ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Facile Synthesis and Acetone Sensing Performance of Hierarchical SnO2 Hollow Microspheres with Controllable Size and Shell Thickness

View Author Information
† ‡ State Key Laboratory of Chemical Resource Engineering, and Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing 100029, P. R. China
*Fax and Tel: + 86-10-64436992. E-mail: [email protected]
Cite this: Ind. Eng. Chem. Res. 2016, 55, 12, 3588–3595
Publication Date (Web):March 8, 2016
https://doi.org/10.1021/acs.iecr.6b00060
Copyright © 2016 American Chemical Society

    Article Views

    1542

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A facile method to prepare SnO2 hollow microspheres has been developed by using SiO2 microspheres as template and Na2SnO3 as tin resource. The obtained SnO2 hollow microspheres were characterized by X-ray diffraction, scanning electron microscopy, high resolution and transmission electron microscopy, and Brunauer–Emmett–Teller analysis, and their sensing performance was also investigated. It was found that the diameter of SnO2 hollow microspheres can be easily controlled in the range of 200–700 nm, and the shell thickness can be tuned from 7.65 to 30.33 nm. The sensing tests showed that SnO2 hollow microspheres not only have high sensing response and excellent selectivity to acetone, but also exhibit low operating temperature and rapid response and recovery due to the small crystal size and thin shell structure of the hollow microspheres, which facilitate the adsorption, diffusion, and reaction of gases on the surface of SnO2 nanoparticles. Therefore, the SnO2 hollow microsphere is a promising material for the preparation of high-performance gas sensors.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.iecr.6b00060.

    • SEM, TEM, HRTEM, crystal size distribution, Nitrogen adsorption–desorption isotherms and pore size distribution of SnO2-200-0.25 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 101 publications.

    1. Rinku Paul, Ranajit Ghosh. Ceria Quantum Dot-Decorated Carbon Nanotubes as a Room-Temperature Acetone Sensor. ACS Applied Nano Materials 2023, 6 (12) , 10223-10235. https://doi.org/10.1021/acsanm.3c01029
    2. Peresi Majura Bulemo, Jun Young Cheong. Review on Porosity Control in Nanostructured Semiconducting Metal Oxides and Its Influence on Chemiresistive Gas Sensing. ACS Applied Nano Materials 2023, 6 (2) , 1027-1049. https://doi.org/10.1021/acsanm.2c04447
    3. Fan Dang, Yinglin Wang, Luping Xu, Pengfei Cheng, Zhi Weng, Tianliang Wang, Li Lv, Chen Wang, Xu Li, Bao Zhang. Solvent-Dependent Synthesis of Okra-Shaped Co3O4 for Acetone Gas Detection at Low Operation Temperatures. ACS Applied Electronic Materials 2021, 3 (8) , 3400-3410. https://doi.org/10.1021/acsaelm.1c00383
    4. Licheng Zhou, Zhixiang Hu, Hua-Yao Li, Jingyao Liu, Yi Zeng, Jingsong Wang, Yifu Huang, Ling Miao, Guangzu Zhang, Yongan Huang, Jianjun Jiang, Shenglin Jiang, Huan Liu. Template-Free Construction of Tin Oxide Porous Hollow Microspheres for Room-Temperature Gas Sensors. ACS Applied Materials & Interfaces 2021, 13 (21) , 25111-25120. https://doi.org/10.1021/acsami.1c04651
    5. Kyusung Kim, Pil gyu Choi, Toshio Itoh, Yoshitake Masuda. Catalyst-free Highly Sensitive SnO2 Nanosheet Gas Sensors for Parts per Billion-Level Detection of Acetone. ACS Applied Materials & Interfaces 2020, 12 (46) , 51637-51644. https://doi.org/10.1021/acsami.0c15273
    6. Yanping Zhao, Yuxiang Liu, Yixuan Ma, Yuehua Li, Jianhong Zhang, Xingping Ren, Cheng Li, Jingchang Zhao, Jing Zhu, Heyun Zhao. Hollow Pentagonal-Cone-Structured SnO2 Architectures Assembled with Nanorod Arrays for Low-Temperature Ethanol Sensing. ACS Applied Nano Materials 2020, 3 (8) , 7720-7731. https://doi.org/10.1021/acsanm.0c01307
    7. Surjith Alancherry, Kateryna Bazaka, Igor Levchenko, Ahmed Al-jumaili, Bigyan Kandel, Aaron Alex, Francisco C. Robles Hernandez, Oomman K. Varghese, Mohan V. Jacob. Fabrication of Nano-Onion-Structured Graphene Films from Citrus sinensis Extract and Their Wetting and Sensing Characteristics. ACS Applied Materials & Interfaces 2020, 12 (26) , 29594-29604. https://doi.org/10.1021/acsami.0c04353
    8. Jun-Sik Kim, Chan Woong Na, Chang-Hoon Kwak, Hua-Yao Li, Ji Won Yoon, Jae-Hyeok Kim, Seong-Yong Jeong, Jong-Heun Lee. Humidity-Independent Gas Sensors Using Pr-Doped In2O3 Macroporous Spheres: Role of Cyclic Pr3+/Pr4+ Redox Reactions in Suppression of Water-Poisoning Effect. ACS Applied Materials & Interfaces 2019, 11 (28) , 25322-25329. https://doi.org/10.1021/acsami.9b06386
    9. Yufan Mo, Feng Shi, Shuaiwei Qin, Pinggui Tang, Yongjun Feng, Yingying Zhao, Dianqing Li. Facile Fabrication of Mesoporous Hierarchical Co-Doped ZnO for Highly Sensitive Ethanol Detection. Industrial & Engineering Chemistry Research 2019, 58 (19) , 8061-8071. https://doi.org/10.1021/acs.iecr.9b00158
    10. Hui Li, Shushu Chu, Qian Ma, Yuan Fang, Junpeng Wang, Quande Che, Gang Wang, Ping Yang. Novel Construction of Morphology-Tunable C–N/SnO2/ZnO/Au Microspheres with Ultrasensitivity and High Selectivity for Triethylamine under Various Temperature Detections. ACS Applied Materials & Interfaces 2019, 11 (8) , 8601-8611. https://doi.org/10.1021/acsami.8b22357
    11. Peresi Majura Bulemo, Hee-Jin Cho, Dong-Ha Kim, Il-Doo Kim. Facile Synthesis of Pt-Functionalized Meso/Macroporous SnO2 Hollow Spheres through in Situ Templating with SiO2 for H2S Sensors. ACS Applied Materials & Interfaces 2018, 10 (21) , 18183-18191. https://doi.org/10.1021/acsami.8b00901
    12. Lingyue Liu, Shaoming Shu, Guozhu Zhang, Shantang Liu. Highly Selective Sensing of C2H6O, HCHO, and C3H6O Gases by Controlling SnO2 Nanoparticle Vacancies. ACS Applied Nano Materials 2018, 1 (1) , 31-37. https://doi.org/10.1021/acsanm.7b00150
    13. Rongfang Zhao, Xiao Shen, Qianhui Wu, Xiue Zhang, Wenlong Li, Ge Gao, Lingyun Zhu, Lubin Ni, Guowang Diao, and Ming Chen . Heterogeneous Double-Shelled Constructed Fe3O4 Yolk–Shell Magnetite Nanoboxes with Superior Lithium Storage Performances. ACS Applied Materials & Interfaces 2017, 9 (29) , 24662-24670. https://doi.org/10.1021/acsami.7b07443
    14. Tianyi Ma, Xiangnan Yu, Huiyu Li, Wenguang Zhang, Xiaolu Cheng, Wentao Zhu, and Xinping Qiu . High Volumetric Capacity of Hollow Structured SnO2@Si Nanospheres for Lithium-Ion Batteries. Nano Letters 2017, 17 (6) , 3959-3964. https://doi.org/10.1021/acs.nanolett.7b01674
    15. Tingting Zhou, Tong Zhang, Rui Zhang, Zheng Lou, Jianan Deng, and Lili Wang . Hollow ZnSnO3 Cubes with Controllable Shells Enabling Highly Efficient Chemical Sensing Detection of Formaldehyde Vapors. ACS Applied Materials & Interfaces 2017, 9 (16) , 14525-14533. https://doi.org/10.1021/acsami.7b03112
    16. Mingwei Hu, Yongsheng Deng, Rong Guo, Yinghao Jia, Wenpu Zhang, Xinghui Hou, Ying Zhou. Enhanced acetone sensing of MOFs derived Co3O4-ZIF hierarchical structure under the strategy of internal construction and external modification. Sensors and Actuators B: Chemical 2024, 402 , 134889. https://doi.org/10.1016/j.snb.2023.134889
    17. Mengran Ran, Zhenyu Yuan, Hongmin Zhu, Hongliang Gao, Fanli Meng. Highly sensitive ethanol sensor based on Ag NP-modified SnO2–In2Sn2O7-x ternary composite enhanced by synergistic catalysis. Materials Science in Semiconductor Processing 2024, 170 , 107967. https://doi.org/10.1016/j.mssp.2023.107967
    18. Lijuan Fu, Jiapeng Xu, Qingyu Liu, Chaoqiang Liu, Shuxing Fan, Seeram Ramakrishna, Wei Tang. Gas sensors based on Co3O4/TiO2 core-shell nanofibers prepared by coaxial electrospinning for breath marker acetone detection. Ceramics International 2024, 50 (2) , 3443-3452. https://doi.org/10.1016/j.ceramint.2023.11.092
    19. Run Liu, Jiahui Liu, Jiarui Fang, Xiruo Bai, Dan Wang, Yixuan Qie, Shuqi Zu, Guancheng Wang, Xinyi Sui, Runyao Chang, Yizhu Wang, Ziheng Li. Remodeling and adsorption behavior of Co2+-doped SnO2 (221) crystal plane by H2O molecules. Computational and Theoretical Chemistry 2024, 1231 , 114404. https://doi.org/10.1016/j.comptc.2023.114404
    20. Wanjing Wang, Jianbiao Xian, Jin Li, Mengfang Yu, Qiutian Duan, Chung Ming Leung, Min Zeng, Xingsen Gao. Construction of Co3O4/SnO2 yolk-shell nanofibers for acetone gas detection. Sensors and Actuators B: Chemical 2024, 398 , 134724. https://doi.org/10.1016/j.snb.2023.134724
    21. Tingzhan Wang, Jingkun Chen, Jiaxuan Chen, Xuan Yao, Gang Chen, Zheng Jiao, Jing-Tai Zhao, Shuai Cheng, Xue-Chun Yang, Qianli Li. UV-light enhanced gas sensor based on Ga doped ZnO for ultra-high sensitive and selective n-butanol detection. Applied Surface Science 2023, 641 , 158551. https://doi.org/10.1016/j.apsusc.2023.158551
    22. Weiwei Guo, Rundong Luo, Fan Liu, Xingmin Wang. Enhanced acetone gas sensing performance of Zn2SnO4/SnO2 hierarchical stack structure. Materials Letters 2023, 352 , 135176. https://doi.org/10.1016/j.matlet.2023.135176
    23. Geonhui Lee, Jae-Ho Sim, Gyeongseok Oh, Mijin Won, Snigdha Paramita Mantry, Dong-Soo Kim. Electrostatic Spray Deposition of Al-Doped ZnO Thin Films for Acetone Gas Detection. Processes 2023, 11 (12) , 3390. https://doi.org/10.3390/pr11123390
    24. Jiancheng Liu, Fuchao Jia, Yu Yang, Lexian Sang, Tingting Liu, Xiaomei Wang, Huijuan Niu, Bo Liu. BNQDs sensitized in-situ growth ZnO nanorod arrays for enhancing the gas sensing performances to acetone. Vacuum 2023, 216 , 112443. https://doi.org/10.1016/j.vacuum.2023.112443
    25. Zhengyang Chen, Fubin Fu, Jing Cao, Ling An, Kaihua Zhang, Quan Chen. Study on gas sensitivity of ZnO@NiO loaded functional carbon materials. Materials Research Bulletin 2023, 165 , 112298. https://doi.org/10.1016/j.materresbull.2023.112298
    26. Long Li, Huyin Su, Licheng Zhou, Zhixiang Hu, Tiankun Li, Bingbing Chen, Hua-Yao Li, Huan Liu. Single-atom Ce targeted regulation SnS/SnS2 heterojunction for sensitive and stable room-temperature ppb-level gas sensor. Chemical Engineering Journal 2023, 472 , 144796. https://doi.org/10.1016/j.cej.2023.144796
    27. Zhaohui Lei, Fan Dang, Yinglin Wang, Songlin Li, Tianliang Wang, Yiyang Xu, Luping Xu, Pengfei Cheng. P-type hollow hexagram Co3O4 detect the acetone at low temperature and mechanism analysis. Chemical Engineering Journal 2023, 471 , 144297. https://doi.org/10.1016/j.cej.2023.144297
    28. Tingting Liu, Jiancheng Liu, Yu Yang, Xiaomei Wang, Tong Zhou, Guangchao Yin, Fuchao Jia, Bo Liu. 1D 2D and 3D anatase TiO2 sensitized with BNQDs for sensitive acetone detection. Surfaces and Interfaces 2023, 38 , 102847. https://doi.org/10.1016/j.surfin.2023.102847
    29. Shaobo CUI, Jiaqiong QIN, Wei LIU. Ultrafine Pt-doped SnO2 mesopore nanofibers-based gas sensor for enhanced acetone sensing. Chinese Journal of Analytical Chemistry 2023, 51 (6) , 100188. https://doi.org/10.1016/j.cjac.2022.100188
    30. Ruonan Tian, Zeyuan Gao, Gang Chen, Hongtao Guan, Chengjun Dong, Elisabetta Comini. Functionalized Pt nanoparticles between α/γ-Fe2O3 and MXene for superior acetone sensing. Sensors and Actuators B: Chemical 2023, 383 , 133584. https://doi.org/10.1016/j.snb.2023.133584
    31. Peresi Majura Bulemo, Jun Young Cheong. MOF-Derived SnO2 hollow spheres for Acetone Gas Sensing. Journal of Materials Science: Materials in Electronics 2023, 34 (12) https://doi.org/10.1007/s10854-023-10411-z
    32. Hanlin Wu, Fanqi Meng, Xueqin Gong, Wei Tao, Liupeng Zhao, Tianshuang Wang, Fangmeng Liu, Xu Yan, Peng Sun, Geyu Lu. A solution to boost acetone sensing performance of perovskite oxides chemiresistors: In-situ derived p-p heterostructures. Sensors and Actuators B: Chemical 2023, 378 , 133092. https://doi.org/10.1016/j.snb.2022.133092
    33. Qionglin Cheng, Xudong Wang, Dandan Huang, Yongchang Wang, Xi Tan, Yawen Chen, Wenjie Wang, Ming Yi, Hairong Li. Highly sensitive and fast response acetone gas sensor based on Co3O4–ZnO heterojunction assembled by porous nanoflowers. Journal of Materials Science: Materials in Electronics 2023, 34 (2) https://doi.org/10.1007/s10854-022-09566-y
    34. J. P. Morán-Lázaro, F. López-Urías, E. Muñoz-Sandoval, M. Courel-Piedrahita, A. Carreon-Alvarez, V. M. Rodríguez-Betancourtt, I. Zamudio-Torres, E. S. Guillén-López, A. Palafox-Corona. Evaluation of MgCo2O4 Nanoparticles as a Gas Sensor for the Detection of Acetone in the Diabetic and Non-Diabetic Range. Electronic Materials Letters 2023, 19 (1) , 66-75. https://doi.org/10.1007/s13391-022-00371-7
    35. Alexander A. Petrunin, Olga E. Glukhova. Quasi-2D SnO2 Thin Films for Gas Sensors: Chemoresistive Response and Temperature Effect on Adsorption of Analytes. Materials 2023, 16 (1) , 438. https://doi.org/10.3390/ma16010438
    36. V. Vidhya, P. Anbarasu, D. Geetha. Study the characterization and acetone sensing behaviour of CuO-doped SnO2–TiO2 nanocomposite at room temperature. Journal of Materials Science: Materials in Electronics 2022, 33 (31) , 24059-24067. https://doi.org/10.1007/s10854-022-09029-4
    37. Wenjian Zhang, Xukun Wang, Junnian Wu, Xinge Wang, Xueliang Lv, Guo Liu, Bingsheng Li, Jinyuan Zhou, Erqing Xie, Zhenxing Zhang. Electrospun Nb-doped CeO2 nanofibers for humidity independent acetone sensing. Applied Surface Science 2022, 602 , 154303. https://doi.org/10.1016/j.apsusc.2022.154303
    38. Ziteng Li, Wen Zeng, Qingting Li. SnO2 as a gas sensor in detection of volatile organic compounds: A review. Sensors and Actuators A: Physical 2022, 346 , 113845. https://doi.org/10.1016/j.sna.2022.113845
    39. Yawen Chen, Hairong Li, Dandan Huang, Xudong Wang, Yongchang Wang, Wenjie Wang, Ming Yi, Qionglin Cheng, Yuzhe Song, Genliang Han. Highly sensitive and selective acetone gas sensors based on modified ZnO nanomaterials. Materials Science in Semiconductor Processing 2022, 148 , 106807. https://doi.org/10.1016/j.mssp.2022.106807
    40. Yoshitake Masuda. Recent advances in SnO2 nanostructure based gas sensors. Sensors and Actuators B: Chemical 2022, 364 , 131876. https://doi.org/10.1016/j.snb.2022.131876
    41. Jiarui Huang, Chunyu Meng, Hui Wang, Haibo Ren, Xiaojing Lu, Sang Woo Joo. Preparation of cross-linked porous SnO2 nanosheets using three-dimensional reduced graphene oxide as a template and their gas sensing property. Journal of Alloys and Compounds 2022, 910 , 164763. https://doi.org/10.1016/j.jallcom.2022.164763
    42. Li Lv, Yinglin Wang, Pengfei Cheng, Yue Zhang, Yaoqiong Zhang, Zhaohui Lei, Luping Xu, Zhi Weng. Production of MFe2O4 (M = Zn, Ni, Cu, Co and Mn) multiple cavities microspheres with salt template to assemble a high-performance acetone gas sensor. Journal of Alloys and Compounds 2022, 904 , 164054. https://doi.org/10.1016/j.jallcom.2022.164054
    43. Li Lv, Pengfei Cheng, Yue Zhang, Yaoqiong Zhang, Zhaohui Lei, Yinglin Wang, Luping Xu, Zhi Weng, Cong Li. Ultra-high response acetone gas sensor based on ZnFe2O4 pleated hollow microspheres prepared by green NaCl template. Sensors and Actuators B: Chemical 2022, 358 , 131490. https://doi.org/10.1016/j.snb.2022.131490
    44. Ha Young Lee, Jae Hoon Bang, Sanjit Manohar Majhi, Ali Mirzaei, Ka Yoon Shin, Dong Jae Yu, Wansik Oum, Sukwoo Kang, Min Lyul Lee, Sang Sub Kim, Hyoun Woo Kim. Conductometric ppb-level acetone gas sensor based on one-pot synthesized Au @Co3O4 core-shell nanoparticles. Sensors and Actuators B: Chemical 2022, 359 , 131550. https://doi.org/10.1016/j.snb.2022.131550
    45. M’hand Oughanem, Rachida Douani, Nouara Lamrani, Yannick Guhel, Ahcène Chaouchi, Bertrand Boudart. Enhanced volatile organic compound sensing properties of BiFeO3 by carbon fibres addition. Processing and Application of Ceramics 2022, 16 (4) , 310-320. https://doi.org/10.2298/PAC2204310O
    46. Miao Liu, Jun Ji, Peng Song, Min Liu, Qi Wang. α-Fe2O3 nanocubes/Ti3C2Tx MXene composites for improvement of acetone sensing performance at room temperature. Sensors and Actuators B: Chemical 2021, 349 , 130782. https://doi.org/10.1016/j.snb.2021.130782
    47. Yanping Zhao, Haoyu Li, Yuehua Li, Yixuan Ma, Hongfei Yang, Huanlin Liu, Xingping Ren, Heyun Zhao. Layered SnO2 nanorods arrays anchored on reduced graphene oxide for ultra-high and ppb level formaldehyde sensing. Sensors and Actuators B: Chemical 2021, 346 , 130452. https://doi.org/10.1016/j.snb.2021.130452
    48. Xin Zhang, Xueyan Jia, Zihang Shi, Bolun Song, Yongan Niu. Synthesis, structural evolution, and optical properties of SnO 2 hollow microspheres with manageable shell thickness. CrystEngComm 2021, 23 (38) , 6736-6742. https://doi.org/10.1039/D1CE00801C
    49. Sanjaya Brahma, Yu-Wen Yeh, Jow-Lay Huang, Chuan-Pu Liu. Cu-doped p-type ZnO nanostructures as unique acetone sensor at room temperature (~25 °C). Applied Surface Science 2021, 564 , 150351. https://doi.org/10.1016/j.apsusc.2021.150351
    50. Jingjing Zheng, Xiaotian Li, Bo Zhang, Xiaoxin Zou, Qihua Liang, Hui Chen, Guo-Dong Li. Pt-decorated foam-like Ga-In bimetal oxide nanofibers for trace acetone detection in exhaled breath. Journal of Alloys and Compounds 2021, 873 , 159813. https://doi.org/10.1016/j.jallcom.2021.159813
    51. Chen Wang, Yinglin Wang, Pengfei Cheng, Luping Xu, Fan Dang, Tianliang Wang, Zhaohui Lei. In-situ generated TiO2/α-Fe2O3 heterojunction arrays for batch manufacturing of conductometric acetone gas sensors. Sensors and Actuators B: Chemical 2021, 340 , 129926. https://doi.org/10.1016/j.snb.2021.129926
    52. Zijing Wang, Fen Wang, Angga Hermawan, Yusuke Asakura, Takuya Hasegawa, Hiromu Kumagai, Hideki Kato, Masato Kakihana, Jianfeng Zhu, Shu Yin. SnO-SnO2 modified two-dimensional MXene Ti3C2T for acetone gas sensor working at room temperature. Journal of Materials Science & Technology 2021, 73 , 128-138. https://doi.org/10.1016/j.jmst.2020.07.040
    53. Hamed Dehdashti Jahromi, Mohammad Kazemi, Mohammad Hossein Sheikhi. Room temperature and highly sensitive acetone sensor based on lead sulfide nanosheets. Materials Science and Engineering: B 2021, 267 , 115082. https://doi.org/10.1016/j.mseb.2021.115082
    54. A. Feng Jiang, B. Wen Zhang, C. Yu Wei. Nanocrystalline composed SnO 2 inverse opal for highly sensitive acetone gas sensor at ppb-level. 2021, 412-416. https://doi.org/10.1109/NEMS51815.2021.9451274
    55. Pengfei Cheng, Li Lv, Yinglin Wang, Bao Zhang, Yue Zhang, Yaoqiong Zhang, Zhaohui Lei, Luping Xu. SnO2/ZnSnO3 double-shelled hollow microspheres based high-performance acetone gas sensor. Sensors and Actuators B: Chemical 2021, 332 , 129212. https://doi.org/10.1016/j.snb.2020.129212
    56. Haifeng Liu, Chengbo Li, Ruishi Xie, Jie Li, Guohua Ma, Kui Zheng, Xingquan Zhang, Heyan Huang, Tongjiang Peng, Jichuan Huo. Rapid and high sensing response to acetone based on La1-xBaxMnO3+δ nanopowders. Ceramics International 2021, 47 (5) , 6764-6772. https://doi.org/10.1016/j.ceramint.2020.11.019
    57. Stefano Americo, Eleonora Pargoletti, Raffaella Soave, Fausto Cargnoni, Mario Italo Trioni, Gian Luca Chiarello, Giuseppina Cerrato, Giuseppe Cappelletti. Unveiling the acetone sensing mechanism by WO 3 chemiresistors through a joint theory-experiment approach. Electrochimica Acta 2021, 371 , 137611. https://doi.org/10.1016/j.electacta.2020.137611
    58. Yun Sun, Xiaoying Yin, Lin Zhang, Menghui Cao. Preparation and evaluation of photo-responsive hollow SnO 2 molecularly imprinted polymers for the selective recognition of kaempferol. Analytical Methods 2021, 13 (7) , 925-932. https://doi.org/10.1039/D0AY02202K
    59. Vandna Chaudhary, Satya Pal Nehra. Pt-sensitized MoO3/mpg-CN mesoporous nanohybrid: A highly sensitive VOC sensor. Microporous and Mesoporous Materials 2021, 315 , 110906. https://doi.org/10.1016/j.micromeso.2021.110906
    60. Muthaiah Shellaiah, Kien Wen Sun. Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing. Sensors 2021, 21 (2) , 633. https://doi.org/10.3390/s21020633
    61. Zejun Han, Yuan Qi, Zhengyi Yang, Hecheng Han, Yanyan Jiang, Wenjing Du, Xue Zhang, Jizhi Zhang, Zhengfei Dai, Lili Wu, Cameron Fletcher, Zhou Wang, Jiurong Liu, Guixia Lu, Fenglong Wang. Recent advances and perspectives on constructing metal oxide semiconductor gas sensing materials for efficient formaldehyde detection. Journal of Materials Chemistry C 2020, 8 (38) , 13169-13188. https://doi.org/10.1039/D0TC03750H
    62. Jian Li, Chen Chen, Jialin Li, Shijun Li, Chengjun Dong. Synthesis of tin-glycerate and it conversion into SnO2 spheres for highly sensitive low-ppm-level acetone detection. Journal of Materials Science: Materials in Electronics 2020, 31 (19) , 16539-16547. https://doi.org/10.1007/s10854-020-04208-7
    63. Janine Walker, Priyanka Karnati, Derek R. Miller, Mohamad Al-Hashem, Sheikh A. Akbar, Patricia A. Morris. A new open-access online database for resistive-type gas sensor properties and performance. Sensors and Actuators B: Chemical 2020, 321 , 128591. https://doi.org/10.1016/j.snb.2020.128591
    64. Yanping Chen, Yue Cao. Ultrasensitive and low detection limit of acetone gas sensor based on ZnO/SnO 2 thick films. RSC Advances 2020, 10 (59) , 35958-35965. https://doi.org/10.1039/D0RA06406H
    65. Liu Shao-you, Chen Yuan-dao, Tang Yu-cai, Wang Fei-fei, Feng Qing-ge. Weak Interaction of Ni-Doped SnO2 Powder Materials with Sodium Benzenesulfonate Homologues as Templates. Journal of Inorganic and Organometallic Polymers and Materials 2020, 30 (8) , 3014-3025. https://doi.org/10.1007/s10904-020-01451-7
    66. Ritu Malik, Vijay K. Tomer, Yogendra Kumar Mishra, Liwei Lin. Functional gas sensing nanomaterials: A panoramic view. Applied Physics Reviews 2020, 7 (2) https://doi.org/10.1063/1.5123479
    67. Hongseok Kim, Zhicheng Cai, Sung-Pil Chang, Sunghoon Park. Improved sub-ppm acetone sensing properties of SnO2 nanowire-based sensor by attachment of Co3O4 nanoparticles. Journal of Materials Research and Technology 2020, 9 (1) , 1129-1136. https://doi.org/10.1016/j.jmrt.2019.12.094
    68. Yuhua Zhen, Jiuyang Zhang, Wenxin Wang, Yingda Li, Xiaoxin Gao, Haoyue Xue, Xing Liu, Zilong Jia, Qingzhong Xue, Jun Zhang, Youguo Yan, Njud S. Alharbi, Tasawar Hayat. Embedded SnO2/Diatomaceous earth composites for fast humidity sensing and controlling properties. Sensors and Actuators B: Chemical 2020, 303 , 127137. https://doi.org/10.1016/j.snb.2019.127137
    69. Yinglin Wang, Pengfei Cheng, Xu Li, Chen Wang, Changhao Feng, Geyu Lu. Revealing the relationship between the Au decoration method and the enhanced acetone sensing performance of a mesoporous In 2 O 3 -based gas sensor. Journal of Materials Chemistry C 2020, 8 (1) , 78-88. https://doi.org/10.1039/C9TC05082E
    70. Hongyun Shao, Minxuan Huang, Hao Fu, Shaopeng Wang, Liwei Wang, Jie Lu, Yinghui Wang, Kefu Yu. Hollow WO3/SnO2 Hetero-Nanofibers: Controlled Synthesis and High Efficiency of Acetone Vapor Detection. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00785
    71. Wei Liu, Yuelin Xie, Tingxuan Chen, Qixiao Lu, Shafiq Ur Rehman, Ling Zhu. Rationally designed mesoporous In2O3 nanofibers functionalized Pt catalysts for high-performance acetone gas sensors. Sensors and Actuators B: Chemical 2019, 298 , 126871. https://doi.org/10.1016/j.snb.2019.126871
    72. Xiuyu Wang, Heng Li, Xuantong Zhu, Mengzhen Xia, Tao Tao, Binxin Leng, Wen Xu. Improving ethanol sensitivity of ZnSnO3 sensor at low temperature with multi-measures: Mg doping, nano-TiO2 decoration and UV radiation. Sensors and Actuators B: Chemical 2019, 297 , 126745. https://doi.org/10.1016/j.snb.2019.126745
    73. E. Pargoletti, A. Tricoli, V. Pifferi, S. Orsini, M. Longhi, V. Guglielmi, G. Cerrato, L. Falciola, M. Derudi, G. Cappelletti. An electrochemical outlook upon the gaseous ethanol sensing by graphene oxide-SnO2 hybrid materials. Applied Surface Science 2019, 483 , 1081-1089. https://doi.org/10.1016/j.apsusc.2019.04.046
    74. Khaled Tawfik Alali, Jingyuan Liu, Kassem Aljebawi, Peili Liu, Rongrong Chen, Rumin Li, Hongquan Zhang, Limin Zhou, Jun Wang. Electrospun n-p WO3/CuO heterostructure nanofibers as an efficient sarin nerve agent sensing material at room temperature. Journal of Alloys and Compounds 2019, 793 , 31-41. https://doi.org/10.1016/j.jallcom.2019.04.157
    75. Sen Liu, Shang Gao, Ziying Wang, Teng Fei, Tong Zhang. Oxygen vacancy modulation of commercial SnO2 by an organometallic chemistry-assisted strategy for boosting acetone sensing performances. Sensors and Actuators B: Chemical 2019, 290 , 493-502. https://doi.org/10.1016/j.snb.2019.03.123
    76. J.Y. Patil, D.Y. Nadargi, I.S. Mulla, S.S. Suryavanshi. Cerium doped MgFe2O4 nanocomposites: highly sensitive and fast response-recoverable acetone gas sensor. Heliyon 2019, 5 (6) , e01489. https://doi.org/10.1016/j.heliyon.2019.e01489
    77. Jintao Li, Hongjie Liu, Hao Fu, Liang Xu, Han Jin, Xiaowei Zhang, Liwei Wang, Kefu Yu. Synthesis of 1D α-MoO3/0D ZnO heterostructure nanobelts with enhanced gas sensing properties. Journal of Alloys and Compounds 2019, 788 , 248-256. https://doi.org/10.1016/j.jallcom.2019.02.086
    78. Xiangfeng Guan, Yongjing Wang, Peihui Luo, Yunlong Yu, Dagui Chen, Xiaoyan Li. Incorporating N Atoms into SnO2 Nanostructure as an Approach to Enhance Gas Sensing Property for Acetone. Nanomaterials 2019, 9 (3) , 445. https://doi.org/10.3390/nano9030445
    79. Lin Bizhou, Fangcao Jia, Bingjie Lv, Zhilei Qin, Peide Liu, Yilin Chen. Facile synthesis and remarkable hydrogen sensing performance of Pt-loaded SnO 2 hollow microspheres. Materials Research Bulletin 2018, 106 , 403-408. https://doi.org/10.1016/j.materresbull.2018.06.027
    80. Yanping Chen, Hongwei Qin, Yue Cao, Heng Zhang, Jifan Hu. Acetone Sensing Properties and Mechanism of SnO2 Thick-Films. Sensors 2018, 18 (10) , 3425. https://doi.org/10.3390/s18103425
    81. Huali Liu, Dongdong Wei, Yan Yan, Ang Li, Xiaohong Chuai, Geyu Lu, Yu Wang. Silver Nanowire Templating Synthesis of Mesoporous SnO 2 Nanotubes: An Effective Gas Sensor for Methanol with a Rapid Response and Recovery. ChemistrySelect 2018, 3 (27) , 7741-7748. https://doi.org/10.1002/slct.201801663
    82. Qiang Jia, Yue Ma, Yinxian Peng, Yanhong Liu, Wenli Zhang. Selective recognition and separation of luteolin based on the molecular imprinted hollow SnO 2 and boronate affinity. Chemical Engineering Journal 2018, 342 , 293-303. https://doi.org/10.1016/j.cej.2018.02.103
    83. Jie Hu, Jie Yang, Wenda Wang, Yan Xue, Yongjiao Sun, Pengwei Li, Kun Lian, Wendong Zhang, Lin Chen, Jian Shi, Yong Chen. Synthesis and gas sensing properties of NiO/SnO2 hierarchical structures toward ppb-level acetone detection. Materials Research Bulletin 2018, 102 , 294-303. https://doi.org/10.1016/j.materresbull.2018.02.006
    84. Boqun Wang, Qi Yu, Sufang Zhang, Tianshuang Wang, Peng Sun, Xiaohong Chuai, Geyu Lu. Gas sensing with yolk-shell LaFeO3 microspheres prepared by facile hydrothermal synthesis. Sensors and Actuators B: Chemical 2018, 258 , 1215-1222. https://doi.org/10.1016/j.snb.2017.12.018
    85. Xueying Kou, Ning Xie, Fang Chen, Tianshuang Wang, Lanlan Guo, Chong Wang, Qingji Wang, Jian Ma, Yanfeng Sun, Hong Zhang, Geyu Lu. Superior acetone gas sensor based on electrospun SnO2 nanofibers by Rh doping. Sensors and Actuators B: Chemical 2018, 256 , 861-869. https://doi.org/10.1016/j.snb.2017.10.011
    86. Zheng-Wei Zhou, Long Pan, Yi-Tao Liu, Xiao-Dong Zhu, Xu-Ming Xie. Elaborate synthesis of black tin oxide–black titanium oxide core–shell nanotubes for ultrastable and fast lithium storage. Chemical Communications 2018, 54 (38) , 4790-4793. https://doi.org/10.1039/C8CC02040J
    87. Vijay K. Tomer, Kulvinder Singh, Harmanjit Kaur, Munish Shorie, Priyanka Sabherwal. Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sensors and Actuators B: Chemical 2017, 253 , 703-713. https://doi.org/10.1016/j.snb.2017.06.179
    88. Tingting Lin, Xin Lv, Shuang Li, Qingji Wang. The Morphologies of the Semiconductor Oxides and Their Gas-Sensing Properties. Sensors 2017, 17 (12) , 2779. https://doi.org/10.3390/s17122779
    89. Khaled Tawfik Alali, Jingyuan Liu, Qi Liu, Rumin Li, Hongquan Zhang, Kassem Aljebawi, Peili Liu, Jun Wang. Enhanced acetone gas sensing response of ZnO/ZnCo2O4 nanotubes synthesized by single capillary electrospinning technology. Sensors and Actuators B: Chemical 2017, 252 , 511-522. https://doi.org/10.1016/j.snb.2017.06.034
    90. Jie Hu, Ying Wang, Wenda Wang, Yan Xue, Pengwei Li, Kun Lian, Lin Chen, Wendong Zhang, Serge Zhuiykov. Enhancement of the acetone sensing capabilities to ppb detection level by Fe-doped three-dimensional SnO2 hierarchical microstructures fabricated via a hydrothermal method. Journal of Materials Science 2017, 52 (19) , 11554-11568. https://doi.org/10.1007/s10853-017-1319-8
    91. Xiaoxue Lian, Yan Li, Xiaoqiang Tong, Yunling Zou, Xiulin Liu, Dongmin An, Qiong Wang. Synthesis of Ce-doped SnO 2 nanoparticles and their acetone gas sensing properties. Applied Surface Science 2017, 407 , 447-455. https://doi.org/10.1016/j.apsusc.2017.02.228
    92. Mengying Xu, Zhidong Lin, Wenying Guo, Yuyuan Hong, Ping Fu, Zhe Chen, Dingguo Tang. Xylene-sensing of Fe 2 (MoO 4 ) 3 nanoplates prepared via a hydrothermal method. Functional Materials Letters 2017, 10 (03) , 1750022. https://doi.org/10.1142/S1793604717500229
    93. Shaofeng Zhang, Jinggang Hao, Feng Ren, Wei Wu, Xiangheng Xiao. Controllable synthesis of Au@SnO 2 core–shell nanohybrids with enhanced photocatalytic activities. Materials Research Express 2017, 4 (5) , 055502. https://doi.org/10.1088/2053-1591/aa6e99
    94. Su Zhang, Peng Song, Jia Zhang, Huihui Yan, Jia Li, Zhongxi Yang, Qi Wang. Highly sensitive detection of acetone using mesoporous In2O3 nanospheres decorated with Au nanoparticles. Sensors and Actuators B: Chemical 2017, 242 , 983-993. https://doi.org/10.1016/j.snb.2016.09.155
    95. Eun Kwang Lee, Cheol Hee Park, Junghoon Lee, Hae Rang Lee, Changduk Yang, Joon Hak Oh. Chemically Robust Ambipolar Organic Transistor Array Directly Patterned by Photolithography. Advanced Materials 2017, 29 (11) https://doi.org/10.1002/adma.201605282
    96. Su Zhang, Peng Song, Jia Li, Jia Zhang, Zhongxi Yang, Qi Wang. Facile approach to prepare hierarchical Au-loaded In2O3 porous nanocubes and their enhanced sensing performance towards formaldehyde. Sensors and Actuators B: Chemical 2017, 241 , 1130-1138. https://doi.org/10.1016/j.snb.2016.10.023
    97. Suchibrata Borah, Bagmita Bhattacharyya, Jumi Deka, Aditya Borah, Anuchaya Devi, Dhanapati Deka, Shashank Mishra, Kalyan Raidongia, Nayanmoni Gogoi. Enhanced catalytic activity and near room temperature gas sensing properties of SnO 2 nanoclusters@mesoporous Sn( iv ) organophosphonate composite. Dalton Transactions 2017, 46 (26) , 8664-8672. https://doi.org/10.1039/C7DT01939D
    98. Khaled Tawfik Alali, Zetong Lu, Hongsen Zhang, Jingyuan Liu, Qi Liu, Rumin Li, Kassem Aljebawi, Jun Wang. P–p heterojunction CuO/CuCo 2 O 4 nanotubes synthesized via electrospinning technology for detecting n-propanol gas at room temperature. Inorganic Chemistry Frontiers 2017, 4 (7) , 1219-1230. https://doi.org/10.1039/C7QI00192D
    99. M. F. Afsar, M. A. Rafiq, A. I. Y. Tok. Two-dimensional SnS nanoflakes: synthesis and application to acetone and alcohol sensors. RSC Advances 2017, 7 (35) , 21556-21566. https://doi.org/10.1039/C7RA03004E
    100. Shan-Hong Li, Fang-Fang Meng, Zhong Chu, Tao Luo, Fu-Min Peng, Zhen Jin. Mesoporous SnO 2 Nanowires: Synthesis and Ethanol Sensing Properties. Advances in Condensed Matter Physics 2017, 2017 , 1-6. https://doi.org/10.1155/2017/9720973
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect