ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Late Lanthanide Macrocyclic Tetra-NHC Complexes

Cite this: Inorg. Chem. 2022, 61, 3, 1611–1619
Publication Date (Web):January 6, 2022
https://doi.org/10.1021/acs.inorgchem.1c03416
Copyright © 2022 American Chemical Society

    Article Views

    1366

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    An isostructural set of macrocyclic tetra-N-heterocyclic carbene (NHC) complexes were synthesized on late lanthanides including Lu, Yb, Ho, Dy, and Gd. They were characterized by single-crystal X-ray diffraction, multinuclear NMR, electrochemistry, and SQUID magnetometry. Solid-state structures show that all complexes are in a highly distorted square-pyramidal geometry with an axial HMDS ligand. 1H NMR for Lu, Yb, and Dy demonstrates that these geometries are maintained in solution. Electrochemical measurements on the Yb complex show that the NHCs are very strong σ-donors compared to other organometallic Yb complexes. Magnetic measurements of the Yb and Dy complexes reveal slow relaxation of the magnetization in both complexes. The highly anisotropic Dy complex possesses an energy barrier to spin reversal of 52.42 K/36.43 cm–1 and waist-restricted hysteresis up to 2.8 K. Finally, an 18-atom macrocycle variant of the Lu complex was synthesized for comparison in reactivity and stability. These complexes are the first lanthanides prepared with macrocyclic NHCs and suggest that NHCs may be a promising ligand for developing single-molecule magnets.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c03416.

    • Experimental details, NMR, SQUID data, X-ray diagram for 4, and addition spectra (PDF)

    Accession Codes

    CCDC 21186512118656 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 2 publications.

    1. Michał J. Białek, Karolina Hurej, Hiroyuki Furuta, Lechosław Latos-Grażyński. Organometallic chemistry confined within a porphyrin-like framework. Chemical Society Reviews 2023, 52 (6) , 2082-2144. https://doi.org/10.1039/D2CS00784C
    2. Timothy D. Lash. Organometallic Chemistry within the Structured Environment Provided by the Macrocyclic Cores of Carbaporphyrins and Related Systems. Molecules 2023, 28 (3) , 1496. https://doi.org/10.3390/molecules28031496

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect