Oxidative Addition of Hydridic, Protic, and Nonpolar E–H Bonds (E = Si, P, N, or O) to an Aluminyl Anion
- Matthew J. EvansMatthew J. EvansSchool of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Kelburn, Wellington 6012, New ZealandMore by Matthew J. Evans
- ,
- Mathew D. AnkerMathew D. AnkerSchool of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Kelburn, Wellington 6012, New ZealandMore by Mathew D. Anker
- , and
- Martyn P. Coles*Martyn P. Coles*Email: [email protected]School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Kelburn, Wellington 6012, New ZealandMore by Martyn P. Coles
Abstract

The aluminyl anion K[Al(NONDipp)] {NONDipp = [O(SiMe2NDipp)2]2–; Dipp = 2,6-iPr2C6H3} engages in oxidative additions with the E–H (E = Si, P, N, or O) bonds of phenylsilane (PhSiH3), mesityl phosphane (MesPH2; Mes = 2,4,6-Me3C6H2), 2,6-di-iso-propylaniline (DippNH2), and 2,6-di-tert-butyl-4-methylphenol (ArOH). The resulting (hydrido)aluminate salts are formed regardless of the E–H bond polarity. All of the products were characterized by nuclear magnetic resonance and infrared spectroscopic techniques and single-crystal X-ray diffraction. This study highlights the versatility of aluminyl anions to activate hydridic, acidic, and (essentially) nonpolar E–H bonds.
Cited By
This article is cited by 17 publications.
- Han-Ying Liu, Mary F. Mahon, Michael S. Hill. Aluminum–Boron Bond Formation by Boron Ester Oxidative Addition at an Alumanyl Anion. Inorganic Chemistry 2023, 62 (37) , 15310-15319. https://doi.org/10.1021/acs.inorgchem.3c02566
- Han-Ying Liu, Michael S. Hill, Mary F. Mahon, Claire L. McMullin, Ryan J. Schwamm. Seven-Membered Cyclic Diamidoalumanyls of Heavier Alkali Metals: Structures and C–H Activation of Arenes. Organometallics 2023, Article ASAP.
- Nery Villegas-Escobar, Preston R. Hoobler, Alejandro Toro-Labbé, Henry F. Schaefer, III. High-Level Coupled-Cluster Study on Substituent Effects in H2 Activation by Low-Valent Aluminyl Anions. The Journal of Physical Chemistry A 2023, 127 (4) , 956-965. https://doi.org/10.1021/acs.jpca.2c08403
- Gerd M. Ballmann, Matthew J. Evans, Thomas X. Gentner, Alan R. Kennedy, J. Robin Fulton, Martyn P. Coles, Robert E. Mulvey. Synthesis, Characterization, and Structural Analysis of AM[Al(NONDipp)(H)(SiH2Ph)] (AM = Li, Na, K, Rb, Cs) Compounds, Made Via Oxidative Addition of Phenylsilane to Alkali Metal Aluminyls. Inorganic Chemistry 2022, 61 (49) , 19838-19846. https://doi.org/10.1021/acs.inorgchem.2c03010
- Matthew J. Evans, Andrea O’Reilly, Mathew D. Anker, Martyn P. Coles. Trapping an Unusual Ring-Opened Product of THF within a Lithium Hydrido Aluminate. Organometallics 2022, 41 (19) , 2657-2661. https://doi.org/10.1021/acs.organomet.2c00329
- Bijoy Ghosh, Ashwini K. Phukan. Unravelling the Potential of Ylides in Stabilizing Low-Valent Group 13 Compounds: Theoretical Predictions of Stable, Five-Membered Group 13 (Aluminum and Gallium) Carbenoids Capable of Small-Molecule Activation. Inorganic Chemistry 2022, 61 (37) , 14606-14615. https://doi.org/10.1021/acs.inorgchem.2c01630
- Sumanta Banerjee, Gerd M. Ballmann, Matthew J. Evans, Andrea O'Reilly, Alan R. Kennedy, J. Robin Fulton, Martyn P. Coles, Robert E. Mulvey. Three Oxidative Addition Routes of Alkali Metal Aluminyls to Dihydridoaluminates and Reactivity with CO 2. Chemistry – A European Journal 2023, 69 https://doi.org/10.1002/chem.202301849
- Matthew J. Evans, Mathew D. Anker, Claire L. McMullin, Martyn P. Coles. Controlled reductive C–C coupling of isocyanides promoted by an aluminyl anion. Chemical Science 2023, 14 (23) , 6278-6288. https://doi.org/10.1039/D3SC01387A
- Martyn P. Coles, Matthew J. Evans. The emerging chemistry of the aluminyl anion. Chemical Communications 2023, 59 (5) , 503-519. https://doi.org/10.1039/D2CC05963K
- Han-Ying Liu, Michael S. Hill, Mary F. Mahon. Diverse reactivity of an Al( i )-centred anion towards ketones. Chemical Communications 2022, 58 (49) , 6938-6941. https://doi.org/10.1039/D2CC02333D
- Diego Sorbelli, Leonardo Belpassi, Paola Belanzoni. Unraveling differences in aluminyl and carbene coordination chemistry: bonding in gold complexes and reactivity with carbon dioxide. Chemical Science 2022, 13 (16) , 4623-4634. https://doi.org/10.1039/D2SC00630H
- Natalia Tiessen, Mira Keßler, Beate Neumann, Hans‐Georg Stammler, Berthold Hoge. Oxidative Addition von C−F‐Bindungen an das Silanid‐Anion [Si(C 2 F 5 ) 3 ] −. Angewandte Chemie 2022, 134 (17) https://doi.org/10.1002/ange.202116468
- Natalia Tiessen, Mira Keßler, Beate Neumann, Hans‐Georg Stammler, Berthold Hoge. Oxidative Additions of C−F Bonds to the Silanide Anion [Si(C 2 F 5 ) 3 ] −. Angewandte Chemie International Edition 2022, 61 (17) https://doi.org/10.1002/anie.202116468
- Thomas X. Gentner, Matthew J. Evans, Alan R. Kennedy, Sam E. Neale, Claire L. McMullin, Martyn P. Coles, Robert E. Mulvey. Rubidium and caesium aluminyls: synthesis, structures and reactivity in C–H bond activation of benzene. Chemical Communications 2022, 58 (9) , 1390-1393. https://doi.org/10.1039/D1CC05379E
- Matthew J. Evans, Mathew D. Anker, Claire L. McMullin, Sam E. Neale, Martyn P. Coles. Dihydrogen Activation by Lithium‐ and Sodium‐Aluminyls. Angewandte Chemie International Edition 2021, 60 (41) , 22289-22292. https://doi.org/10.1002/anie.202108934
- Matthew J. Evans, Mathew D. Anker, Claire L. McMullin, Sam E. Neale, Martyn P. Coles. Dihydrogen Activation by Lithium‐ and Sodium‐Aluminyls. Angewandte Chemie 2021, 133 (41) , 22463-22466. https://doi.org/10.1002/ange.202108934
- Jorge Juan Cabrera‐Trujillo, Israel Fernández. Factors Controlling the Aluminum(I)‐ meta ‐Selective C−H Activation in Arenes. Chemistry – A European Journal 2021, 27 (48) , 12422-12429. https://doi.org/10.1002/chem.202101944