ACS Publications. Most Trusted. Most Cited. Most Read
Power-to-Gas through High Temperature Electrolysis and Carbon Dioxide Methanation: Reactor Design and Process Modeling
My Activity

Figure 1Loading Img
    Article

    Power-to-Gas through High Temperature Electrolysis and Carbon Dioxide Methanation: Reactor Design and Process Modeling
    Click to copy article linkArticle link copied!

    • Emanuele Giglio
      Emanuele Giglio
      Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
    • Fabio Alessandro Deorsola
      Fabio Alessandro Deorsola
      Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
    • Manuel Gruber
      Manuel Gruber
      Engler-Bunte-Institute, Division of Combustion Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 7, 76131 Karlsruhe, Germany
    • Stefan Raphael Harth
      Stefan Raphael Harth
      Engler-Bunte-Institute, Division of Combustion Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 7, 76131 Karlsruhe, Germany
    • Eduard Alexandru Morosanu
      Eduard Alexandru Morosanu
      Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
    • Dimosthenis Trimis
      Dimosthenis Trimis
      Engler-Bunte-Institute, Division of Combustion Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 7, 76131 Karlsruhe, Germany
    • Samir Bensaid*
      Samir Bensaid
      Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
      *E-mail: [email protected]
    • Raffaele Pirone
      Raffaele Pirone
      Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
    Other Access OptionsSupporting Information (1)

    Industrial & Engineering Chemistry Research

    Cite this: Ind. Eng. Chem. Res. 2018, 57, 11, 4007–4018
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.iecr.8b00477
    Published March 7, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    This work deals with the coupling between high temperature steam electrolysis using solid oxide cells (SOEC) and carbon dioxide methanation to produce a synthetic natural gas (SNG) directly injectable in the natural gas distribution grid via a power-to-gas (P2G) pathway. An intrinsic kinetics obtained from the open literature has been used as the basis for a plug flow reactor model applied to a series of cooled multitube fixed bed reactors for methane synthesis. Evaporating water has been considered as coolant, ensuring a high heat transfer coefficient within the shell side of the reactor. A methanation section has been designed and optimized in order to moderate the maximum temperature within the catalytic bed and to minimize the catalyst load. Then, process modeling of a plant coupling high temperature electrolysis and methanation is presented: the main goal of this analysis is the calculation of overall plant efficiency (in terms of electricity-to-SNG chemical energy). Plant size has been set considering a 10 MWel SOEC-based electrolysis unit; heat produced from the exothermal methanation is entirely used for water evaporation before the steam electrolysis. A heat exchanger network (HEN) has been designed in order to reduce the number of components, resulting in an external heat requirement equal to 185 kW (≈1.9% of the electrolysis power). The SOEC-based power-to-gas system presented a higher heating value based efficiency equal to ≈86% (≈77% if evaluated on lower heating value basis).

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.iecr.8b00477.

    • Description of the kinetic model used in this work, including Table S1 and eqs S1–S3 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 86 publications.

    1. Liyan Sun, Kun Luo, Jianren Fan. Three-Dimensional Simulation of the Methanation Process in a Circulating Fluidized-Bed Reactor. Industrial & Engineering Chemistry Research 2021, 60 (45) , 16417-16429. https://doi.org/10.1021/acs.iecr.1c03107
    2. Youngmin Jeong, Jonghyun Park, Myungwan Han. Design and Control of a Fixed-Bed Recycle Reactor with Multicatalyst Layers: Methanation of Carbon Dioxide. Industrial & Engineering Chemistry Research 2021, 60 (12) , 4650-4667. https://doi.org/10.1021/acs.iecr.0c05784
    3. Riccardo Bacci di Capaci, Andrea Luca Tasca, Gabriele Pannocchia, Claudio Scali, Leonardo Tognotti, Elisabetta Brunazzi, Cristiano Nicolella, Monica Puccini. Biomethane Production: Mass and Energy Balances of Alternative Supply Chains. Industrial & Engineering Chemistry Research 2019, 58 (25) , 10951-10962. https://doi.org/10.1021/acs.iecr.9b01149
    4. Diego Santamaría, Antonio Sánchez, Mariano Martín. Scaling down analysis of e-methane production: Advancing towards distributed manufacturing. Renewable Energy 2025, 245 , 122792. https://doi.org/10.1016/j.renene.2025.122792
    5. Elena Gómez-Bravo, Unai De-La-Torre, José A. González-Marcos, Juan R. González-Velasco, Beñat Pereda-Ayo. Optimizing operational strategies in a non-isothermal bench-scale fixed-bed reactor for CO2 hydrogenation to CH4 combining experimental and modeling and simulation approaches. Catalysis Today 2025, 253 , 115256. https://doi.org/10.1016/j.cattod.2025.115256
    6. Andrea Rizzetto, Enrico Sartoretti, Marco Piumetti, Raffaele Pirone, Samir Bensaid. Novel application of Ru-based catalysts on MgAl oxides alkaline adsorbents for cyclic CO2 methanation. Chemical Engineering Journal 2024, 501 , 157585. https://doi.org/10.1016/j.cej.2024.157585
    7. Alessandro Porta, Clara Larghi, Luca Lietti, Carlo Giorgio Visconti. Once-through CO2 hydrogenation to grid-compatible synthetic natural gas over a Ru-based catalyst at atmospheric pressure. Catalysis Today 2024, 442 , 114907. https://doi.org/10.1016/j.cattod.2024.114907
    8. Ruilin Yin, Liangyong Chen, Sandro Nižetić, Li Sun. Modelica-based 1-D dynamic modeling and thermodynamic analysis of power-to-gas systems through solid oxide electrolysis and CO2 methanation. Energy Conversion and Management 2024, 317 , 118730. https://doi.org/10.1016/j.enconman.2024.118730
    9. Elena Gómez-Bravo, José A. González-Marcos, Juan R. González-Velasco, Beñat Pereda-Ayo. Critical role of transport phenomena in the performance of a catalytic fixed bed reactor for the CO2 hydrogenation to CH4 evaluated by modeling and simulation. Chemical Engineering Science 2024, 297 , 120312. https://doi.org/10.1016/j.ces.2024.120312
    10. Maria Paula Novoa, Camilo Rengifo, Martha Cobo, Manuel Figueredo. Techno-economic assessment of the Synthetic Natural Gas production using different electrolysis technologies and product applications. International Journal of Hydrogen Energy 2024, 78 , 889-900. https://doi.org/10.1016/j.ijhydene.2024.06.354
    11. , Maria M. Ramirez-Corredores. A Carbon Dioxide Refinery: The Core of a Sustainable Carbon-based Circular Economy. Highlights of Sustainability 2024, 3 (2) , 205-239. https://doi.org/10.54175/hsustain3020013
    12. Siddharth Iyer, Gurpreet Kaur, Nawshad Haque, Sarbjit Giddey. Review of experimental and modelling investigations for solid oxide electrolysis technology. International Journal of Hydrogen Energy 2024, 72 , 537-558. https://doi.org/10.1016/j.ijhydene.2024.05.312
    13. Hideki Harada, Anshuman Sinha, Tomoyuki Yajima, Yoshiaki Kawajiri. Model-based techno–economic analysis of an integrated synthetic natural gas production system with direct air capture and water electrolysis. Carbon Capture Science & Technology 2024, 10 , 100181. https://doi.org/10.1016/j.ccst.2023.100181
    14. Antonio De Padova, Emanuele Giglio, Massimo Santarelli. Electrolysis-boosted substitute natural gas from biomass: Kinetic modeling of fluidized bed gasification and system integration. Renewable Energy 2024, 223 , 120071. https://doi.org/10.1016/j.renene.2024.120071
    15. Ramin Roushenas, Hamid Reza Rahbari, Ali Sulaiman Alsagri, Ahmad Arabkoohsar. Improved marketing strategy of a hybrid renewable plant integrated with gravitational energy storage: Techno-economic analysis and multi-objective optimization. Journal of Energy Storage 2024, 78 , 109991. https://doi.org/10.1016/j.est.2023.109991
    16. Susumu Toko, Takamasa Okumura, Kunihiro Kamataki, Kosuke Takenaka, Kazunori Koga, Masaharu Shiratani, Yuichi Setsuhara. Improving the efficiency of CO2 methanation using a combination of plasma and molecular sieves. Results in Surfaces and Interfaces 2024, 14 , 100204. https://doi.org/10.1016/j.rsurfi.2024.100204
    17. Susumu TOKO, Takamasa OKUMURA, Kunihiro KAMATAKI, Kosuke TAKENAKA, Kazunori KOGA, Masaharu SHIRATANI, Yuichi SETSUHARA. Fundamental Study of Carbon Dioxide Reduction Reaction with Plasma Catalysis. Journal of Smart Processing 2024, 13 (1) , 31-36. https://doi.org/10.7791/jspmee.13.31
    18. Gábor Pintér. The development of global power-to-methane potentials between 2000 and 2020: A comparative overview of international projects. Applied Energy 2024, 353 , 122094. https://doi.org/10.1016/j.apenergy.2023.122094
    19. Like Zhong, Xiaoti Cui, Erren Yao, Guang Xi, Hansen Zou, Søren Højgaard Jensen. Optimal design and off-design performance improvement for power-to-methane system integrating solid oxide electrolysis cell with methanation reactor. Fuel 2024, 356 , 129314. https://doi.org/10.1016/j.fuel.2023.129314
    20. MinJae Lee, JongHo Won, HeeKwon Shin, JunHo Lee, Min Hyung Lee, SeKwon Oh. Porous Ni–Fe–Cr electrocatalyst for the oxygen and hydrogen evolution reaction via facile one-step electrodeposition. International Journal of Hydrogen Energy 2024, 51 , 536-544. https://doi.org/10.1016/j.ijhydene.2023.10.112
    21. J. Silva, J.C. Gonçalves, C. Rocha, J. Vilaça, L.M. Madeira. Biomethane production from biogas obtained in wastewater treatment plants: Process optimization and economic analysis. Renewable Energy 2024, 220 , 119469. https://doi.org/10.1016/j.renene.2023.119469
    22. Yuhao Xu, Shanshan Cai, Bo Chi, Zhengkai Tu. Technological limitations and recent developments in a solid oxide electrolyzer cell: A review. International Journal of Hydrogen Energy 2024, 50 , 548-591. https://doi.org/10.1016/j.ijhydene.2023.08.314
    23. Matteo Minardi, Paolo Marocco, Marta Gandiglio. Carbon recovery from biogas through upgrading and methanation: A techno-economic and environmental assessment. Journal of CO2 Utilization 2023, 78 , 102632. https://doi.org/10.1016/j.jcou.2023.102632
    24. Michela Costa, Robert Maka, Francesco Saverio Marra, Adolfo Palombo, Maria Vittoria Prati. Assessing techno-economic feasibility of cogeneration and power to hydrogen plants: A novel dynamic simulation model. Energy Reports 2023, 10 , 1739-1752. https://doi.org/10.1016/j.egyr.2023.08.013
    25. Fabio Salomone, Paolo Marocco, Daniele Ferrario, Andrea Lanzini, Debora Fino, Samir Bensaid, Massimo Santarelli. Process simulation and energy analysis of synthetic natural gas production from water electrolysis and CO2 capture in a waste incinerator. Applied Energy 2023, 343 , 121200. https://doi.org/10.1016/j.apenergy.2023.121200
    26. Chalachew Mebrahtu, Florian Krebs, Gianfranco Giorgianni, Salvatore Abate, Siglinda Perathoner, Gabriele Centi, Alexander I. Large, Georg Held, Rosa Arrigo, Regina Palkovits. Insights by in-situ studies on the nature of highly-active hydrotalcite-based Ni-Fe catalysts for CO2 methanation. Chemical Engineering Research and Design 2023, 193 , 320-339. https://doi.org/10.1016/j.cherd.2023.03.026
    27. Dawood Hjeij, Yusuf Biçer, Muammer Koç. Thermodynamic analysis of a multigeneration system using solid oxide cells for renewable power-to-X conversion. International Journal of Hydrogen Energy 2023, 48 (32) , 12056-12071. https://doi.org/10.1016/j.ijhydene.2022.09.024
    28. Philippe Aubin, Ligang Wang, Jan Van herle. Evaporating water-cooled methanation reactor for solid-oxide stack-based power-to-methane systems: Design, experiment and modeling. Chemical Engineering Journal 2023, 456 , 140256. https://doi.org/10.1016/j.cej.2022.140256
    29. Alper Can Ince, C. Ozgur Colpan, Ali Keles, Mustafa Fazıl Serincan, Ugur Pasaogullari. Scaling and performance assessment of power-to-methane system based on an operation scenario. Fuel 2023, 332 , 126182. https://doi.org/10.1016/j.fuel.2022.126182
    30. Patrick Lott, Olaf Deutschmann. Heterogeneous chemical reactions—A cornerstone in emission reduction of local pollutants and greenhouse gases. Proceedings of the Combustion Institute 2023, 39 (3) , 3183-3215. https://doi.org/10.1016/j.proci.2022.06.001
    31. Gyubin Min, Saeyoung Choi, Jongsup Hong. A review of solid oxide steam-electrolysis cell systems: Thermodynamics and thermal integration. Applied Energy 2022, 328 , 120145. https://doi.org/10.1016/j.apenergy.2022.120145
    32. Magne Hillestad. Systematic generation of a once-through staged reactor design for direct methanation of biogas. Chemical Engineering and Processing - Process Intensification 2022, 181 , 109112. https://doi.org/10.1016/j.cep.2022.109112
    33. Meng Qi, Yi Liu, Tianbiao He, Liang Yin, Chi-Min Shu, Il Moon. System perspective on cleaner technologies for renewable methane production and utilisation towards carbon neutrality: Principles, techno-economics, and carbon footprints. Fuel 2022, 327 , 125130. https://doi.org/10.1016/j.fuel.2022.125130
    34. Hossein Nami, Omid Babaie Rizvandi, Christodoulos Chatzichristodoulou, Peter Vang Hendriksen, Henrik Lund Frandsen. Techno-economic analysis of current and emerging electrolysis technologies for green hydrogen production. Energy Conversion and Management 2022, 269 , 116162. https://doi.org/10.1016/j.enconman.2022.116162
    35. Meng Qi, Jaewon Lee, Seokyoung Hong, Jeongdong Kim, Yi Liu, Jinwoo Park, Il Moon. Flexible and efficient renewable-power-to-methane concept enabled by liquid CO2 energy storage: Optimization with power allocation and storage sizing. Energy 2022, 256 , 124583. https://doi.org/10.1016/j.energy.2022.124583
    36. P. Canu, M. Pagin. Biogas upgrading by 2-steps methanation of its CO2 – Thermodynamics analysis. Journal of CO2 Utilization 2022, 63 , 102123. https://doi.org/10.1016/j.jcou.2022.102123
    37. Stefan Fogel, Christopher Yeates, Sebastian Unger, Gonzalo Rodriguez-Garcia, Lars Baetcke, Martin Dornheim, Cornelia Schmidt-Hattenberger, David Bruhn, Uwe Hampel. SNG based energy storage systems with subsurface CO 2 storage. Energy Advances 2022, 1 (7) , 402-421. https://doi.org/10.1039/D1YA00035G
    38. Lukas Wehrle, Daniel Schmider, Julian Dailly, Aayan Banerjee, Olaf Deutschmann. Benchmarking solid oxide electrolysis cell-stacks for industrial Power-to-Methane systems via hierarchical multi-scale modelling. Applied Energy 2022, 317 , 119143. https://doi.org/10.1016/j.apenergy.2022.119143
    39. Myrsini Sakarika, Ramon Ganigué, Korneel Rabaey. Methylotrophs: from C1 compounds to food. Current Opinion in Biotechnology 2022, 75 , 102685. https://doi.org/10.1016/j.copbio.2022.102685
    40. Naizhi Li, Mengmeng Wang, Qing Shen, Yue Teng, Di Wang, Chusheng Chen, Zhongliang Zhan. Reduced concentration polarization and enhanced steam throughput conversion with a solid oxide electrolysis cell supported on an electrode with optimized pore structure. International Journal of Hydrogen Energy 2022, 47 (51) , 21673-21680. https://doi.org/10.1016/j.ijhydene.2022.05.013
    41. Zeeshan Uddin, Bor-Yih Yu, Hao-Yeh Lee. Evaluation of alternative processes of CO2 methanation: Design, optimization, control, techno-economic and environmental analysis. Journal of CO2 Utilization 2022, 60 , 101974. https://doi.org/10.1016/j.jcou.2022.101974
    42. Samuel J. Baxter, Miranda Rine, Byunghyun Min, Ying Liu, Jianhua Yao. Near 100% CO2 conversion and CH4 selectivity in a solid oxide electrolysis cell with integrated catalyst operating at 450 °C. Journal of CO2 Utilization 2022, 59 , 101954. https://doi.org/10.1016/j.jcou.2022.101954
    43. Like Zhong, Erren Yao, Hansen Zou, Guang Xi. Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method. Applied Energy 2022, 312 , 118670. https://doi.org/10.1016/j.apenergy.2022.118670
    44. Badrul Mohamed Jan, Mahidzal Bin Dahari, Mehwish Abro, Rabia Ikram. Exploration of waste-generated nanocomposites as energy-driven systems for various methods of hydrogen production; A review. International Journal of Hydrogen Energy 2022, 47 (37) , 16398-16423. https://doi.org/10.1016/j.ijhydene.2022.03.137
    45. Andreas Gantenbein, Oliver Kröcher, Serge M. A. Biollaz, Tilman J. Schildhauer. Techno-Economic Evaluation of Biological and Fluidised-Bed Based Methanation Process Chains for Grid-Ready Biomethane Production. Frontiers in Energy Research 2022, 9 https://doi.org/10.3389/fenrg.2021.775259
    46. Estefania Vega Puga, Gkiokchan Moumin, Nicole Carina Neumann, Martin Roeb, Armin Ardone, Christian Sattler. Holistic View on Synthetic Natural Gas Production: A Technical, Economic and Environmental Analysis. Energies 2022, 15 (5) , 1608. https://doi.org/10.3390/en15051608
    47. Nuria García-Moncada, Juan Carlos Navarro, José Antonio Odriozola, Leon Lefferts, Jimmy A. Faria. Enhanced catalytic activity and stability of nanoshaped Ni/CeO2 for CO2 methanation in micro-monoliths. Catalysis Today 2022, 383 , 205-215. https://doi.org/10.1016/j.cattod.2021.02.014
    48. Meng Qi, Jinwoo Park, Robert Stephen Landon, Jeongdong Kim, Yi Liu, Il Moon. Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential. Renewable and Sustainable Energy Reviews 2022, 153 , 111732. https://doi.org/10.1016/j.rser.2021.111732
    49. Ying Liu, Samuel Baxter, Miranda Rine, Byunghyun Min, Jianhua Yao. Near 100% Co2 Conversion and Ch4 Selectivity in a Solid Oxide Electrolysis Cell with Integrated Catalyst. SSRN Electronic Journal 2022, 11 https://doi.org/10.2139/ssrn.4017555
    50. Paolo Canu, Mattia Pagin. Biogas Upgrading by 2-Steps Methanation of its Co2 - Thermodynamics Analysis. SSRN Electronic Journal 2022, 52 https://doi.org/10.2139/ssrn.4111003
    51. Gyubin Min, Young Joon Park, Saeyoung Choi, Jongsup Hong. Sensitivity analysis of a solid oxide co-electrolysis cell system with respect to its key operating parameters and optimization with its performance map. Energy Conversion and Management 2021, 249 , 114848. https://doi.org/10.1016/j.enconman.2021.114848
    52. Victor Soto, Claudia Ulloa, Ximena Garcia. A CFD Design Approach for Industrial Size Tubular Reactors for SNG Production from Biogas (CO2 Methanation). Energies 2021, 14 (19) , 6175. https://doi.org/10.3390/en14196175
    53. Hanzhong Shi, Venkat R. Bhethanabotla, John N. Kuhn. Role of Ba in low temperature thermochemical conversion of carbon dioxide with LaFeO3 perovskite oxides. Journal of CO2 Utilization 2021, 51 , 101638. https://doi.org/10.1016/j.jcou.2021.101638
    54. Lucia S. Layritz, Iulia Dolganova, Matthias Finkbeiner, Gunnar Luderer, Alberto T. Penteado, Falko Ueckerdt, Jens-Uwe Repke. The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production. Applied Energy 2021, 296 , 117049. https://doi.org/10.1016/j.apenergy.2021.117049
    55. Robert Bedoić, Hrvoje Dorotić, Daniel Rolph Schneider, Lidija Čuček, Boris Ćosić, Tomislav Pukšec, Neven Duić. Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant. Renewable Energy 2021, 173 , 12-23. https://doi.org/10.1016/j.renene.2021.03.124
    56. Samrand Saeidi, Sara Najari, Volker Hessel, Karen Wilson, Frerich J. Keil, Patricia Concepción, Steven L. Suib, Alírio E. Rodrigues. Recent advances in CO2 hydrogenation to value-added products — Current challenges and future directions. Progress in Energy and Combustion Science 2021, 85 , 100905. https://doi.org/10.1016/j.pecs.2021.100905
    57. Chalachew Mebrahtu, Markus Nohl, Lucy Dittrich, Severin R. Foit, L. G. J. (Bert) de Haart, Rüdiger‐A. Eichel, Regina Palkovits. Integrated Co‐Electrolysis and Syngas Methanation for the Direct Production of Synthetic Natural Gas from CO 2 and H 2 O. ChemSusChem 2021, 14 (11) , 2295-2302. https://doi.org/10.1002/cssc.202002904
    58. Sarvenaz Farsi, Shengzhi Liang, Peter Pfeifer, Roland Dittmeyer. Application of evaporation cooling in a microstructured packed bed reactor for decentralized CO2 methanation. International Journal of Hydrogen Energy 2021, 46 (38) , 19971-19987. https://doi.org/10.1016/j.ijhydene.2021.03.050
    59. Emanuele Giglio, Raffaele Pirone, Samir Bensaid. Dynamic modelling of methanation reactors during start-up and regulation in intermittent power-to-gas applications. Renewable Energy 2021, 170 , 1040-1051. https://doi.org/10.1016/j.renene.2021.01.153
    60. Emanuele Giglio, Gianluca Vitale, Andrea Lanzini, Massimo Santarelli. Integration between biomass gasification and high-temperature electrolysis for synthetic methane production. Biomass and Bioenergy 2021, 148 , 106017. https://doi.org/10.1016/j.biombioe.2021.106017
    61. Nathalie Elia, Jane Estephane, Christophe Poupin, Bilal El Khoury, Laurence Pirault‐Roy, Samer Aouad, Edmond Abi Aad. A Highly Selective and Stable Ruthenium‐Nickel Supported on Ceria Catalyst for Carbon Dioxide Methanation. ChemCatChem 2021, 13 (6) , 1559-1567. https://doi.org/10.1002/cctc.202001687
    62. Andreina Alarcón, Jordi Guilera, Teresa Andreu. An insight into the heat-management for the CO2 methanation based on free convection. Fuel Processing Technology 2021, 213 , 106666. https://doi.org/10.1016/j.fuproc.2020.106666
    63. Mahdi Momeni, M. Soltani, M. Hosseinpour, Jatin Nathwani. A comprehensive analysis of a power-to-gas energy storage unit utilizing captured carbon dioxide as a raw material in a large-scale power plant. Energy Conversion and Management 2021, 227 , 113613. https://doi.org/10.1016/j.enconman.2020.113613
    64. Omar Y.H. Elsernagawy, Andrew Hoadley, Jim Patel, Tejas Bhatelia, Seng Lim, Nawshad Haque, Chao’en Li. Thermo-economic analysis of reverse water-gas shift process with different temperatures for green methanol production as a hydrogen carrier. Journal of CO2 Utilization 2020, 41 , 101280. https://doi.org/10.1016/j.jcou.2020.101280
    65. Carsten Drechsler, David W. Agar. Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air. Applied Energy 2020, 273 , 115076. https://doi.org/10.1016/j.apenergy.2020.115076
    66. Andrea Mazza, Fabio Salomone, Francesco Arrigo, Samir Bensaid, Ettore Bompard, Gianfranco Chicco. Impact of Power-to-Gas on distribution systems with large renewable energy penetration. Energy Conversion and Management: X 2020, 7 , 100053. https://doi.org/10.1016/j.ecmx.2020.100053
    67. Jennifer Uebbing, Liisa Rihko-Struckmann, Sebastian Sager, Kai Sundmacher. CO2 methanation process synthesis by superstructure optimization. Journal of CO2 Utilization 2020, 40 , 101228. https://doi.org/10.1016/j.jcou.2020.101228
    68. Shogo Sayama, Seiji Yamamoto. Energy Efficiency Improvement of CO2 Methanation Process by using a Thermally Self-Sustained Two-Stage Reactor: Preliminary Evaluation of a Reactor Concept. KAGAKU KOGAKU RONBUNSHU 2020, 46 (3) , 63-70. https://doi.org/10.1252/kakoronbunshu.46.63
    69. Srikanth Santhanam, Marc P. Heddrich, Kasper Andreas Friedrich. Electricity Arbitration and Sector Coupling with an Experimentally Validated Reversible Solid Oxide Cell Reactor System Connected to the Natural Gas Grid. Energy Technology 2020, 8 (3) https://doi.org/10.1002/ente.201900618
    70. Li Lin, Shuai Chen, Jiankang Quan, Shuting Liao, Yu Luo, Chongqi Chen, Chak-Tong Au, Yixiang Shi, Lilong Jiang. Geometric synergy of Steam/Carbon dioxide Co-electrolysis and methanation in a tubular solid oxide Electrolysis cell for direct Power-to-Methane. Energy Conversion and Management 2020, 208 , 112570. https://doi.org/10.1016/j.enconman.2020.112570
    71. F. Murena, S. Esposito, F.A. Deorsola, C. Galletti, M.V. Prati. CO2 abatement and CH4 recovery at vehicle exhausts: Comparison and characterization of Ru powder and pellet catalysts. International Journal of Hydrogen Energy 2020, 45 (15) , 8640-8648. https://doi.org/10.1016/j.ijhydene.2020.01.120
    72. Evan P. Reznicek, Robert J. Braun. Reversible solid oxide cell systems for integration with natural gas pipeline and carbon capture infrastructure for grid energy management. Applied Energy 2020, 259 , 114118. https://doi.org/10.1016/j.apenergy.2019.114118
    73. Rajeev Reddy Boggula, Dennis Fischer, René Casaretto, Jens Born. Methanation potential: Suitable catalyst and optimized process conditions for upgrading biogas to reach gas grid requirements. Biomass and Bioenergy 2020, 133 , 105447. https://doi.org/10.1016/j.biombioe.2019.105447
    74. M. Lo Faro, W. Oliveira da Silva, W. Valenzuela Barrientos, G.G.A. Saglietti, S.C. Zignani, V. Antonucci, E.A. Ticianelli, A.S. Aricò. Enhanced production of methane through the use of a catalytic Ni–Fe pre-layer in a solid oxide co-electrolyser. International Journal of Hydrogen Energy 2020, 45 (8) , 5134-5142. https://doi.org/10.1016/j.ijhydene.2019.06.161
    75. Christian Müller, Régis Anghilante, Max Schmid, Marlies Härdtlein, Reinhold Spörl, David Colomar, Felix Ortloff, Ludger Eltrop, Frank Graf, Siegfried Bajohr, Thomas Kolb. CNG und LNG aus biogenen Reststoffen – ein Konzept zur ressourcenschonenden Kraftstoffproduktion. Chemie Ingenieur Technik 2020, 92 (1-2) , 144-155. https://doi.org/10.1002/cite.201900097
    76. Fabio Salomone, Emanuele Giglio, Domenico Ferrero, Massimo Santarelli, Raffaele Pirone, Samir Bensaid. Techno-economic modelling of a Power-to-Gas system based on SOEC electrolysis and CO2 methanation in a RES-based electric grid. Chemical Engineering Journal 2019, 377 , 120233. https://doi.org/10.1016/j.cej.2018.10.170
    77. Praseeth Prabhakaran, Dimitrios Giannopoulos, Wolfgang Köppel, Ushnik Mukherjee, Gopal Remesh, Frank Graf, Dimosthenis Trimis, Thomas Kolb, Maria Founti. Cost optimisation and life cycle analysis of SOEC based Power to Gas systems used for seasonal energy storage in decentral systems. Journal of Energy Storage 2019, 26 , 100987. https://doi.org/10.1016/j.est.2019.100987
    78. Claudia Bassano, Paolo Deiana, Luca Lietti, Carlo Giorgio Visconti. P2G movable modular plant operation on synthetic methane production from CO2 and hydrogen from renewables sources. Fuel 2019, 253 , 1071-1079. https://doi.org/10.1016/j.fuel.2019.05.074
    79. I. Sreedhar, Yaddanapudi Varun, Satyapaul A. Singh, A. Venugopal, Benjaram M. Reddy. Developmental trends in CO 2 methanation using various catalysts. Catalysis Science & Technology 2019, 9 (17) , 4478-4504. https://doi.org/10.1039/C9CY01234F
    80. Bin Miao, Siew Hwa Chan. The economic feasibility study of a 100-MW Power-to-Gas plant. International Journal of Hydrogen Energy 2019, 44 (38) , 20978-20986. https://doi.org/10.1016/j.ijhydene.2019.02.044
    81. Ligang Wang, Ming Chen, Rainer Küngas, Tzu-En Lin, Stefan Diethelm, François Maréchal, Jan Van herle. Power-to-fuels via solid-oxide electrolyzer: Operating window and techno-economics. Renewable and Sustainable Energy Reviews 2019, 110 , 174-187. https://doi.org/10.1016/j.rser.2019.04.071
    82. Davide Parigi, Emanuele Giglio, Alicia Soto, Massimo Santarelli. Power-to-fuels through carbon dioxide Re-Utilization and high-temperature electrolysis: A technical and economical comparison between synthetic methanol and methane. Journal of Cleaner Production 2019, 226 , 679-691. https://doi.org/10.1016/j.jclepro.2019.04.087
    83. Régis Anghilante, Christian Müller, Max Schmid, David Colomar, Felix Ortloff, Reinhold Spörl, Annabelle Brisse, Frank Graf. Innovative power-to-gas plant concepts for upgrading of gasification bio-syngas through steam electrolysis and catalytic methanation. Energy Conversion and Management 2019, 183 , 462-473. https://doi.org/10.1016/j.enconman.2018.12.101
    84. Giulio Buffo, Paolo Marocco, Domenico Ferrero, Andrea Lanzini, Massimo Santarelli. Power-to-X and power-to-power routes. 2019, 529-557. https://doi.org/10.1016/B978-0-12-814853-2.00015-1
    85. Stefan Barwe, Bastian Mei, Justus Masa, Wolfgang Schuhmann, Edgar Ventosa. Overcoming cathode poisoning from electrolyte impurities in alkaline electrolysis by means of self-healing electrocatalyst films. Nano Energy 2018, 53 , 763-768. https://doi.org/10.1016/j.nanoen.2018.09.045
    86. Paolo Marocco, Eduard Alexandru Morosanu, Emanuele Giglio, Domenico Ferrero, Chalachew Mebrahtu, Andrea Lanzini, Salvatore Abate, Samir Bensaid, Siglinda Perathoner, Massimo Santarelli, Raffaele Pirone, Gabriele Centi. CO2 methanation over Ni/Al hydrotalcite-derived catalyst: Experimental characterization and kinetic study. Fuel 2018, 225 , 230-242. https://doi.org/10.1016/j.fuel.2018.03.137

    Industrial & Engineering Chemistry Research

    Cite this: Ind. Eng. Chem. Res. 2018, 57, 11, 4007–4018
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.iecr.8b00477
    Published March 7, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    3783

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.