853. https://doi.org/10.1016/j.scitotenv.2024.171853
    54. Die Tang, Yu Zhan, Fumo Yang. A review of machine learning for modeling air quality: Overlooked but important issues. Atmospheric Research 2024, 300 , 107261. https://doi.org/10.1016/j.atmosres.2024.107261
    55. Slawomir Koziel, Anna Pietrenko-Dabrowska, Marek Wojcikowski, Bogdan Pankiewicz. On Memory-Based Precise Calibration of Cost-Efficient NO2 Sensor Using Artificial Intelligence and Global Response Correction. Knowledge-Based Systems 2024, 290 , 111564. https://doi.org/10.1016/j.knosys.2024.111564
    56. Yi-Ming Lee, Guan-Yu Lin, Thi-Cuc Le, Gung-Hwa Hong, Shankar G. Aggarwal, Jhih-Yuan Yu, Chuen-Jinn Tsai. Characterization of spatial-temporal distribution and microenvironment source contribution of PM2.5 concentrations using a low-cost sensor network with artificial neural network/kriging techniques. Environmental Research 2024, 244 , 117906. https://doi.org/10.1016/j.envres.2023.117906
    57. László Bencs, Attila Nagy. A Smoke Chamber Study on Some Low-Cost Sensors for Monitoring Size-Segregated Aerosol and Microclimatic Parameters. Atmosphere 2024, 15 (3) , 304. https://doi.org/10.3390/atmos15030304
    58. Chin-Yu Hsu, Wei-Ting Hsu, Ching-Yi Mou, Pei-Yi Wong, Chih-Da Wu, Yu-Cheng Chen. Exposure estimates of PM2.5 using the land-use regression with machine learning and microenvironmental exposure models for elders: Validation and comparison. Atmospheric Environment 2024, 318 , 120209. https://doi.org/10.1016/j.atmosenv.2023.120209
    59. Wenwen Sun, Rui Li. Assessing the impact of COVID-19 lockdown on fine-scale air quality across a heavy-pollution city using low-cost sensors. Atmospheric Environment 2024, 319 , 120275. https://doi.org/10.1016/j.atmosenv.2023.120275
    60. Jianzhao Bi, Dustin Burnham, Christopher Zuidema, Cooper Schumacher, Amanda J. Gassett, Adam A. Szpiro, Joel D. Kaufman, Lianne Sheppard. Evaluating low-cost monitoring designs for PM2.5 exposure assessment with a spatiotemporal modeling approach. Environmental Pollution 2024, 343 , 123227. https://doi.org/10.1016/j.envpol.2023.123227
    61. Shrey Gupta, Yongbee Park, Jianzhao Bi, Suyash Gupta, Andreas Züfle, Avani Wildani, Yang Liu. Spatial Transfer Learning for Estimating PM$$_{2.5}$$ in Data-Poor Regions. 2024, 385-400. https://doi.org/10.1007/978-3-031-70378-2_24
    62. Haojie Wu, Bin Guo, Tengyue Guo, Lin Pei, Peiqing Jing, Yan Wang, Xuying Ma, Haorui Bai, Zheng Wang, Tingting Xie, Miaoyi Chen. A study on identifying synergistic prevention and control regions for PM2.5 and O3 and exploring their spatiotemporal dynamic in China. Environmental Pollution 2024, 341 , 122880. https://doi.org/10.1016/j.envpol.2023.122880
    63. Sebastian Diez, Stuart Lacy, Hugh Coe, Josefina Urquiza, Max Priestman, Michael Flynn, Nicholas Marsden, Nicholas A. Martin, Stefan Gillott, Thomas Bannan, Pete M. Edwards. Long-term evaluation of commercial air quality sensors: an overview from the QUANT (Quantification of Utility of Atmospheric Network Technologies) study. Atmospheric Measurement Techniques 2024, 17 (12) , 3809-3827. https://doi.org/10.5194/amt-17-3809-2024
    64. Martine E. Mathieu-Campbell, Chuqi Guo, Andrew P. Grieshop, Jennifer Richmond-Bryant. Calibration of PurpleAir low-cost particulate matter sensors: model development for air quality under high relative humidity conditions. Atmospheric Measurement Techniques 2024, 17 (22) , 6735-6749. https://doi.org/10.5194/amt-17-6735-2024
    65. Yichen Jiang, Su Shi, Xinyue Li, Chang Xu, Haidong Kan, Bo Hu, Xia Meng. A 10 km daily-level ultraviolet-radiation-predicting dataset based on machine learning models in China from 2005 to 2020. Earth System Science Data 2024, 16 (10) , 4655-4672. https://doi.org/10.5194/essd-16-4655-2024
    66. Sean Raffuse, Susan O'Neill, Rebecca Schmidt. A model for rapid PM 2.5 exposure estimates in wildfire conditions using routinely available data: rapidfire v0.1.3. Geoscientific Model Development 2024, 17 (1) , 381-397. https://doi.org/10.5194/gmd-17-381-2024
    67. Sofia Zafeirelli, Dimitris Kavroudakis. Comparison of outlier detection approaches in a Smart Cities sensor data context. International Journal on Smart Sensing and Intelligent Systems 2024, 17 (1) https://doi.org/10.2478/ijssis-2024-0004
    68. Tianjun Lu, Dulce A. Garcia, Armando Garcia, Yisi Liu. Leveraging crowd-sourced environmental data to assess air pollution exposure disparity: A case of Los Angeles County. International Journal of Applied Earth Observation and Geoinformation 2023, 125 , 103599. https://doi.org/10.1016/j.jag.2023.103599
    69. Wan-Sik Won, Jinhong Noh, Rosy Oh, Woojoo Lee, Jong-Won Lee, Pei-Chen Su, Yong-Jin Yoon. Enhancing the reliability of particulate matter sensing by multivariate Tobit model using weather and air quality data. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-40468-z
    70. ShengLi Tzeng, Chi-Wei Lai, Hsin-Cheng Huang. Spatially Adaptive Calibrations of Airbox PM 2.5 Data. Biometrics 2023, 79 (4) , 3637-3649. https://doi.org/10.1111/biom.13819
    71. Claire Heffernan, Roger Peng, Drew R. Gentner, Kirsten Koehler, Abhirup Datta. A dynamic spatial filtering approach to mitigate underestimation bias in field calibrated low-cost sensor air pollution data. The Annals of Applied Statistics 2023, 17 (4) https://doi.org/10.1214/23-AOAS1751
    72. Zuber Farooqui, Jhumoor Biswas, Jayita Saha. Long-Term Assessment of PurpleAir Low-Cost Sensor for PM2.5 in California, USA. Pollutants 2023, 3 (4) , 477-493. https://doi.org/10.3390/pollutants3040033
    73. F. Carotenuto, A. Bisignano, L. Brilli, G. Gualtieri, L. Giovannini. Low‐cost air quality monitoring networks for long‐term field campaigns: A review. Meteorological Applications 2023, 30 (6) https://doi.org/10.1002/met.2161
    74. Yougeng Lu. Assessing air pollution exposure misclassification using high-resolution PM2.5 concentration model and human mobility data. Air Quality, Atmosphere & Health 2023, 16 (11) , 2225-2238. https://doi.org/10.1007/s11869-023-01404-2
    75. Jia-Hui Tang, Si-Rui Pan, Lei Li, Pak-Wai Chan. A machine learning-based method for identifying the meteorological field potentially inducing ozone pollution. Atmospheric Environment 2023, 312 , 120047. https://doi.org/10.1016/j.atmosenv.2023.120047
    76. Yihui Ge, Zhenchun Yang, Yan Lin, Philip K. Hopke, Albert A. Presto, Meng Wang, David Q. Rich, Junfeng Zhang. Generating high spatial resolution exposure estimates from sparse regulatory monitoring data. Atmospheric Environment 2023, 313 , 120076. https://doi.org/10.1016/j.atmosenv.2023.120076
    77. Bárbara A. Macías-Hernández, Edgar Tello-Leal, Oliver Barrios S., Manuel A. Leiva-Guzmán, Richard Toro A.. Effect of environmental conditions on the performance of a low-cost atmospheric particulate matter sensor. Urban Climate 2023, 52 , 101753. https://doi.org/10.1016/j.uclim.2023.101753
    78. Marie-Laure Aix, Seán Schmitz, Dominique J. Bicout. Calibration methodology of low-cost sensors for high-quality monitoring of fine particulate matter. Science of The Total Environment 2023, 889 , 164063. https://doi.org/10.1016/j.scitotenv.2023.164063
    79. Yougeng Lu, Rima Habre. Impacts of distinct travel behaviors on potential air pollution exposure measurement error. Atmospheric Environment 2023, 306 , 119820. https://doi.org/10.1016/j.atmosenv.2023.119820
    80. Lu Liang, Jacob Daniels, Colleen Bailey, Leiqiu Hu, Ronney Phillips, John South. Integrating low-cost sensor monitoring, satellite mapping, and geospatial artificial intelligence for intra-urban air pollution predictions. Environmental Pollution 2023, 331 , 121832. https://doi.org/10.1016/j.envpol.2023.121832
    81. G. S. Jenkins, S. M. Freire, T. Ogunro, D. Niang, M. Andrade, M. S. Drame, J. B. Huvi, E. E. S. Pires, E. N. Toure, M. Camara. COVID‐19 New Cases and Environmental Factors During Wet and Dry Seasons in West and Southern Africa. GeoHealth 2023, 7 (8) https://doi.org/10.1029/2022GH000765
    82. Jianbo Fu, Die Tang, Michael L. Grieneisen, Fumo Yang, Jianzhao Yang, Guanghui Wu, Chunying Wang, Yu Zhan. A machine learning-based approach for fusing measurements from standard sites, low-cost sensors, and satellite retrievals: Application to NO2 pollution hotspot identification. Atmospheric Environment 2023, 302 , 119756. https://doi.org/10.1016/j.atmosenv.2023.119756
    83. Kaixu Bai, Ke Li, Yibing Sun, Lv Wu, Ying Zhang, Ni-Bin Chang, Zhengqiang Li. Global synthesis of two decades of research on improving PM2.5 estimation models from remote sensing and data science perspectives. Earth-Science Reviews 2023, 241 , 104461. https://doi.org/10.1016/j.earscirev.2023.104461
    84. Kamaljeet Kaur, Kerry E. Kelly. Laboratory evaluation of the Alphasense OPC-N3, and the Plantower PMS5003 and PMS6003 sensors. Journal of Aerosol Science 2023, 171 , 106181. https://doi.org/10.1016/j.jaerosci.2023.106181
    85. Konstantinos Dimitriou, Iasonas Stavroulas, Georgios Grivas, Charalampos Chatzidiakos, Georgios Kosmopoulos, Andreas Kazantzidis, Konstantinos Kourtidis, Athanasios Karagioras, Nikolaos Hatzianastassiou, Spyros Ν. Pandis, Nikolaos Mihalopoulos, Evangelos Gerasopoulos. Intra- and inter-city variability of PM2.5 concentrations in Greece as determined with a low-cost sensor network. Atmospheric Environment 2023, 301 , 119713. https://doi.org/10.1016/j.atmosenv.2023.119713
    86. Lance Wallace, Tongke Zhao. Spatial Variation of PM2.5 Indoors and Outdoors: Results from 261 Regulatory Monitors Compared to 14,000 Low-Cost Monitors in Three Western States over 4.7 Years. Sensors 2023, 23 (9) , 4387. https://doi.org/10.3390/s23094387
    87. Russell W. Long, Shawn P. Urbanski, Emily Lincoln, Maribel Colón, Surender Kaushik, Jonathan D. Krug, Robert W. Vanderpool, Matthew S. Landis. Summary of PM 2.5 measurement artifacts associated with the Teledyne T640 PM Mass Monitor under controlled chamber experimental conditions using polydisperse ammonium sulfate aerosols and biomass smoke. Journal of the Air & Waste Management Association 2023, 73 (4) , 295-312. https://doi.org/10.1080/10962247.2023.2171156
    88. Seongjun Park, Shinhye Lee, Myoungsouk Yeo, Donghyun Rim. Field and laboratory evaluation of PurpleAir low-cost aerosol sensors in monitoring indoor airborne particles. Building and Environment 2023, 234 , 110127. https://doi.org/10.1016/j.buildenv.2023.110127
    89. Sun-Young Kim, Magali N. Blanco, Jianzhao Bi, Timothy V. Larson, Lianne Sheppard. Exposure assessment for air pollution epidemiology: A scoping review of emerging monitoring platforms and designs. Environmental Research 2023, 223 , 115451. https://doi.org/10.1016/j.envres.2023.115451
    90. Priyanka deSouza, Karoline Barkjohn, Andrea Clements, Jenny Lee, Ralph Kahn, Ben Crawford, Patrick Kinney. An analysis of degradation in low-cost particulate matter sensors. Environmental Science: Atmospheres 2023, 3 (3) , 521-536. https://doi.org/10.1039/D2EA00142J
    91. Binbin Lu, Yigong Hu, Dongyang Yang, Yong Liu, Liuqi Liao, Zuoyao Yin, Tianyang Xia, Zheyi Dong, Paul Harris, Chris Brunsdon, Lex Comber, Guanpeng Dong. GWmodelS: A software for geographically weighted models. SoftwareX 2023, 21 , 101291. https://doi.org/10.1016/j.softx.2022.101291
    92. Shahir Masri, Leonel Flores, Jose Rea, Jun Wu. Race and Street-Level Firework Legalization as Primary Determinants of July 4th Air Pollution across Southern California. Atmosphere 2023, 14 (2) , 401. https://doi.org/10.3390/atmos14020401
    93. Asrah Heintzelman, Gabriel M. Filippelli, Max J. Moreno-Madriñan, Jeffrey S. Wilson, Lixin Wang, Gregory K. Druschel, Vijay O. Lulla. Efficacy of Low-Cost Sensor Networks at Detecting Fine-Scale Variations in Particulate Matter in Urban Environments. International Journal of Environmental Research and Public Health 2023, 20 (3) , 1934. https://doi.org/10.3390/ijerph20031934
    94. . Overview of extreme weather events, impacts and forecasting techniques. 2023, 1-86. https://doi.org/10.1016/B978-0-12-820124-4.00009-8
    95. Wei-Ting Hsu, Chun-Hung Ku, Mu-Jean Chen, Chih-Da Wu, Shih-Chun Candice Lung, Yu-Cheng Chen. Model development and validation of personal exposure to PM2.5 among urban elders. Environmental Pollution 2023, 316 , 120538. https://doi.org/10.1016/j.envpol.2022.120538
    96. Zehui Li, Zizhen Ma, Zhan Zhang, Lingling Zhang, Enze Tian, Haiteng Zhang, Ruiyao Yang, Diwei Zhu, Hui Li, Ziyi Wang, Yinglei Zhang, Pingchuan Xu, Yuexin Xu, Dongbin Wang, Gang Wang, Minjung Kim, Yi Yuan, Xiaohui Qiao, Mingjie Li, Yangyang Xie, Shaojun Guo, Kaihui Liu, Jingkun Jiang. High-density volatile organic compound monitoring network for identifying pollution sources. Science of The Total Environment 2023, 855 , 158872. https://doi.org/10.1016/j.scitotenv.2022.158872
    97. Amber L. Kramer, Jonathan Liu, Liqiao Li, Rachel Connolly, Michele Barbato, Yifang Zhu. Environmental justice analysis of wildfire-related PM2.5 exposure using low-cost sensors in California. Science of The Total Environment 2023, 856 , 159218. https://doi.org/10.1016/j.scitotenv.2022.159218
    98. Kamaljeet Kaur, Kerry E. Kelly. Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003 sensor in measuring dust events in the Salt Lake Valley, Utah. Atmospheric Measurement Techniques 2023, 16 (10) , 2455-2470. https://doi.org/10.5194/amt-16-2455-2023
    99. Vijay Kumar, Dinushani Senarathna, Supraja Gurajala, William Olsen, Shantanu Sur, Sumona Mondal, Suresh Dhaniyala. Spectral analysis approach for assessing the accuracy of low-cost air quality sensor network data. Atmospheric Measurement Techniques 2023, 16 (21) , 5415-5427. https://doi.org/10.5194/amt-16-5415-2023
    100. Qiang Pu, Eun-Hye Yoo. A gap-filling hybrid approach for hourly PM2.5 prediction at high spatial resolution from multi-sourced AOD data. Environmental Pollution 2022, 315 , 120419. https://doi.org/10.1016/j.envpol.2022.120419
    Load all citations

    Environmental Science & Technology

    Cite this: Environ. Sci. Technol. 2020, 54, 4, 2152–2162
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.est.9b06046
    Published January 12, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    4964

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.